Handin 1

Bo Bernhardsson, K. J. Aström

Department of Automatic Control LTH, Lund University

Handin 1 - goals

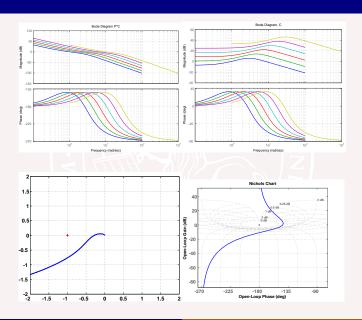
Get some practice using the Matlab control system toolbox (or similar) Get started with some control design

Example - Double Integrator

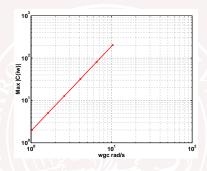
Consider the double integrator

$$y = \frac{1}{s^2}u$$

controlled with state-feedback + Kalman filter


$$u = -K\hat{x} = -K(sI - A + BK + LC)^{-1}Ly$$

Let's place eigenvalues of


$$A - BK$$
 and $A - LC$

in Butterworth patterns

Results

Results

Trade off between closed loop bandwidth and controller gain (Hmmmm, why is the slope 2?)

(Advanced hmmmm, why do LQG design with varying control penalty ρ and Butterworth pole placement give the same results? Answer to this later in the course.)

Handin 1A- PI control of 1st order system

First order model: the archetype system

Normalizing input, output and time variables we have

$$G(s) = \frac{1}{s+1}$$

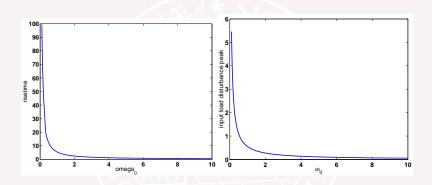
Let's use PI control

$$u = (k_p + k_i/s)(r - y)$$

This gives a 2nd order closed system.

Handin 1A- PI control of 1st order system

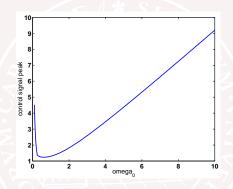
Let's design the closed loop polynomial to become


$$s^2 + 2\zeta_0\omega_0 s + \omega_0^2$$

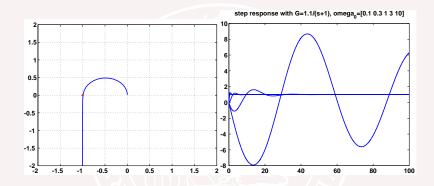
we get

$$k_p = 2\zeta_0\omega_0 - 1$$
$$k_i = \omega_0^2$$

Let's assume a slow design is ok, say $\omega_0 = 0.1, \zeta_0 = 0.5$.


Result - Rise time vs ω_0

Looks as expected.


Let's check the control signal size also.

Step Response - input signal size

Hmm, the behavior when ω_0 is small is rather unexpected. Let's check the Bode and Nyquist diagrams.

Nyquist Diagram ω_0 =0.1

The design with $\omega_0=0.1$ has terrible robustness. The system becomes unstable with 10 % model error

Practically useless!

Why? What to do?

Handin 1

Exercise 1A Verify the previous figures. Use pole placement design to do PI control of the system 1/(s+1) for varying ω_0 .

Use any method you like to find a PI-controller that achieves good robustness and a gain-crossover frequency $\omega_{gc}=0.1$, or describe why this is not possible.

Handin 1

Exercise 1B Consider the system $P(s)=\frac{s+1}{s^2}$. Design a controller with pole-placement where the observer poles and the controller poles have $\omega_0=10$ and damping ratio $\zeta_0=0.707$. Plot the Nyquist curve of the loop transfer function and the Gang of Four for the closed loop systems obtained. Comment on the design.

Handin 1 is due Thursday Feb 25, 10.00