

Distributed Hash Tables

Manfred Dellkrantz

Introduction to Cloud Computing, 2015-03-17

Department of Automatic Control, Lund University, Sweden

DHT – Finding data

Where is
mydata.zip?

Where should I
store mydata.zip?

DHT – Finding data

Where is
mydata.zip?

Where should I
store mydata.zip?

?

DHT – Finding data

When storing lots of data in a network of computers,
how do we find a certain piece of data?

Applications:
● NoSQL databases (Amazon Dynamo, Cassandra)
● File sharing (Torrent Mainline DHT)
● Distributed file systems (GlusterFS)
● Content Distribution (Coral CDN)

References

[Stoica2001] Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications, Ion Stoica et al

[DeCandia2007] Dynamo: Amazon’s Highly Available Key-value Store,
Giuseppe DeCandia et al

[Maymounkov2002] Kademlia: A Peer-to-Peer Information System Based
on the XOR Metric, Petar Maymounkov et al

[Rowstron2001] Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems, Antony
Rowstron et al

Traditional Hash Table

● Use N buckets to store (key, value) items

● Store item in bucket number id=hash(key)%N

● If the item is in the table we know it is stored in
bucket id=hash(key)%N

● Store and retrieve value in O(1) time

Modulo
operator

Hash Table example

N = 5 buckets.

// Store data '0x45' in key 'mydata.zip'

store('mydata.zip', '0x45')

 hash('mydata.zip') = 73

 73 % 5 = 3

 table[3] = '0x45'

// Get data for key 'mydata.zip'

get('mydata.zip')

 hash('mydata.zip') = 73

 73 % 5 = 3

 return table[3]

Bucket Data

0

1

2

3 0x45

4

Can this be directly distributed?

Distributing the Hash Table

● Use N networked computers (nodes)

● Store item in node number id=hash(key)%N

● N will change!
– Nodes go offline/crash or we need to increase

capacity

● Changing the number of buckets in a hash table
will cause almost all items to move

Consistent Hashing

● Map the n-bit hash to a ring
● Place all nodes at some ids

on the ring
● Items are placed on the ring

at its hash(key)

● An item is the responsibility of
the node “nearest” to the item
on the ring

● “Nearest” often means
nearest clock-wise, including
its own id

02^n-1

Consistent Hashing

● Map the n-bit hash to a ring
● Place all nodes at some ids

on the ring
● Items are placed on the ring

at its hash(key)

● An item is the responsibility of
the node “nearest” to the item
on the ring

● “Nearest” often means
nearest clock-wise, including
its own id

02^n-1

id=0xC0...

id=0x19...

id=0x81...

Consistent Hashing

● Map the n-bit hash to a ring
● Place all nodes at some ids

on the ring
● Items are placed on the ring

at its hash(key)

● An item is the responsibility of
the node “nearest” to the item
on the ring

● “Nearest” often means
nearest clock-wise, including
its own id

02^n-1

id=0xC0...

id=0x19...

id=0x81...

Consistent Hashing

● Map the n-bit hash to a ring
● Place all nodes at some ids

on the ring
● Items are placed on the ring

at its hash(key)

● An item is the responsibility of
the node “nearest” to the item
on the ring

● “Nearest” often means
nearest clock-wise, including
its own id

02^n-1

id=0xC0...

id=0x19...

id=0x81...

Consistent Hashing Example

● n = 3

● 23 = 8 possible
ids

● Three nodes with
ids 1, 3, 5

● Three items with
ids 2, 5, 7

6

4

0

2

7 1

35

Consistent Hashing Example

● n = 3

● 23 = 8 possible
ids

● Three nodes with
ids 1, 3, 5

● Three items with
ids 2, 5, 7

6

4

0

2

7 1

35

Consistent Hashing Example

● n = 3

● 23 = 8 possible
ids

● Three nodes with
ids 1, 3, 5

● Three items with
ids 2, 5, 7

6

4

0

2

7 1

35

Problem?

Virtual Nodes

Problem: Node 1 has double
the responsibility compared to
the other nodes!

Solution: Each “physical”
node has several virtual nodes
spread out over the ring

For heterogeneous nodes the
number of virtual nodes can be
made proportional to the
node's capacity.

6

4

0

2

7 1

35

Adding nodes

Adding a new node
affects only the node
that had
responsibility of the
interval where the
new node is added.

6

4

0

2

7 1

35

Hi! I'm new here.

Adding nodes

Adding a new node
affects only the node
that had
responsibility of the
interval where the
new node is added.

6

4

0

2

7 1

35

Removing nodes

Removing a node
affects only those
items stored by the
leaving node.

All other
responsibilities are
left as they were.

6

4

0

2

7 1

35

I'm outta here!

Removing nodes

Removing a node
affects only those
items stored by the
leaving node.

All other
responsibilities are
left as they were.

6

4

0

2

7 1

35

Routing

The problem now is to locate
the node responsible for a key:
● using the lowest number of

messages, but...
● keeping node memory low.

Can be done in a few different
ways, depending on
assumptions and
prioritization.

Keyhash 0x1f...?

Constant Memory Routing

Minimizes the amount of data stored in
each node.

● Nodes know about the next node on the
ring

● Step through the ring until we find the
right node

● Requires O(1) memory in each node

● Requires O(N) messages to reach
destination

● Not used anywhere to my knowledge, but
stated as the worst-case for not yet
initialized nodes in Chord [Stoica2001]

● Not feasible for large networks

Constant Time Routing

Minimizes the number of messages
required.

● All nodes have complete
knowledge of all other nodes

● Requires O(1) messages to reach
destination

● Requires O(N) memory in each
node

● As seen in Amazon Dynamo
● Not feasible for extremely large

networks

Logarithmic Routing

The academic solution

● Keep an updated smart routing-
table for efficient node search

● Forwards request to best known
node

● Requires O(log N) memory in
each node

● Requires O(log N) messages

● As seen in Chord [Stoica2001] and
slightly different versions in
Kademlia [Maymounkov2002] and
Pastry [Rowstron2001]

1/2
away

1/4
away

1/8
away

etc...

O(log N) – Memory Usage

#nodes, N Routing table size

2 = 21 1

4 = 22 2

8 = 23 3

16 = 24 4

Routing table size = O(log N)

O(log N) – Memory Usage

#nodes, N Routing table size

2 = 21 1

4 = 22 2

8 = 23 3

16 = 24 4

Routing table size = O(log N)

O(log N) – Memory Usage

#nodes, N Routing table size

2 = 21 1

4 = 22 2

8 = 23 3

16 = 24 4

Routing table size = O(log N)

O(log N) – Memory Usage

#nodes, N Routing table size

2 = 21 1

4 = 22 2

8 = 23 3

16 = 24 4

Routing table size = O(log N)

O(log N) – Hops

Worst case: Looking for
data on a node
infinitely close “behind”
me.

Each step halves the
distance left to the
target.

Number of hops =
O(log N)

1/2

1/4

1/2

1/81/16

...

Torrent

● File-sharing
● Files are split in chunks
● Torrent files tell users what chunks they need
● A central tracker tells users what user(s) has

certain chunks
● The tracker is a single point of failure

Torrent DHT

● Introduced in Azureus in 2005. “Mainline DHT” specified by BitTorrent
in 2008.

● Each client is a DHT node
● Chunk and user info is inserted in the table
● Using a DHT the torrent protocol becomes tracker-free (no single

point of failure!)
● 15-27 million nodes. (Too big for constant time routing?)
● Based on Kademlia published in [Maymounkov2002]

[Measuring Large-Scale Distributed Systems: Case of BitTorrent Mainline DHT, Wang et al, 2013]

[http://www.bittorrent.org/beps/bep_0005.html]

Dynamo: Amazon's Key-value Store

● Several different internal uses at
Amazon, mostly storing state for
stateful services, for example
the shopping cart

● Stores key-value items. Typical
value size ~1 MB.

● All nodes have knowledge of all
nodes. Storage O(N) in each
node. Routing takes O(1) hops.

Dynamo: Amazon's Key-value Store

● Items replicated over the A nearest nodes.
● Unavailable nodes can cause diverging

replicas. Solved by versioning the item
updates. Dynamo is always-writable!

● Handles temporary failures with hinted
handoff

● Uses Merkle trees to detect lost replicas
(differences between nodes with
overlapping responsibilities).

[DeCandia2007]

(A=3)

Dynamo: Amazon's Key-value Store

● Items replicated over the A nearest nodes.
● Unavailable nodes can cause diverging

replicas. Solved by versioning the item
updates. Dynamo is always-writable!

● Handles temporary failures with hinted
handoff

● Uses Merkle trees to detect lost replicas
(differences between nodes with
overlapping responsibilities).

[DeCandia2007]

My network is
broken. :-(

I will hold this
until you're

available again.

(A=3)

DHT Security

● Maliciously overwriting data
– Hard to authenticate nodes in distributed system

● Disturb a node
– Insert yourself right before a node

– Change or destroy all the node's data as it is transferred to you

● Take over data
– Place yourself near data, making you responsible for it

– Change or destroy data

Amazon Dynamo assumes we are operating in a closed, friendly environment.

Some DHT networks require nodes to choose nodeid=hash(IP_address).

Advantages

● Distributed storage
● Highly scalable (Chord requires routing table size

32 for N=2^32)
● Can be made robust against node failures
● Decentralized, no node is unique or irreplaceable
● Self-organizing
● Can take advantage of heterogeneous nodes

through virtual nodes

Disadvantages

● Can not search, only look up (typical for hash
tables)

● Security

The End

	Slide 1
	page2 (1)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	page8 (1)
	page9 (1)
	Slide 16
	page11 (1)
	page12 (1)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	page18 (1)
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	page23 (1)
	Slide 36
	Slide 37
	Slide 38
	Slide 39

