
Lecture 4

Realization from Weighting Pattern

Minimal Realizations

Realization from Transfer Function

Realization from Markov Parameters

Discrete Time

Rugh Ch 10, 11 (only pp194-199, skip proof of 11.7), (26)



Example: Shift Register Synthesis

x1 x2 x3 x4

x =
[
x1 x2 x3 x4

]T

x(k+ 1) =







1 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0






x(k) +







1

0

0

0






u(k)

y(k) =
[
0 0 0 1

]
x(k)

Given a sequence y(0), y(1), . . . , y(N), what is the shortest shift
register that can generate this output for the input u " 0?



Definition: Realization

The state equation of dimension n

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = 0

y(t) = C(t)x(t)

is called a realization of the continuous weighting pattern
G(t,σ ) if

G(t,σ ) = C(t)Φ(t,σ )B(σ ) ∀t,σ

It is called minimal if no realization of smaller dimension exists.

Notice the distinction between the weighting pattern and the
impulse response. The latter is zero for t < σ .



Theorem 1: Realizability

The weighting pattern G(t,σ ) has a realization of dimension n
if and only if there exist matrix functions H(t) ∈ Rp$n,
F(t) ∈ Rn$m such that

G(t,σ ) = H(t)F(σ ) ∀t,σ



Proof

If G(t,σ ) = H(t)F(σ ), then

ẋ(t) = F(t)u(t)

y(t) = H(t)x(t)

is a realization.

Conversely, if

G(t,σ ) = C(t)Φ(t,σ )B(σ ),

then G(t,σ ) = H(t)F(σ ) for

H(t) = C(t)Φ(t, 0)

F(σ ) = Φ(0,σ )B(σ )

This does not work in discrete time. Why?



Warning

The realizations {0, F(t),H(t)} are seldom "nice".

Consider G(t,σ ) = e−(t−σ ) with
{
ẋ(t) = etu(t) (unstable)
y(t) = e−tx(t)

and compare with
{
ẋ(t) = −x(t) + u(t) (stable)
y(t) = x(t)



Theorem 2: Minimality

A linear realization of G(t,σ ) is minimal if and only if for some
t0 < t f , it is both controllable and observable on (t0, t f ).

Proof Omitted (see Rugh pp 162–164 if interested)

Remark
There may still exist realizations of the impulse-responses, i.e.
for t ≥ σ , of lower dimension. See Exercise 10.7.



Theorem 3: Periodic Realization

A periodic linear realization of G(t,σ ) exists if and only if it is
realizable and ∃T > 0:

G(t+ T ,σ + T) = G(t,σ ) ∀t,σ

If so, then there also exists a minimal realization that is periodic.

The proof is omitted.



Theorem 4: LTI Realization

A linear time-invariant realization of G(t,σ ) exists if and only if
G is realizable, continuously differentiable and

G(t,σ ) = G(t−σ , 0)



Proof of Theorem 4

“Only if” is immediate. To prove “if” let {0, B(t),C(t)} be a
minimal realization. We want to find an LTI realisation.
Introduce

A = −

∫ t f

t0

B ′(σ )B(σ )TdσW(t0, t f )
−1

With C(t)B(σ ) = G(t−σ , 0) it follows that

0 =

[
�

�t
G(t−σ , 0) +

�

�σ
G(t−σ , 0)

]

B(σ )T

= C′(t)B(σ )B(σ )T + C(t)B ′(σ )B(σ )T

0 =

∫ t f

t0

[

C′(t)B(σ )B(σ )T + C(t)B ′(σ )B(σ )T
]

dσ

0 = C′(t) + C(t)

∫ t f

t0

B ′(σ )B(σ )TdσW(t0, t f )
−1

0 = C′(t) − C(t)A, C(t) = C(0)eAt



Proof of Theorem 4, cont’d

G(t,σ ) = C(t)B(σ ) = C(t−σ )B(0)

= C(0)eA(t−σ )B(0)

A time-invariant realization is therefore

ẋ = Ax + B(0)u, y = C(0)x



Example

The weighting pattern

G(t,σ ) = e−(t−σ )2

satisfies G(t,σ ) = G(t−σ , 0), but one can prove it is not
factorizable as F(t)H(σ ), so no realization exists. In fact we
have:

Remark
The weighting pattern G(t,σ ) is realizable as a time-invariant
(finite-dimensional) system if and only if it can be written as

G(t,σ ) =
n∑

k=1

dk−1∑

j=0

�kj ⋅ (t−σ ) j eλ k(t−σ )



Exercise

Write the time invariant impulse response

G(t,σ ) = (t−σ )e−(t−σ )

as
G(t,σ ) = H(t)F(σ )



Th.5 Transfer Function Realizability

A transfer matrix G(s) admits a linear time-invariant realization

G(s) = C(sI − A)−1B

if and only if each entry of G(s) is a strictly proper rational
function.



Proof of Theorem 5

“Only if” is immediate.

To prove “if”, choose d(s) = sr + dr−1sr−1 + ⋅ ⋅ ⋅+ d0 and write

d(s)G(s) = Nr−1s
r−1 + ⋅ ⋅ ⋅+ N0

Let

A =





0 Im 0

0 Im
−d0 Im −d1 Im −dr−1Im





B =
[
0 0 0 Im

]T

C =
[
N0 N1 . . . Nr−1

]

Z(s) = (sI − A)−1B



Proof of Theorem 5

It is then easy to verify that

Z(s) =
1

d(s)








Im
sIm

...
sr−1 Im








The equality C(sI − A)−1B = G(s) follows by left multiplication
with C. Note: This realisation might not be minimal.

When G(s) has distinct poles there is a more natural realization
on diagonal form (which is minimal):



Gilbert-Realization

Introduce the partial fraction expansion

G(s) =
r∑

i=1

Gi
1

s− λ i

and the rank-factorizations

Gi = CiBi, Ci is p$ ρi, Bi is ρi $m

where rankGi = ρi. Now use

A = diag{λ1 Iρ1 , . . . ,λ r Iρr}

B =
[
BT
1
. . . BTr

]T

C =
[
C1, . . . ,Cr

]

That the realisation is minimal follows from the PBH-test.



Example

G(s) =

[
1
s+1

2
s+1

−1
(s+1)(s+2)

1
s+2

]

=
1

s+ 1

[
1 2

−1 0

]

+
1

s+ 2

[
0 0

1 1

]

with

A =





−1 0 0

0 −1 0

0 0 −2





B =





1 2

−1 0
1 1





C =

[
1 0 0

0 1 1

]



Theorem 6

{A, B,C} is a minimal realisation of G(s) if and only if it is
controllable and observable.



Proof of Theorem 6

If {A, B,C} is not a minimal realisation then there exists
{F,G,H} of dimension nz < n such that

�(t) = CeAtB = HeFtG ∀t

This gives CAkB = �(k)(0) = HFkG ∀k, i.e.





C
...

CAn−1






︸ ︷︷ ︸

Oa

[
B AB ⋅ ⋅ ⋅ An−1B

]

︸ ︷︷ ︸

Ca

=






H
...

HFn−1






︸ ︷︷ ︸

O f

[
G ⋅ ⋅ ⋅ Fn−1G

]

︸ ︷︷ ︸

Cf

But O f and Cf have rank less than or equal to nz, so that holds
also for either Oa or Ca. Therefore {A, B,C} cannot be both
controllable and observable.



Proof of Theorem 6, cont’d

Conversely, if {A, B,C} is not controllable (similar if not
observable) it can be transformed to

{[
A11 A12
0 A22

]

,

[
B1
0

]

,
[
C1 C2

]
}

CeAtB = C1e
A11tB1

so {A11, B1,C1} is a realization of lower dimension.



Theorem 7

Two minimal time-invariant realizations of G(s) are related by a
coordinate transformation z = Px.

The transformation is unique.



Proof of Theorem 7

Let the two minimal realizations be

�(t) = CeAtB = HeFtG ∀t

With the notation from the proof of Theorem 6 let
P = CaC

T
f (CfC

T
f )
−1.

First prove that P−1 = (OTf O f )
−1OTf Oa. The existence of the

inverses are guaranteed by controllability and observability.

Then verify that P−1B = G, CP = H and P−1AP = F.

For any other such transformation P̂ it follows from
Oa P̂ = O f = OaP and observability that P̂ = P.



Definition: Markov Parameters

Given a time-invariant impulse response �(t), the
corresponding Markov parameters are defined as

�(0),�′(0),�(2)(0),�(3)(0), . . .

Define also the block Hankel matrices (for i, j ≥ 0)

Γi j =








�(0) �′(0) . . . �( j−1)(0)
�′(0)

...
. . .

�(i−1) �(i+ j−2)(0)








We have �k(0) = CAkB and

G(s) = �(0)s−1 + �′(0)s−2 + �(2)(0)s−3 + . . .



Th. 8 Realization from Markov Parameters

An analytic impulse response �(t) admits an n-th order
time-invariant realization ẋ = Ax + Bu, y = Cx if and only if
there exist positive integers l, k ≤ n such that

rank Γlk = rank Γl+1,k+ j = n, j = 1, 2, . . .

Proof Utilize

Γi j = MiWj

Mi =






C
...

CAi−1






Wj =
[
B AB ⋅ ⋅ ⋅ A j−1B

]

like in the proof of Theorem 6. See Rugh 11.7 for details.



Example

What is the dimension of a minimial realisation of �(t) = tet?

Since �(k)(0) = k we get

rank Γ11 = rank
[
0
]
= 0

rank Γ22 = rank

[
0 1

1 2

]

= 2

rank Γ3,k = rank





0 1 2 . . .

1 2 3 . . .

2 3 4 . . .



 = rank





0 1

1 1

2 1



 = 2, k ≥ 3

so the minimial dimension is 2. In fact, one can take

A =

[
1 1

0 1

]

, B =

[
0

1

]

, C =
[
1 0

]



Theorem 9 - Discrete Time

y(k) =

k∑

j=k0

G(k, j)u( j)

G(k, j) = C(k)Φ(k, j + 1)B( j), k ≥ j + 1

Cannot define weighting pattern, that is G(k, j) also for k < j,
since Φ need not be invertible.

∃H(k), F(k) : G(k, j) = H(k)F( j), k ≥ j + 1

=[ ∃ realization {A(k), B(k),C(k)}

Proof
A(k) = I [ Φ(k, j + 1) = I



Example

x(k+ 1) = u(k), y(k) = x(k)

is a realisation of

G(k, j) = δ (k− j − 1), k ≥ j + 1

but you can not find a factorisation of the form

G(k, j) = H(k)F( j), k ≥ j + 1



Example

x(k+ 1) = x(k) +

[
1

δ (k− 1)

]

u(k)

y(k) =
[
1 δ (k)

]
x(k)

is reachable and observable on any interval containing
k = 0, 1, 2, but it is not a minimal realisation of the pulse
response

G(k, j) = 1+ δ (k)δ ( j − 1) = 1, k ≥ j + 1

since
z(k+ 1) = z(k) + u(k), y(k) = z(k)

is of lower dimension.



Some things we (and Rugh) left out

We did not obtain a method to find a minimal (A, B,C,D) from
a given G(s) in the case of non-distinct poles. One solution is
to use the non-minimal realisation in Theorem 5 and then apply
Kalman decomposition (or balanced realisation). But there if of
course a more direct approach see [Kailath, Linear Systems].

We could have talked about identification by state-space
methods. See the course in Identification if interested.


