Realization from Weighting Pattern
Minimal Realizations

o
)

@ Realization from Transfer Function

@ Realization from Markov Parameters
o

Discrete Time

Rugh Ch 10, 11 (only pp194-199, skip proof of 11.7), (26)




Example: Shift Register Synthesis
J—- X1| X9| X3| X4

X = [xl X9 X3 JC4]
1 001 1
1 000 0
x(k+1) = 010 0 x(k) + 0 u(k)
0 010 0
y(k) = [0 0 0 1]x(k)

Given a sequence y(0),y(1),...,y(IN), what is the shortest shift
register that can generate this output for the input u = 0?



Definition: Realization

The state equation of dimension n
x(t) = A()x(t) + B(t)u(t), x()=0
y(t) = C()x(t)

is called a realization of the continuous weighting pattern
G(t,0) if

G(t,0) = C(t)®(t,0)B(0) Vi, o
It is called minimal if no realization of smaller dimension exists.

Notice the distinction between the weighting pattern and the
impulse response. The latter is zero for t < o.



Theorem 1: Realizability

The weighting pattern G(¢,0) has a realization of dimension n
if and only if there exist matrix functions H (¢) € RP*",
F(t) € R*™™ such that

G(t,0) = H(t)F(o) Vt,o




If G(t,0) = H(¢)F(oc), then
x(¢) = F()u(?)
y(@t) = H(t)x(t)
is a realization.
Conversely, if
G(t,0) = C(t)®(t,0)B(0),
then G(¢,0) = H(¢)F (o) for
H(it) = C@)®(t0)
F(o) = @(0,0)B(0)

This does not work in discrete time. Why?



The realizations {0, F'(¢), H(t)} are seldom "nice".
Consider G(t,0) = e~ (=) with

{a‘c(t) = e'u(t) (unstable)
y(t) =e'x(t)

and compare with

{x(t) = —x(¢) + u(¢) (stable)

y(t) = x(t)




Theorem 2: Minimality

A linear realization of G(¢,0) is minimal if and only if for some
to < ty, itis both controllable and observable on (Zo,%f).

Proof Omitted (see Rugh pp 162-164 if interested)

Remark
There may still exist realizations of the impulse-responses, i.e.
for t > o, of lower dimension. See Exercise 10.7.




Theorem 3: Periodic Realization

A periodic linear realization of G(t, o) exists if and only if it is
realizable and 37" > 0:

Gt+T,0+T)=G(0) Vto

If so, then there also exists a minimal realization that is periodic.

The proof is omitted.




Theorem 4: LTI Realization

A linear time-invariant realization of G(¢, o) exists if and only if
G is realizable, continuously differentiable and

G(t,0) = G(t—o0,0)




Proof of Theorem 4

“Only if” is immediate. To prove “if” let {0, B(t), C(¢)} be a
minimal realization. We want to find an LTI realisation.
Introduce

s / " B/(0)B(0) T doW(to,t)"!
With C(£)B(o) = G(:,‘O— &,0) it follows that
0= [%G(t —0,0)+ %G(t — 0,0)] B(o)T
= C'(1)B(0)B(0)" + C(t)B'(c)B(0)"

_ / A [C'()B()B(0)" +C(1)B'(0)B(0)"] do
0=C'(t)+C(t) /tf B'(0)B(c) "doW(ty,tf)~"

0=C'(t) - C(t)A, C(t) = C(0)e?
e



Proof of Theorem 4, cont'd

G(t,0) = C(t)B(c) = C(¢t — 6)B(0)
= C(0)e“=9)B(0)

A time-invariant realization is therefore

% =Ax+B(0)u, y=C(0)x




The weighting pattern
G(t,0) = e =0V

satisfies G(¢,0) = G(¢ — 0,0), but one can prove it is not
factorizable as F(t)H (o), so no realization exists. In fact we
have:

Remark
The weighting pattern G(¢,0) is realizable as a time-invariant
(finite-dimensional) system if and only if it can be written as

n dp—1

tO') Z Z grj - t— J /lk(t o)

k=1 j=0



Exercise

Write the time invariant impulse response
G(t,0) = (t — 0)e (79

as

G(t,c) = H({)F(o)




Th.5 Transfer Function Realizability

A transfer matrix G(s) admits a linear time-invariant realization

G(s)=C(sI—A)'B

if and only if each entry of G(s) is a strictly proper rational
function.




Proof of Theorem 5

“Only if” is immediate.

To prove “if”, choose d(s) = 8" + d,_18" "1 + - - + dy and write

d(s)G(s) = Ny_1s" 1 +---+ Ny

Let
0 I, 0
7\ LAY I,
—doly, —dil, —d,_ 11,
B =1[00 0 I]
C = [No Ni ... N
Z(s) = (sI—A)71



Proof of Theorem 5

It is then easy to verify that

I
1 sIm
Z(S) = %
Sr—llm

The equality C(sI — A)~1B = G(s) follows by left multiplication
with C. Note: This realisation might not be minimal.

When G (s) has distinct poles there is a more natural realization
on diagonal form (which is minimal):



Gilbert-Realization

Introduce the partial fraction expansion

d 1
L PN s
i=1 ‘

and the rank-factorizations
Gi=CB;, Ciispxp;,, Bjisp,xm
where rank G; = p;. Now use

A =diag{A11p,,..., A:1p,}
B=[BT ... BT]"
c=Ic,...,C]

That the realisation is minimal follows from the PBH-test.



1 2

1 1 2 1 [0 0

Gis)=| ™ s¢1=_[ ]+ { }
) [(s+1)(s+2) 5+2 s+1|—-1 0 s+2|1 1

with
-1 0 0O
A=|0 -1 0
|0 0 -2
(1 2
B=|-1 0
1 1




{A, B, C} is a minimal realisation of G(s) if and only if it is
controllable and observable.




Proof of Theorem 6

If {A, B, C} is not a minimal realisation then there exists
{F,G,H} of dimension n, < n such that

g(t) = Cer'B = Hef''"G vt

This gives CA*B = g®)(0) = HF*G V&, i.e.

C H

: |[B AB ... A»1B]=| : [[G .- F*1G]
CAn-1 o HFr-1 8

Oq o,

But Oy and Cr have rank less than or equal to n,, so that holds
also for either O, or C,. Therefore {A, B, C} cannot be both
controllable and observable.



Proof of Theorem 6, cont'd

Conversely, if {A, B, C} is not controllable (similar if not
observable) it can be transformed to

(I as].[3] tor e

CeAtB = CleAlltBl

so {A11,B1, C1 } is a realization of lower dimension.




Two minimal time-invariant realizations of G(s) are related by a
coordinate transformation z = Px.

The transformation is unique.




Proof of Theorem 7

Let the two minimal realizations be
g(t) = Cer'B = HeM'G Vit

With the notation from the proof of Theorem 6 let
P= CaCfT(CfC]?)—l.

First prove that P~ = (07 0)~'07 O,. The existence of the
inverses are guaranteed by controllability and observability.

Then verify that P~'1B = G, CP = H and P"1AP = F.

For any other such transformation P it follows from
Oq.P = Of = O, P and observability that P = P.



Definition: Markov Parameters

Given a time-invariant impulse response g(¢), the
corresponding Markov parameters are defined as

9(0),9'(0),9?(0),g®(0),...

Define also the block Hankel matrices (for i, j > 0)

9(0) ¢'(0) ... gu1(0)
g'(0

Lij = ( ;
g(i'—l) g(i+j—2)(0)

We have g*(0) = CA*B and
G(s) = g(0)s™" +g'(0)s7> + g (0)s™® + ...



Th. 8 Realization from Markov Parameters

An analytic impulse response g(t) admits an n-th order
time-invariant realization x = Ax + Bu,y = Cx if and only if
there exist positive integers 1, £ < n such that

rank I';, =rank Iy 1445 =n, j=12,...

Proof Utilize
Fij = Min
C
cA-1
W, = [B AB --. Af—lB]

like in the proof of Theorem 6. See Rugh 11.7 for details.
e



What is the dimension of a minimial realisation of g(¢) = te!?

Since g(®(0) = % we get

rank I'y; = rank [0] =0

01

Ry

)/ )] 0 1
3 ...|=rank |1 1| =2, >3
=S 2 1

so the minimial dimension is 2. In fact, one can take

Az[(l) ﬂ B=m, C=1 0]

rank I'g9g = rank [

_

0
rank I's , = rank |:1
2

W N =



Theorem 9 - Discrete Time

k
y(k) = Gk, j)u())
J=ko
G(k,j) = C(k)®(k,j + 1)B(j), k> j+1

Cannot define weighting pattern, that is G(k, j) also for & < j,
since ® need not be invertible.

JH(k),F(k): G(k,j)=H(R)F(j),k>j+1
= drealization {A(k),B(k),C(k)}

Proof
AR)=1=D(k,j+1)=1



x(k+1) =u(k), y(k) = x(k)

is a realisation of

but you can not find a factorisation of the form

G(k,j) = HRF(), k>j+1




x(k+1) =x(k) + [E(kl— 1)] u(k)

y(k) =[1 6(k)] x(k)

is reachable and observable on any interval containing
k=0,1,2, butitis not a minimal realisation of the pulse
response

G(k,j)=14+6(k)o(j—-1)=1, k> j+1

since
z(k+ 1) = z(k) + u(k), y(k) = z(k)

is of lower dimension.



Some things we (and Rugh) left out

We did not obtain a method to find a minimal (A, B, C, D) from
a given G(s) in the case of non-distinct poles. One solution is
to use the non-minimal realisation in Theorem 5 and then apply
Kalman decomposition (or balanced realisation). But there if of
course a more direct approach see [Kailath, Linear Systems].

We could have talked about identification by state-space
methods. See the course in ldentification if interested.




