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Rugh, chapters 9,13, 14 (only pp 247-249) and (25)




Controllability

How should controllability be defined ?

Some (not used) alternatives:

By proper choice of control signal u

@ any state xy can be made an equilibrium
@ any state trajectory x(¢) can be obtained
@ any output trajectory y(t) can be obtained

The most fruitful definition has instead turned out to be the
following



Controllability

The state equation

x(t) = A(t)x(t) + B(t)u(t), x(to) = xo0

is called controllable on (to,¢7), if for any xo, there exists u(t)
such that x(¢¢) = 0 (“Controllable to origin”)

Question: Is this equivalent to the following definition:
“for xo = 0 and any x4, there exists u(t) such that x(¢;) = x1"

(“Controllable from origin®)

| The audience is thinking! |

Hint: x(¢7) = ® (¢, t0)x t0)+ft (¢f,t)B(t)u(t)dt
e




Controllability Gramian

The matrix function

W(to,tf) = / 7 ®(to,)B () B ()T D(to, ) dt

Lo

is called the controllability Gramian.

A main result is the following




Th.1 Controllability Criterion (Rugh 9.2)

The state equation is controllable on (o, ) if and only if the
controllability Gramian W (to,ts) is invertible.

Remark: We will see later (Lec.6) that the minimal (squared)
control energy, defined by [ju||? := ftf)f |u|2dt, needed to move

from x(¢9) = xo to x(¢;) = 0 equals xI W (to,¢7) Lxo.



Proof of Th.1

i) Suppose first W is invertible. Given xy the control signal
u(t) = —BT T (to, ) W (2o, t7)x0
will give x(¢¢) = 0 (check!). Hence the system is controllable.

i) Suppose instead the system is controllable. Want to show W
invertible, i.e. that Wxy = 0 implies xy = 0.

Findu so 0 = Con + [ ®Budt, i.e.
xo = —ft (to,t)B(t)u(t)dt

tf
7L —/ T (to, £)B () u(t)dt
~—_——
. =2(t)
But this shows xy = 0 since
By
lz@®)|1? = / xX ®(t,t)B(t) BT (t)®T (to,t)xodt = xX Wxo =0

Lo



Th2. LTI Controllability Test - (Rugh 9.5)

The following four conditions are equivalent:

(i) The system x(¢) = Ax(¢) + Bu(t) is controllable.
(i) rank[B AB A2B ... A" 1B] =n.

(i) e C, pTA=ApT,pT B=0 =p=0.
(iv) rank[AI—A B]=n VAeC.

The conditions (iii) and (iv) are called the PBH test
(Popov-Belevitch-Hautus), see p221.

Notation: C(A,B) := [B AB A%B ... A"1B]



Th.3 LTI Uncontrollable System Decomposition

Suppose that 0 < ¢ < n and
rank [B AB A’B ... A”_IB] =q<n

Then there exists an invertible P € R™*" such that

_ B
PlB= 11
’ ki

~

Ay z§12

PlAP =

where 311 isq X q, ]§11 isq x m, and

rank[§11 A\llgll .. .A\({IlBll] =q




Range and Null Spaces

Range space (Image) of M : X — Y:

RIM) = {Mx:xe X}CY

Null space (Kernal) of M : X — Y:

NM) = {x: Mx=0}CX

Example:




Cayley-Hamilton Theorem

Let p(s) := det(sI — A) be the char. polynomial of the square

matrix A, then
p(A)=0

This means that A”, where n is the size of A, can be written as
a linear combination of A* of lower order

A" = —an_lAn_l —...—a1A —apl




Proof Th. 3

Use the n x n matrix P = [P; Py] where P; is an n x g matrix
with lin. indep. columns taken from C (A, B) and Py is any
n x (n — q) matrix making P invertible. Introduce the notation

p1= [A]\ﬂ , then B\ﬂ [P1 Po] = [{;’ IO . Note NP, =0.
n—qj

R(B)CR(P;)= NB=0= B=P'!B= M}B: [Bl

_N 0 =
R(AP;) C R(P;) = NAP; =0= A= P AP = {M] Ap = |An Auw
N 0 Ay

rankC(An,El) =rank(C(A,B) =q



Proof of Th. 2

(i) = (i) If (i) fails, then after a coordinate change as in
Theorem 3, %3 is unaffected by the input, so (i) fails.

(i) = (i) If p"W(to,tf)p = 0 for some p # 0, then

t
/ fpTeA(tO—t)BBTeAT(tO—t)pdt _o
to

pTeA(to—t)B =0 Vte [to, tf]
Differentiation with respect to ¢ at ¢ = ¢, gives

p'[B AB...A"'B]=0,

so (i) fails.



Proof Th2 continued

(i) = (iii) Ifiii fails, i.e. pTA = ApT and pTB = 0 for p # 0
then p’[B AB...A" 1B] =0, so (ii) fails.

(i) = (i) Ifrank[B ... A"'B] = q < n then let P be
defined as in Theorem 3 and let psT Ags = ApyT and
T=[0 poT]P~1. Then

B
»'B = [0 pT]|: 11]=0
A A
pTA — [ T]|: 11 A12:| 1[0 pzT]P 1 /lpT
22
so (iii) fails.

V) & {pTIA—A B]=0 = p=0} < (i)
e A 4






Tank example - controllable?




Example - Single Input Diagonal Systems

For which A4;, b; is this system controllable?

ﬂl 0 bl
/’Lz b2
0 An bn

Method 1: When is the controllability matrix invertible?

by by blﬂ% ...blﬂrll_l

C(A’B) 1 b'2 boAs b2l§ ...6213_1

by bpdn bpAZ ... byAnl

After some work: When all 4; are distinct and all b; nonzero.

Method 2: The PBH-test gives you this result immediately!



LTV Reachability

The equation
x(t) = A(t)x(t) + B(t)u(t), x(to) =0

is called reachable on (to, ), if for any x ¢, there exists u(¢)
such that x(t7) = x.

The matrix function

Wr(to,tf) = /ttfCb(tf,t)B(t)B(t)Tq)(tf,t)Tdt

= D(ty,to)W(to,ts)®(ts,t0)"

is called the reachability Gramian.

Continuous time controllability and reachability are equivalent



LTV Observability

The equation

is called observable on [t, ¢/] if any initial state x, is uniquely
determined by the output y(¢) for ¢ € [to,¢f].

It is called reconstructable on [ty, /] if the state x(¢f) is
uniquely determined by the output y(t) for t € [to,%/].

In continuous time, observability and reconstrubality are
equivalent (why?)



Observability Gramian

The matrix function

b
M(to,tr) = | ®(t,t0)TCH)TC(t)P(2, t0)dt

to

is called the observability Gramian of the system
x(t) = A(t)x(t)
y(t) = C(£)x(2)

Remark: Operator interpretation (see later)
M(to, tf) =L*L
where L : R" — L7 (to,t7) with

(Lxo)(t) = C(£)®(2,20)x0, %0 € R



Degree of Observability

The following two conditions are equivalent

() The system {A(t),C(t)} is observable on [¢o, /]
(i) M(to,t7) >0

Interpretations: Consider y(¢) = Lxg + e(t)

i) If e is white noise with unit variance then E|y — Lx,|? is
minimized for £° = (L*L)~!L*y and the variance of the
estimate is (L*L)~1 = M (to,t7)~".

i) The set of xo for which 3 e(¢) with ||e||*> < o2 such that
y(t) = 0 is given by

ng(to,tf)xo < o?



Th. 5 (Rugh 9.11) - LTI Observability

The following four conditions are equivalent:

() The system x(t) = Ax(¢), y(t) = Cx(¢) is observable.

(i) rank

(iv) rank

C

CAn_l_
(i) A€eC: Ap=Ap,Cp=0 =p=0
Al — A]

C

=n VYAeC.




Theorem 6 - Unobservable State Equation

C

CA
Suppose that rank : =l<n

CAln—l
Then there exists an invertible @ € R™*" such that

A 0 |
-1 11
A — A A y C = C O
Q@ AQ [Am A2J Q= [Cu O
Cu
A A\ Ci1An
where A1 isl x I, Ci1is p x I, and rank . =
Cr Al



LTI Controller Canonical Form - Single Input

Suppose (4, b) is controllable. There is an invertible P such
that a state transformation will bring the system to the form

0 1 0 0
PAPl=A,=|: i = i | pB=-B =
0 0 ... 1
—aygp —ai; ... —QAp_1 1

det(sI —A) =s" + an_ 18" +...+ais+ao




Introduce some notation for C~1(A, b):

My L0 B
Mn =[b Ab ”‘An—lb]_1$ %Zﬁn?lz i,l k=0,...,n—2
We can use the transformation z = Px where
M,
WK M,-,A

MnAn—l

That P is invertible follows from calculation of PC (the new
controllability matrix)






Controllability Index

To construct the corresponding controller form when we have
multiple inputs (m > 1) we need the following

Definition: LetB =[By ... By]. Forj=1,...,m, the
controllability index p; is the smallest integer such that A”/ B; is
linearly dependent on the column vectors occuring to the left of
it in the controllability matrix

[B AB ... A™!B]




Notation for Controller Form

Given a contr. system {A, B}, with controllability indices
P1,- .. Pm, define

M,
M=|:|:=[B AB,...A»"'B; ... B, ...Ar»1B,]™"
M,
p— AVCAEEE P1+'.'~+Pi
P ———
" Mp, 1. p AP

Notice that it is rather easy to write Matlab code for this.

See Rugh 13.9 for the proof of the following result



Theorem 7, Controller Form - Multiple Inputs

The transformation z = Px gives (A., B.) with

- 1 -




Theorem 7, Controller Form - Multiple Inputs

- _
1 x *
B, = 0 1 *x x
LO ... 0 1_

The block sizes equal the controllability indices p;.

If B is not full rank, B, will have a stair-case form.



LTI Feedback & Eigenvalue Assignment (Rugh 14.9)

Using the controller form it is now easy to prove

Suppose (A, B) is controllable. Given a monic polynomial p(s)
there is a feedback control © = —K x so that

det(sI — A — BK) = p(s).

Proof We can get rid of the x elements in B, by writing

B, = B.T where T is an upper triangular matrix with right
inverse. Introduce the new control signal & = Tu. By state
feedback we can now change each line of stars in A.. We can
for instance transform A, to a controller form with one big block,
with the last row containing the coefficients of p(s).



Definition - Observability Index

Let CT = [T ... C,7|T. Forj = 1,...,p, the observability
index n; is the smallest integer such that C; A" is linearly
dependent on the row vectors occuring above it in the
observability matrix

C
CA

CA-n—l




Theorem 8 -Observer form

Suppose (C, A) is observable. Then there is a transformation
z = Px, tothe form z = A,z, y = C,z with

A, = transpose of the form for A. above

C, = transpose of the form for B, above

The size of the blocks equals the observability indices 7;.




Theorem 9 - Time-Invariant Gramian

Let A be exponentially stable. Then, the reachability Gramian
W, (—o0,0) equals the unique solution P to the matrix equation

PAT + AP = —BBT

Similarly, the observability Gramian M (0, co) equals the
solution @ of

QA+ ATQ=-CTC




Proof of Theorem 9

Let P = W,(—00,0) = [° eA°BBTeA"?do. Then

(o)
PAT £ AP = / 9
0 oo

_ [eAGBBTeATO'}

= —BBT

(eA"BBTeAT") do
&

0

The linear operator (Lyapunov 1893)
L(P) = AP 4+ PAT

has R(L) = R™" so A(L) = {0} and the solution P is unique.

The equation for the observability Gramian is obtained by
replacing A, B with AT, CT.



Balanced Realization

For the stable system (A, B, C), with Gramians P and @, the
variable transformation £ = T'x gives

A

P = TPT*
Q = TQr!
Choosing R, T', unitary U and diagonal ¥ from
@ = R*R (Choleski Factorisation)
RPR* = UX?U*

(Singular Value Decomposition)
T = = '2U*R

gives (check)

P = Q=2

The corresponding realization (A
C

B, C) is called a balanced
realization of the system (A, B,

)



Truncated Balanced Realization

Let the states be sorted such that X is decreasing. The
diagonal elements of £ measure “how controllable and
observable” the corresponding states are. With

= -1111 Ay = B, g\ =\ =
A = ~ ~ 5 = | C: C C
A1 Az By [ ! 2]
173\
2 = 5

the system (Kll, §1, 51) is called a truncated balanced
realization of the system (4, B, C).

If ¥1 >> X4 the truncated system is probably a good
approximation. Choose either D = 0 or to get correct DC-gain.



Example (done with balreal in MATLAB)

1—s
8 4+ 355 + 5544+ 783+ 552 +3s+1

¥ = diag{1.98,1.92,0.75,0.33,0.15,0.0045}

C(sI—A)"'B =

0.20s? — 0.44s + 0.23

C(sI —A)"1B =
(s ) 3 + 0.4452 + 0.665 + 0.17

" Bode Magnitude Diagram

10 10




Bonus: Full Kalman Decomposition

Simultaneous controller and observer decomposition
Use P= [P; P, P35 P4] where P; has n; columns with

Columns of [P; Ps] basis for R(C)
Columns of Py basis for R(C) N A(O)
Columns of [P, Py4] basis for A[(O)
Columns of P53 chosen so P invertible.

> E»
(@)
=
w
[e)
=

A




Kalman’s Decomposition Theorem

The system (A;1, By, C;) is both controllable and observable.

It is of minimal order, nq

The transfer function equals C;(sI — A;)~'B;.




Bonus: More on Controllability

A, B is controllable if and only if
@ The only C for which C(sI —A)™'B =0,Vsis C =0
A, C is observable if and only if

@ The only B for which C(sI —A)™!B =0,Vsis B =0

(e¢]
Proof: 0= C(sI —A)™'B =) CA*B/s""' © 0=CA*B, Vk <

k=0
C
CA
0=C[B AB ... A*'B] & o0=| . |B
CAn—l



Bonus: Parallel Systems

Let Gl(S) = Cl(SI = Al)_lBl and Gy (S) = C2(SI = A2)_lBg

If A1 and As have no common eigenvalues then

Gl(S) + GQ(S) =0= Gl(s) = GQ(S) =0

Proof: Can assume both systems are minimal. From

sI-A; 0 r [Bl] o

Gi(s) + Gz(s) = [C1 Gy [ 0 s—Ay By

and the fact that [C; G], [Al O} is observable (PBH-test),

0 A,

the previous frame shows that By = g
B, 0



Bonus: System Zeros (SISO)

Assume (A, b,c) minimal and that z is not an eigenvalue of A.

Then the following are equivalent

0 G(2)=c(zl —A)b+d=0
@ With ug arbitrary and xg := (2 — A)~1buy we have

Ry

@ The following matrix looses rank

zI —A —b
c d



Bonus: Series Connection SISO

Given two minimal systems n;(s)/d;(s) = c;(sI — A;)™1b;,
i=1,2

h—

Then the series connection ZZ(S) m(s) g
2(s) di(s

~—|
~—

@ uncontrollable <= there is z so n1(z) = ds(z) =0
@ unobservable <= there is z S0 ng(z) = d1(z) =0

Proof:
zl — A1 0 b1
Controllable, check when rank [ SN 0} <n
zl — A1 0
Observable, check whenrank | —bsc; 2zl —Ag| <n
0 C2




