
Exercise 6 LQG and H∞
1. Use the appropriate Riccati equation to prove the Kalman filter identity

R2 + C2(sI − A)−1 R1(−sI − AT)−1CT
2

= [Ip + C2(sI − A)−1 L]R2[Ip + C2(−sI − AT)−1 L]T

Use duality to deduce the return difference formula

Q2 + BT(−sI − AT)−1Q1(sI − A)−1B =
[Im + K(−sI − AT)−1B]T Q2[Im + K(sI − A)−1B]

2. Consider the Doyle-Stein LTR example from the LQG lecture

G(s) = s+ 2

(s+ 1)(s+ 3)

See the slides, or their article, for more details.

a. Evaluate the H2-norm for the system from v to z where zT z = xT Q1x+uT Q2u

and the maximum sensitivity, MS, of the closed loop system for q = 0.

b. Plot H2-norm versus MS for varying values of q. Is much H2-optimality lost

to obtain robustness?

3. Consider the Rosenbrock example from the Interaction lecture

P(s) =
[

1
s+1

2
s+3

1
s+1

1
s+1

]

which has a multivariable zero in s = 1. Design a controller using LQG and

try to achieve a gain crossover frequency larger than w�c = 0.5 rad/s that has

reasonable robustness.

4. The file quadtank.m on the home page contains a linear model of a symmetric

quadtank, with outputs being the two lower tanks. The parameter setting

γ = 0.3 corresponds to a non-minimum phase system which is difficult to

control.

Make an LQG design with reasonable performance which has integral action

using either

a. explicit integration augmenting the system with integrator states ẋi = y−r ∈
R2 (no estimation of these states should be done in the Kalman filter)

b. augmenting the system with a constant input disturbance model, i.e. ẋ =
Ax+ Bu + Bd where ḋ = 0 and u = −K x̂− d̂.

In both cases, plot the gain (singular values vs frequency) of the resulting

controller and the GOF.

Also verify that the step responses of the closed loop systems look reasonable.
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5. Prove the formulas mention on the Robust Control lecture

gain margin ≥ 1+ bP,K

1− bP,K
,

phase margin ≥ 2 arcsin(bP,K).

6. Find a rational controller C(s) that stabilizes both P(s) = 1
s

and P(s) = −1
s

or prove that it is impossible.

7. Calculate the nu-gap δν , for varying parameters a, between the processes

a.

G1(s) =
1

s+ a
and G2(s) =

1

s− a
,

b.

G1(s) =
1

s+ a
and G2(s) =

1

a− s
,

c.

G1(s) =
1

s+ 1
and G2(s) =

a

s+ a

d.

G1(s) =
1

s+ 1
and G2(s) =

1

(s+ 1)2
e.

G1(s) =
1

s− 1
and G2(s) =

1

(s− 1)2

f.

G1(s) =
1

s− 1
and G2(s) =

1

(s− 1)(s + 1)
Hint: Use matlab-command gapmetric.

8. The solution to the H∞ problem presented at the lecture (implemented in the

matlab-routine hinfsyn) solves the so called sub-optimal problem. Given γ ,

determine if a controller exists giving a closed loop with

qTzwq∞ < γ.

The optimal level, γc, can then be found by decreasing γ until no solution

exists. To study the optimal H∞ controller, consider the system given in the

matlab-file goldenratioex.m. The system describes the feedforward optimiza-

tion problem

ẋ1 = −x1 + u

ẋ2 = −x2 + x1 + w

z =
[

x2/ρ

u

]

y = w

a. For the case ρ = 1, use hinfsyn to find the optimal controller u = K(s)w when

γ = γc. Compare with the analytical solution K(s) = (s + 1)/(k(s + 1) + 1)
with k = 1.3953. Hint: The optimal value is γc ( 0.7167.
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b. Do the same for ρ =
√

2. What order will the controller given by hinfsyn be

now? Hint: The optimal value is γc = 1/
√

3.

For interested: More details can be found in an article by Bernhardsson and

Hagander from 1990.

9. Use mixsyn to do control of the motor

G(s) = 20

s(s+ 1)

achieving pω S( jω)p∞ < k1 and pC( jω)S( jω)p∞ < k2. Plot the region in

the (k1, k2)-plane that you were able to achieve. Hint: You can use the file

motorex6.m as a start.

10. Use the file aircglover.m to do Glover-MacFarlane design with loopsyn on

the aircraft example. In the design, the 3 PI controller had the same parame-

ters. Redo the design and try to reduce the control peak due to a change of

height reference (first input, i.e. first column in figure 6) while maintaining a

settling time of 1 second, good damping and mainly diagonal (noninteracting)

response.
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