Stability and Performance of
Feedback Systems

This chapter introduces the feedback structure and discusses its stability and perfor-
mance properties. The arrangement of this chapter is as follows: Section 5.1 discusses
the necessity for introducing feedback structure and describes the general feedback con-
figuration. In section 5.2, the well-posedness of the feedback loop is defined. Next, the
notion of internal stability is introduced and the relationship is established between the
state space characterization of internal stability and the transfer matrix characteriza-
tion of internal stability in section 5.3. The stable coprime factorizations of rational
matrices are also introduced in section 5.4. Section 5.5 considers feedback properties
and discusses how to achieve desired performance using feedback control. These discus-
sions lead to a loop shaping control design technique which is introduced in section 5.6.
Finally, we consider the mathematical formulations of optimal Hy and H., control
problems in section 5.7.

5.1 Feedback Structure

In designing control systems, there are several fundamental issues that transcend the
boundaries of specific applications. Although they may differ for each application and
may have different levels of importance, these issues are generic in their relationship to
control design objectives and procedures. Central to these issues is the requirement to
provide satisfactory performance in the face of modeling errors, system variations, and
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uncertainty. Indeed, this requirement was the original motivation for the development
of feedback systems. Feedback is only required when system performance cannot be
achieved because of uncertainty in system characteristics. The more detailed treatment
of model uncertainties and their representations will be discussed in Chapter 9.

For the moment, assuming we are given a model including a representation of un-
certainty which we believe adequately captures the essential features of the plant, the
next step in the controller design process is to determine what structure is necessary
to achieve the desired performance. Prefiltering input signals (or open loop control)
can change the dynamic response of the model set but cannot reduce the effect of un-
certainty. If the uncertainty is too great to achieve the desired accuracy of response,
then a feedback structure is required. The mere assumption of a feedback structure,
however, does not guarantee a reduction of uncertainty, and there are many obstacles
to achieving the uncertainty-reducing benefits of feedback. In particular, since for any
reasonable model set representing a physical system uncertainty becomes large and the
phase is completely unknown at sufficiently high frequencies, the loop gain must be small
at those frequencies to avoid destabilizing the high frequency system dynamics. Even
worse is that the feedback system actually increases uncertainty and sensitivity in the
frequency ranges where uncertainty is significantly large. In other words, because of the
type of sets required to reasonably model physical systems and because of the restriction
that our controllers be causal, we cannot use feedback (or any other control structure)
to cause our closed-loop model set to be a proper subset of the open-loop model set.
Often, what can be achieved with intelligent use of feedback is a significant reduction
of uncertainty for certain signals of importance with a small increase spread over other
signals. Thus, the feedback design problem centers around the tradeoff involved in re-
ducing the overall impact of uncertainty. This tradeoff also occurs, for example, when
using feedback to reduce command/disturbance error while minimizing response degra-
dation due to measurement noise. To be of practical value, a design technique must
provide means for performing these tradeoffs. We will discuss these tradeoffs in more
detail later in section 5.5 and in Chapter 6.

To focus our discussion, we will consider the standard feedback configuration shown
in Figure 5.1. It consists of the interconnected plant P and controller K forced by
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Figure 5.1: Standard Feedback Configuration
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command 7, sensor noise n, plant input disturbance d;, and plant output disturbance
d. In general, all signals are assumed to be multivariable, and all transfer matrices are
assumed to have appropriate dimensions.

5.2 Well-Posedness of Feedback Loop

Assume that the plant P and the controller K in Figure 5.1 are fixed real rational
proper transfer matrices. Then the first question one would ask is whether the feedback
interconnection makes sense or is physically realizable. To be more specific, consider a

simple example where
s—1

=—— K=1
s+ 2
are both proper transfer functions. However,
2 -1
u:(s+ )(r—n—d)—s—di
3 3

i.e., the transfer functions from the external signals r —n —d and d; to u are not proper.
Hence, the feedback system is not physically realizable!

Definition 5.1 A feedback system is said to be well-posed if all closed-loop transfer
matrices are well-defined and proper.

Now suppose that all the external signals r,n,d, and d; are specified and that the
closed-loop transfer matrices from them to w are respectively well-defined and proper.
Then, y and all other signals are also well-defined and the related transfer matrices are
proper. Furthermore, since the transfer matrices from d and n to u are the same and
differ from the transfer matrix from r to w by only a sign, the system is well-posed if
and only if the transfer matrix from [ (fil } to u exists and is proper.

In order to be consistent with the notation used in the rest of the book, we shall

denote
K:=-K

and regroup the external input signals into the feedback loop as w; and ws and regroup
the input signals of the plant and the controller as e; and es. Then the feedback loop
with the plant and the controller can be simply represented as in Figure 5.2 and the

system is well-posed if and only if the transfer matrix from { zl to ey exists and is
2
proper.

Lemma 5.1 The feedback system in Figure 5.2 is well-posed if and only if
I — K(00)P(c0) (5.1)

is invertible.
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Figure 5.2: Internal Stability Analysis Diagram

Proof. The system in the above diagram can be represented in equation form as

er = wi+ Ke

ey = wo+ Pel.
Then an expression for e; can be obtained as
(I — [A(P)el = wi + ng.

Thus well-posedness is equivalent to the condition that (I — K P)~! exists and is proper.
But this is equivalent to the condition that the constant term of the transfer function
I — K P is invertible. O

It is straightforward to show that (5.1) is equivalent to either one of the following
two conditions: .
{ I —K(o0)

P(o) I ] is invertible; (5.2)

I — P(00)K(00) is invertible.

The well-posedness condition is simple to state in terms of state-space realizations.

Introduce realizations of P and K:
A| B
P = { cTD } (5.3)

A

= (5.4)

B
D

Then P(c0) = D and K(00) = D. For example, well-posedness in (5.2) is equivalent to
the condition that

I -D] ... .
{—D 7 ] is invertible. (5.5)

Fortunately, in most practical cases we will have D = 0, and hence well-posedness for
most practical control systems is guaranteed.
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5.3 Internal Stability

Consider a system described by the standard block diagram in Figure 5.2 and assume
the system is well-posed. Furthermore, assume that the realizations for P(s) and K(s)
given in equations (5.3) and (5.4) are stabilizable and detectable.

Let x and Z denote the state vectors for P and k, respectively, and write the state
equations in Figure 5.2 with w; and ws set to zero:

& = Az + Be (5.6)
es = Cx+ Dey (5.7)
i = AZ+ Be, (5.8)
er = C&+ Des. (5.9)

Definition 5.2 The system of Figure 5.2 is said to be internally stable if the origin
(z,%) = (0,0) is asymptotically stable, i.e., the states (z,Z) go to zero from all initial
states when w; = 0 and ws = 0.

Note that internal stability is a state space notion. To get a concrete characterization
of internal stability, solve equations (5.7) and (5.9) for e; and eo:

er | _ I -D - 0o C z

e2 | | =D I cC o T |
Note that the existence of the inverse is guaranteed by the well-posedness condition.
Now substitute this into (5.6) and (5.8) to get

]2
I I I

Thus internal stability is equivalent to the condition that A has all its eigenvalues in
the open left-half plane. In fact, this can be taken as a definition of internal stability.

IS

where

Lemma 5.2 The system of Figure 5.2 with given stabilizable and detectable realizations
for P and K is internally stable if and only if A is a Hurwitz matriz.

It is routine to verify that the above definition of internal stability depends only on
P and K’, not on specific realizations of them as long as the realizations of P and K are
both stabilizable and detectable, i.e., no extra unstable modes are introduced by the
realizations.

The above notion of internal stability is defined in terms of state-space realizations
of P and K. It is also important and useful to characterize internal stability from the
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transfer matrix point of view. Note that the feedback system in Figure 5.2 is described,
in term of transfer matrices, by

I -K el w1
= . 1
e el 020
Now it is intuitively clear that if the system in Figure 5.2 is internally stable, then for all

bounded inputs (w1, ws), the outputs (eq,e2) are also bounded. The following lemma,
shows that this idea leads to a transfer matrix characterization of internal stability.

Lemma 5.3 The system in Figure 5.2 is internally stable if and only if the transfer
matrixc

{ I _K}lz{fjtff(I—PR’)lP K(I-PEK)™! (5.11)

-P I (I — PK)"'P (I - PK) 1
from (w1, ws2) to (e1,ea) belongs to RH -

Proof. As above let { é g } and

tions of P and K, respectively. Let y; denote the output of P and yy the output of K.
Then the state-space equations for the system in Figure 5.2 are

Al B
oD ] be stabilizable and detectable realiza-

HEREIHE N
] =1 IR BT
a] = el elln)

The last two equations can be rewritten as

I -D e1r] [0 C[= L
-D I e2 | | C 0|2 wy |
Now suppose that this system is internally stable. Then the well-posedness condition

implies that (I — DD) = (I — PK)(c0) is invertible. Hence, (I — PK) is invertible.
Furthermore, since the eigenvalues of

i_[40],[B 0 I -D]'Jo ¢
1o A 0 B||-D I C 0
are in the open left-half plane, it follows that the transfer matrix from (wq,ws) to (e1, e2)
given in (5.11) is in RH oo
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Conversely, suppose that (I — PK'A) is invertible and the transfer matrix in (5.11) is
in RHo. Then, in particular, (I — PK)~" is proper which implies that (I — PK)(c0) =
(I — DD) is invertible. Therefore,

I -D
-D I

is nonsingular. Now routine calculations give the transfer matrix from { zl ] to [ “ }

in terms of the state space realizations:
R | . - N - R |
I -D I -D 0 C ~ 1| B 0 I -D
{—D I ] {{—D I ]+_c7 o]“I_A) 0 B D I | -
Since the above transfer matrix belongs to RH ., it follows that

Oé— _"'71 BO—
[ c 0 _(SI A) [ 0 B |

as a transfer matrix belongs to RH .. Finally, since (4, B,C) and (fi, B, é) are stabi-

lizable and detectable,
[ B 0 0 C
(+[e z]-[& 7))

is stabilizable and detectable. It then follows that the eigenvalues of A are in the open
left-half plane. a

Note that to check internal stability, it is necessary (and sufficient) to test whether
each of the four transfer matrices in (5.11) is in RH .. Stability cannot be concluded
even if three of the four transfer matrices in (5.11) are in RH.,. For example, let an
interconnected system transfer function be given by

-1 . 1
pP=""" k=——
s+1 s—1
Then it is easy to compute
s+1 s+1
a1 | 572 Go0GETD) | [ w
€2 s—1 s+1 wy |’
s+ 2 s+ 2

which shows that the system is not internally stable although three of the four transfer
functions are stable. This can also be seen by calculating the closed-loop A-maftrix with
any stabilizable and detectable realizations of P and K.



124 STABILITY AND PERFORMANCE OF FEEDBACK SYSTEMS

Remark 5.1 It should be noted that internal stability is a basic requirement for a
practical feedback system. This is because all interconnected systems may be unavoid-
ably subject to some nonzero initial conditions and some (possibly small) errors, and
it cannot be tolerated in practice that such errors at some locations will lead to un-
bounded signals at some other locations in the closed-loop system. Internal stability
guarantees that all signals in a system are bounded provided that the injected signals
(at any locations) are bounded. V)

However, there are some special cases under which determining system stability is
simple.

Corollary 5.4 Suppose K € RHoo. Then the system in Figure 5.2 is internally stable
iff (I — PK)™'P € RHs
Proof. The necessity is obvious. To prove the sufficiency, it is sufficient to show that
(I — PK)~! € RH . But this follows from

(I-PK)™'=I+(I-PK)'PK

and (I — PK)™'P,K € RH. O

This corollary is in fact the basis for the classical control theory where the stability
is checked only for one closed-loop transfer function with the implicit assumption that
the controller itself is stable. Also, we have

Corollary 5.5 Suppose P € RH. Then the system in Figure 5.2 is internally stable
iff K(I — PK)™' € RHoo

Corollary 5.6 Suppose P € RHoo and K € RHoo. Then the system in Figure 5.2 is
internally stable iff (I — PK)™' € RH

To study the more general case, define

n. := number of open rhp poles of K(s)

np = number of open rhp poles of P(s).

Theorem 5.7 The system is internally stable if and only if
(i) the number of open rhp poles of P(s)K(s) = ne + nyp;

e (I P(s)K(s)) has all its zeros in the open left-half plane (i.e., (I —
)L is stable).

(i) ¢(s) = d
P(s)K(s)
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Proof. It is easy to show that PK and (I- PK')*1 have the following realizations:

where

B =
C

D =

It is also easy to see that A = A. Hence, the system is internally stable iff A is stable.

Now suppose that the system is internally stable, then (I — PK')*1 € RHoo. This

implies that all zeros of det(/ — P(s)K(s)) must be in the left-half plane. So we only

need to show that given condition (ii), condition (i) is necessary and sufficient for the
internal stability. This follows by noting that (A, B) is stabilizable iff

A BC BD
N N 12
(s %1% ) 622
is stabilizable; and (C, A) is detectable iff

A A BC
N 5.13
(e w03 %)) o
is detectable. But conditions (5.12) and (5.13) are equivalent to condition (i), i.e., PK
has no unstable pole/zero cancelations. |

With this observation, the MIMO version of the Nyquist stability theorem is obvious.

Theorem 5.8 (Nyquist Stability Theorem) The system is internally stable if and only
if condition (i) in Theorem 5.7 is satisfied and the Nyquist plot of ¢(jw) for —oo < w <
oo encircles the origin, (0,0), ng + n, times in the counter-clockwise direction.

Proof. Note that by SISO Nyquist stability theorem, ¢(s) has all zeros in the open
left-half plane if and only if the Nyquist plot of ¢(jw) for —oo < w < oo encircles the
origin, (0,0), n; + np times in the counter-clockwise direction. O



