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DHT – Finding data

When storing lots of data in a network of computers, 
how do we find a certain piece of data?

Applications:
● NoSQL databases (Amazon Dynamo, Cassandra)
● File sharing (Torrent Mainline DHT)
● Distributed file systems (GlusterFS)
● Content Distribution (Coral CDN)
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Traditional Hash Table

● Use N buckets to store (key, value) items

● Store item in bucket number id=hash(key)%N

● If the item is in the table we know it is stored in 
bucket id=hash(key)%N

● Store and retrieve value in O(1) time

Modulo
operator



  

Hash Table example

N = 5 buckets.

// Store data '0x45' in key 'mydata.zip'

store('mydata.zip', '0x45')

  hash('mydata.zip') = 73

  73 % 5 = 3

  table[3] = '0x45'

// Get data for key 'mydata.zip'

get('mydata.zip')

  hash('mydata.zip') = 73

  73 % 5 = 3

  return table[3]

Bucket Data

0

1

2

3 0x45

4

Can this be directly distributed?



  

Distributing the Hash Table

● Use N networked computers (nodes)

● Store item in node number id=hash(key)%N

● N will change!
– Nodes go offline/crash or we need to increase 

capacity

● Changing the number of buckets in a hash table 
will cause almost all items to move



  

Consistent Hashing

● Map the n-bit hash to a ring
● Place all nodes at some ids 

on the ring
● Items are placed on the ring 

at its hash(key)

● An item is the responsibility of 
the node “nearest” to the item 
on the ring

● “Nearest” often means 
nearest clock-wise, including 
its own id

02^n-1
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Consistent Hashing Example

● n = 3

● 23 = 8 possible 
ids

● Three nodes with 
ids 1, 3, 5

● Three items with 
ids 2, 5, 7

6
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2
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● 23 = 8 possible 
ids

● Three nodes with 
ids 1, 3, 5

● Three items with 
ids 2, 5, 7

6

4

0

2

7 1

35

Problem?



  

Virtual Nodes

Problem: Node 1 has double 
the responsibility compared to 
the other nodes!

Solution: Each “physical” 
node has several virtual nodes 
spread out over the ring

For heterogeneous nodes the 
number of virtual nodes can be 
made proportional to the 
node's capacity.
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Adding nodes

Adding a new node 
affects only the node 
that had 
responsibility of the 
interval where the 
new node is added. 
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Hi! I'm new here.
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Removing nodes

Removing a node 
affects only those 
items stored by the 
leaving node.

All other 
responsibilities are 
left as they were.
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Removing nodes
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Routing

The problem now is to locate 
the node responsible for a key:
● using the lowest number of 

messages, but...
● keeping node memory low.

Can be done in a few different 
ways, depending on 
assumptions and 
prioritization.

Keyhash 0x1f...?



  

Constant Memory Routing

Minimizes the amount of data stored in 
each node.

● Nodes know about the next node on the 
ring

● Step through the ring until we find the 
right node

● Requires O(1) memory in each node

● Requires O(N) messages to reach 
destination

● Not used anywhere to my knowledge, but 
stated as the worst-case for not yet 
initialized nodes in Chord [Stoica2001]

● Not feasible for large networks



  

Constant Time Routing

Minimizes the number of messages 
required.

● All nodes have complete 
knowledge of all other nodes

● Requires O(1) messages to reach 
destination

● Requires O(N) memory in each 
node

● As seen in Amazon Dynamo
● Not feasible for extremely large 

networks



  

Logarithmic Routing

The academic solution

● Keep an updated smart routing-
table for efficient node search

● Forwards request to best known 
node

● Requires O(log N) memory in 
each node

● Requires O(log N) messages

● As seen in Chord [Stoica2001] and 
slightly different versions in 
Kademlia [Maymounkov2002] and 
Pastry [Rowstron2001]

1/2  
away

1/4 
away

1/8 
away

etc...



  

O(log N) – Memory Usage

#nodes, N Routing table size

2 = 21 1

4 = 22 2

8 = 23 3

16 = 24 4

Routing table size = O(log N)
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O(log N) – Hops

Worst case: Looking for 
data on a node 
infinitely close “behind” 
me. 

Each step halves the 
distance left to the 
target.

Number of hops = 
O(log N)

1/2

1/4

1/2

1/81/16

...



  

Torrent

● File-sharing
● Files are split in chunks
● Torrent files tell users what chunks they need
● A central tracker tells users what user(s) has 

certain chunks
● The tracker is a single point of failure



  

Torrent DHT

● Introduced in Azureus in 2005. “Mainline DHT” specified by BitTorrent 
in 2008.

● Each client is a DHT node
● Chunk and user info is inserted in the table
● Using a DHT the torrent protocol becomes tracker-free (no single 

point of failure!)
● 15-27 million nodes. (Too big for constant time routing?)
● Based on Kademlia published in [Maymounkov2002]

[Measuring Large-Scale Distributed Systems: Case of BitTorrent Mainline DHT, Wang et al, 2013]

[http://www.bittorrent.org/beps/bep_0005.html]



  

Dynamo: Amazon's Key-value Store

● Several different internal uses at 
Amazon, mostly storing state for 
stateful services, for example 
the shopping cart

● Stores key-value items. Typical 
value size ~1 MB.

● All nodes have knowledge of all 
nodes. Storage O(N) in each 
node. Routing takes O(1) hops.



  

Dynamo: Amazon's Key-value Store 

● Items replicated over the A nearest nodes.
● Unavailable nodes can cause diverging 

replicas. Solved by versioning the item 
updates. Dynamo is always-writable!

● Handles temporary failures with hinted 
handoff

● Uses Merkle trees to detect lost replicas 
(differences between nodes with 
overlapping responsibilities).

[DeCandia2007]

(A=3)
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My network is 
broken. :-(

I will hold this 
until you're 

available again.

(A=3)



  

DHT Security

● Maliciously overwriting data
– Hard to authenticate nodes in distributed system

● Disturb a node
– Insert yourself right before a node

– Change or destroy all the node's data as it is transferred to you

● Take over data
– Place yourself near data, making you responsible for it

– Change or destroy data

Amazon Dynamo assumes we are operating in a closed, friendly environment.

Some DHT networks require nodes to choose nodeid=hash(IP_address).



  

Advantages

● Distributed storage
● Highly scalable (Chord requires routing table size 

32 for N=2^32)
● Can be made robust against node failures
● Decentralized, no node is unique or irreplaceable
● Self-organizing
● Can take advantage of heterogeneous nodes 

through virtual nodes



  

Disadvantages

● Can not search, only look up (typical for hash 
tables)

● Security



  

The End
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