Lecture 6 — Nonlinear controllability

Nonlinear Controllability

What you will learn today (spoiler alert)

New mathematical concepts and language

Manifolds, charts (M, ¢(z))

n
5}
Vector field: i(x) m—
ector fields ;a (z)axi
Lie-derivative Lx(f) = g” a'(ac)ﬁ
J iR e O
. _og, of
Lie-bracket [f, g] = c’)zf = 7.9

Nonlinear Kalman Decomposition

Can find coordinates (x1, 2, 3, 24) so that

i = fY(w1,m3) + g(an, w)u
iy = fA(21,22,73,24) + g(21, 32, T3, T4 )U
i3 = f(xs)
iy = fHar,s)
y = h(z1,z3)

Relative Degree Smallest r such that L_qL}’lh('f,o) #0
Exact Linearization by Feedback

z = f(z)+g(z)u

u = a(z)+p(z)vand z = Z(z) = 2 = Az + Bv

System is feedback linearizable if one can findy = h(x) so the
system has relative degree n. Can be checked with Lie-brackets

Lecture slides
Handout from Nonlinear Control Theory, Torkel Glad (Linkdping)

Handout about Inverse function theorem by Hérmander

What you will learn today

Local Controllability:

@ A nonlinear system is controllable if the linearized system is
controllable.

o & = f(x) + g(x)u is “accessible” iff

dim (f,9,[f. 9L, [f[f,9]l,-- ) =n

Fundamental Parking Theorem

Differential Flatness

Zero Dynamics

Nonlinear Minimum Phase
Disturbance Decoupling
Normal Forms

Stabilization

Nonlinear System

i = f(z,u)
y = hz,u)

Important special affine case:

f@) +g(z)u
y = h(2)

f 1 drift term

g @ input term(s)

at we will not do

Local Observability. Depends on z( and u.
y; = hi(z)

O =spanLy, ... Lx,hj(z)

dO =span (dH | H € O)

The system is locally observable if

dim (dO) =n

Duality between observability and controllability

Basic Result: Linearization at

i = f(x) + g(z)u, z(0) = xo

Theorem Suppose f(zo) + g(zo)uo = 0. If the linearization

z = Az+ Bv

of 0.
4 = A+ B o
B = g(x)

is controllable, then for all 7' > 0, € > 0 the set
Xre ={2(T); |u—uo| <€}

contains a neighborhood of zp.  (Proof: Nice exercise in using the
inverse function theorem)



What are natural mathematical models for state spaces?
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o S |\S
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Piece together “bent” pieces of R".

Same local properties as R". Different globally

Rolling Penny

& = wuycos(d)
y = wugsin(f)
¢ = wm
é = u

The linearization is not controllable (check)

Can the penny be moved sideways in small time (keeping the head
up)?

I —
Topology

A topology on a set M is a collection 7" of subsets of M.
O is called “open” if O € T.
The collection 7" must be such that

e ), MeT

0 01,0,eT=—01N0€T
0 {0} eT= U0, €T

Example - Pendulum
B
%8

6 = sin(d) +u

Natural state space: R x S* = cylinder

S' = unit circle

Rolling Penny

Yes it can. But it is not obvious.

The penny has non-holonomic constraints a(z)z = 0

sinf —cosf 0 0
cosf sinfh —1 0

6 = B

Can not be written as holonomic constraints: i(z) = 0 = h.z = 0.

Compatible Coordinate Charts

Compatible: ¢ o o~ (x) € C
fis called "smooth” if f(v~1(z)) € C*°, Vi
Note: fopl(z) = foyplopopt e C™®

Independent on coordinate charts.

Rigid Bodies

&

&
e
Natural State Space
R = (7‘1 T2 7‘3) € 50(3)
ie RRT = TIand det(R)=1
R = —-Rxw<e R=—RS(w)
0 —ws3 Wy
S(w) = w3 0 —w
—wy Wy 0

Definition of Manifold

A C* (=smooth) manifold is a topological space M together with an
atlas {Ua, o } of pairwise C°°-compatible coordinate charts that
cover M.

Topological space M?
Atlas {Uq, 0o} ?

Pairwise Coc-comﬁatible coordinate charts ?

Example: Cylinder

2T

wop tsmoothon UNV = (w3 # 0, 29 # 0)
2z =(p~H(x)) is given by (21, 22) = (x1,4/2)

The cylinder is a smooth manifold




Example

a

4 Q‘l = Sq
S S—]
Configuration space of a segment in the plane
Example
Double ’pev‘dbdum
V1
\ \
S'% §' = “borus
¥2

Example Sohere §?

Differentials

f: A — Bis called differentiable at « € A iff there is a continuous
linear map DF,(h) : A — B such that

[f(z+h) = f(z) = DFe(h)[| + 0, h—0

DF, = differential (Jacobian)

ofi  9fi
Oz dxo
DF = | 0f2

9z

Proof idea: To solve y = f(x) use
2 =zpo1 + f(20) Ny — fzr-1))

Prove > (x — xx_1) converges for y near yo.

See handout.

Global Differences to " - Example

Any smooth velocity field v on S must have a point where v(z) = 0

“You can’t comb the hair of a tennis ball”

Differentials
ofi Of
dzq Ozo

DF = |22 -
Oz

Definition Rank of f at « := rank(DF).
If f smooth then

Rank (DF,,) =k = Rank (DF;)>k

for all x close to z.

Proof: Dy(z) = k x k submatrix of DF, with
det(Dg(z0)) # 0 = det(Dg(z)) # 0, for x close to xo.

Implicit Function Theorem

h(z,y) =0

ok
a—L fullrank = 2 = z(y) uniquely
5

Manifolds defined by equation systems

Many manifolds are defined implicitly by equations systems

fl(Il,..,,In) = 0

fr(@1,....zn) = 0

When does this describe a (smooth) n — k-dimensional manifold?

Inverse Function Theorem

Theorem Let X be openin U and f € C1(X, V), f(xo) = yo. For
existence of g € C'(Y,U) where Y is a neighborhood of 1y so

a) f o g = identity near yo

b) g o f = identity near xq

c) a)and b)

it is necessary and sufficient that there is a linear map A such that
respectively

a) f'(vo)A = 1Iv
b)) Af'(z0) = Iy
c’) a’)and b’)

Condition ¢’ implies that g is uniquely determined near yo.

h(z,y) =a® +y*—1, R, =2z

z
So z = x(y) uniquely except near (0, £1).
Infactz = /1 — g2, zo >0andz = —/1— g2, z9 <O0.
I



Implicit F. T. = Inverse F. T. c).

h(z,y) =y — f(2);

= fi = = = z(y) uniquely

Inverse . T.c) — Implicit . T.

f(z,y) = (h(z,y),y)

! I
= [}:)T hl’/] full rank

So (z,y) locally determined by (h,y) = (0,y)

= = x(y) uniquely locally

I ——
Manifolds by equation systems

fl(.q:l,”.,:n,,) = 0

fe(@r,..szn) = 0

determines an n — k dimensional manifold near z if

Or1  Oxa
[ has full rank (= k) at Z

dx1

("Gradients V f1, ..., V fi are linearly independent”)

Different notation

Note
o) =0
ff + fy=0
ox 1
/B <% 7y
Try it yourself example
ch —e"? +I§ -1 =0
224 xy — ,’l‘% =\

Are z1, zo smooth functions of 3 around (1,0,1)?
What is 221 at that point?

dx3

Tangent Vectors - different definitions

@ Define it only for manifolds embedded in R™:
i = 1im PO = ¢(0)
t—0 t
Velocity vectors in R™.
o Coordinate free version. Tangent vectors at = > "equivalance
classes of curves with p(0) = z”, we define p(t) ~ 1 (t) when

$(0)=v(0) ==z and lim £t —v) - )

Coordinate Change

=0 insome chart

ap
_ (2 ) .
X = (Wl m,,] :
Qp
Change coordinates 3 = %Za or
F) =y (122 0\ 92
{% 61"] & [az. zm] ox
Example
Z1 = I
Z2 = Z1+x2
0 Oz 0 | Oz 0 0 0

T On i n | B

Note that 1 = z; does not imply % = %

Functions Between Manifolds
18

'\f/‘
S /IR

Definition

feC® < dofoplelC® W,o

Derivative operator X(f) : (f : M + R) — R

X(af +Bg) = aX(f)+pBX(g)
X(f9) = fX(9)+9X(f)

Example: Take any coordinate chart (U, ¢) with coordinates x. Then

L 0
Xu = ;0@67“

is a tangent vector, where

Xa(f) = g aigfi(a)

I —
Push Forward Operator

Exampleéﬁ T @
vj Falww)

B Fyluw) E
2
Lﬁ,_]m =& (s (nk\vn)q:\\;_:.%}.;.a’ﬁ‘am

Pu

Ry % 2H
[Fv% F%J’[%«%%z}ﬁ 3“

kT

X2




(Smooth) Vector Fields

Assigns a tangent vector to each point: p — X,
n
19}
X = Xi(p)=—
z i) dx;
i=1
X, (p) smooth functions of p.
Xi(21,...,@p)
Alternativ notation: X ~ :
Xo(z1,. .., 20)

& = f(x)+g(x)u

y = h)
X oh . Oh
U = gt =g, (F+gu) = Lyiguh
= Lsh+uLgh
y® = Ly

.fﬂ = uy
.”L"z = U2
I3 = :L‘luzj:zzul
1 0
This means g; = 0 andge = | 1
:EIQ Ty
000 1 0 0 0 0
[g1,92) =0 0 0 0o |-fo o o1
100 +x9 0 £1 0 il

Integral Curve

o(t) is an integral curve to X if in local coordinates

O'1<t)
o(t) = g
on(t)
d
F9®) = X(@(®)(9)
S AL Y X)L
ie.
01 = Xi(o(?))
on = Xn(o(t))
A set of ODEs

Main new object: Lie Bracket of vector fields

Consider two vector fields @ = f(z) and & = g(z)

Lie-bracket. New vector field

Hence at x = 0 we have

1 0
= [0] i [1] o gl =
0 0

With the minus-sign the three vector fields span 3, and we have
controllability.

0
0
1-—+1

With the plus-sign the system is not controllable, in fact it can be seen
that 73 + 23 — 23 is an invariant.

Transformation Group, Flow

X'(p) = solutionto & = X (z),z(0) = p
Xtis smooth. X° = id

& G g(X"(p)) — g(p
Ix(g) = X(g) = - Xz = fi R0

Lox+py =alx +BLy, a,f€R
&= flz,u) f:MxU~—TM

Why is it interesting?

@ = f(z) + g1(x)ur + g2(@)uz + . ..

£ % 5

A~ .

Gaf s, 20 ns) Gl
N\ 7

[N 4
il (CHACS)|

Roughly we have:
If the Liebracket "tree” has full rank, then the system is "controllable”.

& = f(z)+g(@)u
y = h(z)
X oh . oh
y = %fza(ergU):Lfﬂzuh
= Lsih+uLgh
y® = (Lyrg)*h



Lie-Brackets

X1 n

X ~ : Y ~
X’IL Yn

oY oX
xv]=2x_ 2y
g Ox Oz

Some Lie-Bracket Formulas

[fX,9Y] = fg[X,Y] + fX(9)Y — gV ()X
(X, Y] =-[V, X]
(X1, [Xa, X3]] + [Xo, (X3, Xa]] + [X3, [ X1, Xo]] = 0

1
LxY =[X,Y]= ,{Z%ﬁ[X?hY 2N

00 hn }2
Xy =% ad}Y% =Y +AX, Y]+ (X, [X,Y])...
n=0 :

related to

(z,y) : position
¢ : direction of car
: direction of wheels
(2,9,6,0) € R*x S X [Omin, fmax]

Another example

~ [coso 2 0
X = [ = ] (,05(907‘4—7"8(1)

r 19} 17}
Y = [1] ~7E+8—¢
@

2 10 0S ¢ 0 —sing r

= 5o [(77)- (375 ()
_ [cos¢ —sing
= o

o4 2] a
] ~ (cos ¢ — smqb)a - 7‘8—@

Vector Fields, Summary
A vector field X is associated with

a) A system of differential equations

dx
=Y b
= ()
b) Aflow ® : M — M.t € [to,t1], where o(t) = ®!(z) is the
solution to d
d—‘z =X(0), o(0)==z

c) A directional derivative

Xof = 2@ (@)

d) A ’derivation” of the algebra C*°(11).
e) A partial differential operator

t=0

d
X:ZX,a—zj

Parking cont’d

Sx = heos(p+)
h ‘5‘_1 = hsinlo+e)
oy _

S =hsin(0)

Sinflp Sin(-8
shact s

) 8¢ o hsin(®)
Steer := 7

. 17}
Drive := cos(¢ + G)JE + sin(¢ + 9)% + Si“(g)a%

0 cos(¢ +0)
_|o . |sin(¢+0)
Steer = 0 Drive = sin(6)
1 0

Lie-Brackets

Why are Lie-brackets so fundamental?

T = gru1 + gauz

[0,R)
[h,2h)
(—1,0) t€ [2h,3h)
(0,—1) t € [3h,4h)

z(4h) = xo+ h3[g1,92) + O(h?)

te
te

(ur (t), ua(t))

Trotters Product Formula

Vi)
(ofposful)

' A
<I>[4,<7y] = nlgglc

Proof sketch

a — b solution to differential equations
b — cdirect
¢ — d direct

d — e proposition

e — a direct
—sin(¢ + )
[Steer, Drive] = ... = CO;ES(;—) 9 := Wriggle
0
A X 1

7| ¥

3 ’
Steer Drive - Skeer -Dnive




An easy calculation (exercise) shows that Linear Systems

—sin(¢ + 6)
. ) cos(¢ +0) _ .
[Wriggle, Drive] = 0 =: Slide &= Az + Bu = f(z) + g(x)u
0 . Example
Fundamental Parking Theorem " D
- B)— Lintav subbee
For 6 = 0 this takes you sideways: You can get out of any parking lot that is larger than the car. Use the s =tini/o
following control: Wriggle, Drive, —~Wriggle (this requires a cool head), I3 :xé.;,, 0
—Drive (repeat). YA
&',smd»ws‘“ o iy
Slide: R Proof: Trotters Product Formula VA
f,g) = [Az,B]=0-AB
lg.[f.9]] = 0
[£,[f,g]] = [Az,—AB]=A’B

Slide’ (z,y, ¢,0) = (x — tsin(e), = + t cos(4), ¢, 0)

Adjg = [f.[f,....[f,gl] = (=1)"4*B
N S — e

Controllability Theorems Accessibility theorem Reading Assignment

C = smallest Lie subalg. containing {f,gl ..... gm}

i = f(z) + 2, gi(@)us
Let A(z() be the reachable set from o, i.e. all points that can be
reached from x( using a suitable control u

Al For a precis formulation, and more about "controllability” vs
"accessability” see

1'&.\ 195).5 98]

Ltisy) i
’ ) AT

Accessibility The system has the accessibility property at x if A(z) T. Glad, Nonlinear Control Theory, Chapter 8, pp 73-81
has nonempty interior

Theorem |f for all 2y the Lie-bracket tree contains n linearly

independent elements, then the system is has the accessbility property

dim C =n = can reach open set

If f =0, (or more generally f(z,u) is "symmetric”, see Glad) then the
system is controllable: A(zg) = R"



