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Robust Control - Introduction

4

Why use feedback ?

Keep error small in spite of

@ unknown disturbances
@ model vs process mismatch

Can model/plant mismatch be taken care of by adding ficticious
disturbances?

No, disturbances can e.g. not make system unstable
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Robust stability vs robust performance

(Output) sensitivity function

G [V~

@ Nominal stability(NS): S’ stable
@ Nominal performance(NP): 5(S) < 1/|W,|, where 1, (s) weight
@ Robust stability(RS): S5 := (I + PsC)~! stable, VPs € P
@ Robust performance(RP): 5(S5) < 1/|W,|, VP € P
For SISO systems NP + RS = RP (more or less, will show later)
For MIMO systems NP + RS #- RP

Multiviariable effects make simple analysis dangerous
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Motivating example [Skogestad]

Plant model [Distillation column]
1 0.878 —0.864
Pe) = 5551 (1.082 —1.096)

Choose C/(s) = L P(s)~! (dynamic decoupling)

=3
Loop gain PC = 1
Closed-loop : T'(s) = PC(I + PC)~! = ;11]
Nice decoupled first order responses with time constant 1.
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Example -continued

In reality: 20 percent input uncertainty (e.g. valve variations)

True control signal is u; , = w;(1 + J;) with |;| < 0.2

p_ 1 0.878 —0.864\ (1.2 O
o~ 50s+1\1.082 —1.096){ 0 08
Using same controller as before gives

1 (1483 —11.06
YO <17.29 —12.83)
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Example -closed loop step responses

Step Response

From: In(1) From: In(2)
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1(1 0 1 (14.83 —11.06
PC_E(O 1)’ & P5C§<17.29 12.83>

With P: No interactions, nice step responses

With Ps: Large interaction, 500 percent overshoot in step responses
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Example -continued

The design is extremly sensitive to uncertainty on the inputs
But not to uncertainty on the outputs (easy to check)

Several indications of a directionality problem:
35 —34
LN <—34 35 )

cond(P) := % = 142

How do we analyse performance and robustness for MIMO systems ?
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Nyquist for MIMO systems

There is a generalization of the Nyquist theorem to the MIMO case,
see Maciejowski Ch. 2.8-2.10

Characteristic loci: \;(s) := eigenvalues of G(s)

Theorem [MIMO Nyquist]: If G(s) has P, unstable poles, then the
closed loop system with return ratio —kG(s) is stable if the
characteristic loci of £G(s) encircle the point -1 P, times
anticlockwise.
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Why not use characteristic loci ?

G(s) can have well behaved char. loci with great apparent stability
margins to —1, but the loop can still be quite non-robust

Example:

17 =1
Go(s) = 1Iand Gs(s) =11+ 6 | ) havethe same
eigenvalues. Closed loops behave quite differently for large

Attempt of remedy: Try to acheive "diagonally dominant” designs.

Performance and robustness is however best understood by
using singular values instead of eigenvalues
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Performance and robustness

In the MIMO case the order of matrices matters

L, = CP, i Q)N
SZ' = (I—FLi)_l, SO = (I—l-LO)_l,
¥ <=/ 5, R wsg SRl iy

TAT: Which of the following matrices are the same?

PO+ PO EELC(DPPOEL P T PO PC
(I CP) N CPNNEETCR 0, JCPUA CP"
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y = To(r —mn)+ S,Pd; + S,d,
So(r — d) + Tyn — S,Pd;,
CSy(r —n) — CS,d — T;d;,
up = C8o(r—n)—CS,d+ S;d;

ﬁ

|
IS
|

1) Good performance requires
a(Ly)>>1, g(C)>>1.
2) Good robustness and good sensor noise rejection requires
o(L,) << 1, 7(L;) <<1, 7(C)< M.

Conflict!!! Separate frequency bands!
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MIMO requirements

Example: Weighted (output) sensitivity requirement

[|W1(iw)S, (iw)Wa(iw)|| <1, Yw

Wi (s), Wa(s): Rational function with no rhp poles or zeros
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The H,, norm = Induced L, norm

The H, norm of a stable function G(s) is given by

1Glloe = sup [|Gullz = sup |G(jw)]|
flull2<1 ¥

(Parseval’s relation + Theorem 4.3 in [Zhou+Doyle]).

For unstable G(s) the norm is defined as infinite

G € RHZX™ means G(s) rational of size p x m with finite H,, norm
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H,, norm computation

H,-norm computation requires a search
Theorem ||C(sI — A)"'B + D||s < 7 if and only if
o C(sI — A)~'B is asymptotically stable
@ opax(D) < 7, hence R =~%I — D*D > 0
@ H has no eigenvalues on the imaginary axis, where

A+BR-1D*C BR1B*

H=|_c1+DR'D")C —(A+BR-'D*C)"
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H., norm computation - LMI alternative

|G |loo < 7 is equivalent to that there exists P = P* > 0 such that

PA+ A*P PB C*
B*P . —+4I D*| <0
C D —I

Linear Matrix Inequality. Convex optimization.
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Singular value plot for 2 x 2 system

uuuuuuuuuuuuuu

Singular Values (abs)
a
[e]

2

10 10’ 10
Frequency (rad/sec)
10(s+1) 1
_ | s24+0.2s+100 s+1
G(s) = 5+2 5(s+1)
s240.1s+10  (s+2)(s+3)

The Matlab command norm (G, > inf’) uses bisection together with
the theorem above to get |G|/ = 50.25. Frequency sweep with 400
frequency points gives only the maximal value 43.53.
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The Small Gain Theorem

A _>O<T,U2
e
€2
w1
= G

Suppose G € RHEX™. Then the closed loop system (G, A) is
internally stable for all

A € BRHy = {A € RH™? | |Aloo < 1}

if and only if ||G|lo < 1.
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Basic Uncertainty Models

Let D be a set of all allowable A'’s.

Additive uncertainty: P = Pp + A, A e€D.
Multiplicative uncertainty: Pn = (I + A)Py, A €D.
Feedback uncertainty: Pn = Py(I + APy))~!, A €D.
Coprime factor uncertainty:

Let B, = NM~!, M, N € RH,, and

Ay

IPAS (N—I—AN)(M—I-AA{)_l, [A
M

| eo

TAT: Draw block diagrams for each of the uncertainty models!
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Uncertainty models

@ Very often
D = {WiAW: | [|Alle < 1}
where W and W5 are given stable functions.

@ The functions W; provide the uncertainty profile. The main
purpose of A is to account for phase uncertainty and to act as a
scaling factor.

@ Construction of uncertainty models is a nontrivial task
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Robust Stability Tests

Uncertainty Model (||A|| < 1) Robust stability test
(I+ WlAWQ)P ||W2TOW1||OO <1
P(I+ WlAWQ) ||W2TZ‘W1||OO <1

(I+ WlAWQ)_lp ||WQSOW1||OO <1
P(I +W1AW,)™! [W2SiWileo <1
P+ W]_AWQ HWgCSoWlﬂoo <1
P(I + Wi AW,P)~! [WaSePW1lleo < 1
(M + Ap)" YN + Ay) C / <
A =[Ay Apl 1] %M OO<1
(N +AN)(M +Ap)~ 1
A= [Ax An] |ptsi (e 1) <1
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Robust Performance - SISO case

g ’

— 00— C (14 AW7)P 0O Ws |—

Want ||[W5S|| < 1 for system with multiplicative uncertainty
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Robust Performance - SISO case

WL |

Nominal Performance < [|[WsS|loo < 1
Robust Stability < ||W7T||s < 1
From figure:
Robust Performance < |[Wg|+ |WrL| < |1+ L|, Vs=iw
& |[WeS|+ |WrT| <1, Vs=iw

Bo Bernharsson and Karl Johan Astrom Robust Control, H -, v and Glover-McFarlane



Robust Performance - SISO case

Robust Performance
| Tewlloo < 1forall [|Al <1

is hence equivalent to the condition

max |[Ws S| + |WrT)| <1
w N’ N’

nominal performance robust stability,

RP almost guaranteed when we have NP + RS

NP + RS = RP/2]

Explains why RP is not a big issue for SISO systems
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The H., Optimization Problem

w Z
— P —
p_ Pi1 Py
y ¥ Py1 Py
o Tow = Pi1+P1aC(I—PoC) ' Py

Optimal control:

=iy, el

Suboptimal control: Given « find stabilizing C' such that
[Tewlloo <7 = lzll2 <7llwll2, Yw

The optimal control problem is solved by iterating on ~y
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Understanding LQ control - completion of squares

If P satisfies the Riccati equation A”P + PA + @ — PBBTP =0,
then every solution to & = Ax + Bu with lim;_,, 2(t) = 0 satisfies

/ [T Qz + vl u]dt
0
_ / lu+ BT Pa|?dt — 2 / (Az + Bu)T Pxdt
0 0
:/ |u+BTPz|2dt—2/ #T Pdt
0 0
:/ |u—|—BTP:r|2dt—/ i[:z:TPcz:]dt
0 o dt
_ / lu+ BT Pa|dt + 2(0)T Pa(0)
0

with the minimizing control law « = — BT Px.
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Understanding /., control - completion of squares

If X satisfies the Algebraic Riccati Equation
ATX + XA+ Q- X(B,BL-ByBi,/¥)X = 0
then © = Ax + Byu + Byw with 2(0) = 0 gives
o
/ [T Qx + uTu — Y wTw]dt
0
| Toro2ge 2 (0, aTy.2
= |lu+ B, Xz|*dt — |lw — B, Xx|“dt
0 0

This can be viewed as a dynamic game between the player u, who
tries to minimize and w who tries to maximize.

The minimizing control law v = — B! Xz gives
o0 [e.e]
/ [T Qz + uTu]dt < 72/ wl wdt
0 0

so the gain from w to z = (Q'/2x,u) is at most .
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Riccati Equation for /., Optimal State Feedback

Theorem: Consider & = Az + Byu + Byw, (0) = 0, where
(A, B,) and (A, B,,) are stabilizable. Introduce the Hamiltonian

Hy =

Then, the following conditions are equivalent:

@ There exists a stabilizing control law with
S5 @ Qx + lul2)dt < A2 f§° fwl?dt
@ Hj has no purely imaginary eigenvalues.

See [Zhou, p.237]
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Output Feedback Assumptions

w z
—_ P Y/ -
A| By By
u ¥y P=| C, 0 Dy
= Cy | Dyw O

(A1) (A, By, C,) is stabilizable and detectable,
(A2) (A, B, Cy) is stabilizable and detectable,

(a3 Dz, (C: D) = (0 1),
@ (o) 2in= (1)
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State Space H,, optimization - DGKF formulas

The solution involves two AREs with Hamiltonian matrices

A A ~2B,B! — B,B;
7 O /| Ncir. L

<L S T LT
¢ —ByB:, —A

Theorem: There exists a stabilizing controller K such that
|T%w|lo < 7 if and only if the following three conditions hold:

@ Ho € dom(Ric) and X, = Ric(Hy) > 0,
Q J» € dom(Ric) and Y, = Ric(Jx) > 0,
Q p(XooYoo) <72
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Moreover, one such controller is

where
AN 15 BRI g g S A R NC,
Foo = —BjXoo, Loo = —YooC,
VAl T Zg i s

Furthermore, the set of all stabilizing controllers such that
ITw:|lco < 7y can be explicitly described (see [Zhou,p. 271)).

[Doyle J., Glover K., Khargonekar P., Francis B., State Space Solution
to Standard H? and H*> Control Problems, IEEE Trans. on AC 34
(1989) 831-847.]
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Matlab - General H,, design

[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON)

hinfsyn computes a stabilizing H.. optimal 1ti/ss controller K for a partitioned 1ti plant P.

AB B
r=|G D, D,
c: D:E D12

The controller, K, stabilizes the P and has the same number of states as P. The system P is parlitioned where inputs to
B, are the disturbances, inputs to B, are the control inputs, output of C; are the errors to be kept small, and outputs of
C; are the output measurements provided to the controller. B; has column size (NCON) and C; has row size (NMEAS).
The optional KEY and VALUE inputs determine tolerance, solution method and so forth.

The closed-loop system is returned in CL. This closed-loop system is given by CL = 1ft(P,K) as in the following
diagram

P

The achieved H.. cost y is returned as GAM. The struct array INFO contains additional information about the design
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[K,CL,GAM, INFO]=mixsyn(G,W1,W2,W3) or

mixsyn H-infinity mixed-sensitivity synthesis method for
robust control design. Controller K stabilizes plant G
and minimizes the H-infinity cost function

[l WixS ||
|| W2xKxS ||
'l W3*T | |Hinf
where
S := inv(I+G*K) % sensitivity
T := I-S = GxK/(I+GxK) 7% complementary sensitivity

W1, W2 and W3 are stable LTI ’weights’
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Matlab - mixsyn

Minimizes H, norm of

Wi(I +GK)™!
WK (I + GK)~!
W3GK(I+GK)™!

[C,CL,GAM,INFO] = mixsyn(G,W1,W2,W3)

G = (s-1)/(s+1)"2;

W1l = 5x(s+2)/(100*s+1);

W2 = 0.1;

[K,CL,GAM] = mixsyn(G,W1,W2,[]);
L = G*K;

S = inv(1+L);

T = 1-S;

sigma(S,’g’,T,’r’ ,GAM/W1, g-.’ ,GAM*G/ss(W2) ,’r-.")
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Singular Values

810 E
G
173
[}
2 -2
S10 4
T
=
g
% 10 . 3
\\
N
-4
10k 3 4
—-—- GAM/W1
—-—- GAM G/ss(W2)
10° : :
107 102 10° 102 10*

Frequency (rad/s)
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Motor Control [Glad-Ljung Ex. 10.1]

20
Motor P(s) = .
otor P(s) s(s+1)
N k
Minimize H,, norm of | WoC(I + PC)~! |, with Wy = f
WsPC(I + PC)~! W —1

Increasing k gives higher bandwidth at the cost of larger controller gain

Shape of W1 will enforce integral action. Try £ = 1, 5, 30.

20 k
Needed to change to P(s) = —TC and W = (s +€)?
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Result- S, KSand T for k =1,5,30

Singular Values Singular Values

Singular Values (abs)
Singular Values (abs)

10'

dis)

Singular Values (abs)

10 10
Frequency (rad/s)
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1/(1 PC
102 ( )
10° —
1072
10
10°
102 10° 102
Frequency [Hz]
C/(1 PC
10’ (1PC)
100 ﬁ
1 y
10 //
102 /
102
10
102 10° 102
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10° 102
Frequency [Hz]
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Resonant System

From earlier lectures and exercises:

1
P@) = 200 11
Wi S Wi =kP
Minimize Ho, norm of |WoCS|, where Wy =1
WsT J W3 =]
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Result - GangofFour for £ = 1, 10, 100, 420

. 1/(1 PC) 102 P/(1 PC)
100

10° { ‘:
102

107
10

102

0 10°

1072 10°

102 10° 102 104 102 100 102 104
Frequency [rad/s] Frequency [rad/s]
C/(1 PC) PC/(1 PC)

102 (1PC) 102 (1PC)
10°

10'
102

10° 104
10

107
10°®

102 10710

102 10° 102 10* 102 100 102 10*
Frequency [rad/s] Frequency [rad/s]

k = 420 gives ||PS||c = 0.1 and ||C'S||s = 42
(similar value as our best design on the exercise)
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Result - further optimization

Does the controller really need high gain beyond 10* rad/s?
Change to Wy = s (or really Wy = (s + €)/(1 + €s)) and retune k

o 1(1 PC) 0 PI(1 PC)
100 \ . 102 \
10 10
102 10°
1073 g 10 L
107 3 102 10 107 100 z 10
Frequency [Hz] Frequency [Hz]
o? ci(1 PC) of PC/(1 PC)
/ 10° e
10! /
| 102
100 10
pr—
10°
107
10°
102 1010
107 102 10 1 10? 10

0 o0
Frequency [Hz] Frequency [Hz]

To achieve same || PS||o we need ||C'S||o = 67, was 42.

Excellent reduction in noise power (||C'S||2 = 126, was 4200)
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Result- S, KSand T

Singular Values Singular Values
0 10
7
g ~
a .
0 g 100 R In T
,00 I8N
S SIS
s IsIs
10 s
7 10" 7 SIS
3 2 SIS
k-3 kS STNIN
8 g1 rIns
S0 3 hs
s s
@10° @
10

)
Singular Values

Singular Values (abs)

0 ”‘ ) o 2 o o
. Frequency (radis) . .
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The GOF matrix

A<

(I+PKY1Pﬂlﬂ
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What is Good Performance?

d n

A<

What is captured by the norm of the GOF matrix?

s

(I+PK)' |1 P H ?
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A Notion of Loop Stability Margin, bp x

A popular notion of stability margin is

-1
if K stabilizes P

(I+PK)™[1 P ‘

I
bpk = K

0 otherwise

o0

The larger bp i € [0, 1] is, the more robustly stable the closed loop
system is.

Remark: Note that bp i depends on scalings of inputs and outputs.
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Relation to Gain and Phase Margins

If Pis a SISO plant and K a stabilizing controller then

1+ bp,K
1-bpk’
phase margin > 2arcsin(bp ).

gain margin >

Proof: Exercise
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v-Gap Metric [Vinnicombe]

I(I+P2P§) =2 (P—Po) I+ PFP1) "% oo
if det( + Py P;) # 0on jR and

wno det(I—l—PQ*Pl) + 77(P1) — ﬁ(PQ),

1 otherwise

0,(P1, P) =

where 7 (n) is the number of closed (open) RHP poles and wno is
winding number.

In scalar case it takes on the particularly simple form

= su |P1(w) — Pa(jw)]
ML) = o AT R+ 1RGP

whenever the winding number condition is satisfied.

Geometrical interpretation: Distance on the Riemann sphere
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Geometric Interpretation




Consider

Pl(S): s PQ(S):

1 1
s
We have || Py — P»||oc = +00. However

0, (Py, Py) ~ 0.0995
which means that the system are, in fact, very close.
[gap,nugap] = gapmetric(1/s,1/(s+0.1))

gap = 9.9510e-02
nugap = 9.9504e-02
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Robustness Guarantees

Theorem For any Fy, P and K

arcsin bp g > arcsin bp, g — arcsin 0, (P, P).

Corollary 1: It bp, k > 6, (P, P) then (P, K) is stable.

Corollary 2: For any Py, P, Ky and K

arcsin bp ¢ > arcsinbp, g, — arcsin d, (Pp, P) — arcsin §, (Ko, K).
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bp x and Coprime Factor Uncertainty

Let P = M~'N, where N (iw)N (iw)* 4+ M (iw)M (iw)* = 1. This is
called normalized coprime factorization.

Large bp i gives good robustness against coprime factor uncertainty
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Computing Normalized Coprime Factors

Given P(s) = C(sI — A)~!B, let Y be the stabilizing solution to
AY +YA* - YC*CY + BB* = 0.

The matrix A + LC is stable with L := —Y C™*.

Lemma: A normalized factorization is given by

5 ] - (AL L),

Proof: Denote A(s) = (sI — A+ Y C*C)~! and calculate

NN*+ MM* =1—-CAYC* — CYA*C* + CA(B*B+YC*CY)A*C*
= I+ CA(B*B+YC*CY-Y (A*)1—-A~ly)A*C*
= [+ CAB*B-YC*CY+AY+Y A A*C* =T
=0
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bp x and Coprime Factor Uncertainty

The process Px = (M + Ap) 1N JE
controller K is stable for all A = [Ax Aps] with [|Alee < € iff

H[II( (I+PK)™ I P}H <%

Finding K that minimizes LHS of (1) is an H, problem
Actually, no -y iteration needed!

Bo Bernharsson and Karl Johan Astrom Robust Control, H -, v and Glover-McFarlane
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Proof of (1)

The interconnection of PA = (M L4 AM)*({V oL AN) and K can be
rewritten as an interconnection of A = [Ax Aj,] and

I —1a7—1
lK (I + PK)"'M
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Proof of (1) - continued

The small gain theorem therefore gives the stability condition

(I+PK)'M™!

1
- >
€

(e}

(I+PK)'M~' [N ] H

(e}

(I+PK)™' |1 P H

(e}
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H ., Optimization of Normalized Coprime Factors

Theorem: Assume Y > 0 is the stabilizing solutionto
AY +YA* - YC*CY + BB*=0.Then P= M 'Nisa
normalized left coprime factorization and

> = Yopt

1
K co 1- )\max(YQ)

where Q(A—YC*C)+ (A-YC*C)*Q + C*C = 0.
Moreover, a controller achieving v > Yot is

. 1
inf
K —stab

(I+PK)'M™!

A-BB'X, - YC*C| -YC*
NG ( R } 0 )

A2 A2 -1
Xoo = Q(I— . YQ)
i VAT

Note: No iteration of v needed.
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Robust Control

@ MIMO performance

@ Robustness and the H,-norm
@ H,.-control

© v-gap metric

@ Glover-MacFarlane
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Loop-Shaping Design

A good performance controller design typically requires

@ large gain in the low frequency region:

o(PK)>>1, o(KP)>>1, ¢(K)>>1.
@ small gain in the high frequency region:

o(PK)<<1, o(KP)<<l1, o(K)<M

where M is not too large.

Wouldn't it be nice to be able to do loopshaping worrying only about
the gains and not care about phase and stability ?
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Glover McFarlane Loopshaping

ds l Ng

Wl P W2

Ys

Usg
Ko

g . Wg(@@)f*@%\\)

% Measurement errors

" Frequency

AN
Disturbance rejection

Robust Control, H -, v and Glover-McFarlane
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,—>
Wy W
Whoiin

1) Choose W7 and W5 and absorb them into the nominal plant P to
get the shaped plant P; = Wy PW7.
2) Calculate b,y (Ps). If it is small (< 0.25) then return to Step 1 and
adjust weights.

3) Select € < b, (Ps) and design the controller K, such that

L)

4) The final controller is K = W71 KWo.

1
< -.

(I + P,Koo) 1M1 -

o0
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Matlab - loopsyn

Syntax
[K,CL,GAM, INFO]=1o00psyn(G,Gd)
[K,CL,GAM, INFO]=1oopsyn{G,Gd, RANGE)

Description

loopsyn is an H.. optimal method for loopshaping control synthesis. It computes a stabilizing H..controller K for plant
G to shape the s igma plot of the loop transfer function GK to have desired loop shape G with accuracy y = GAM in the
sense that if wy is the 0 db crossover frequency of the sigma plot of Gyljw), then, roughly,

o(G(jm)K (jw)) = 2 al(G,(jw)) for all w m, {1-14)

o(Gljw)K (jw)) = y T(G,(jw)) for all &> e (1-15)

The STRUCT array INFO returns additional design information, including a MIMO stable min-phase shaping pre-filter
W, the shaped plant G; = GW, the controller for the shaped plant K, = WK, as well as the frequency range {t i, &gt
over which the loop shaping is achieved

Input Argument Description

G LTI plant

Gd Desired loop-shape (LTI model)

RANGE (optional, default {8, Inf}} Desired frequency range for loop-shaping, a 1-by-2 cell array

{8 eyt g, should be at least ten times. wy,
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Remarks:

@ In contrast to the classical loop shaping design we do not treat
explicitly closed loop stability, phase and gain margins. Thus the
procedure is simple.

@ Observe that

I 1 Wa < =
H [Koo:| (I+PsKoo) 'Mat|| = H |:W1_1K:| (I+PK)~! [Wz ! PWJ
oo

‘ co

so it has an interpretation of the standard H ., optimization
problem with weights.

@ BUT!!I The open loop under investigation on Step 1 is
KWy PW71 whereas the actual open loop is given by
W1 K WoP and PW; K W,. This is not really what we has
shaped!

Thus the method needs validation in the MIMO case.
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Justification of /., Loop Shaping

We show that the degradation in the loop shape caused by K, is
limited. Consider low-frequency region first.

- Q(Ps)Q(Koo)
PK) = 'p.K. >
> Q(PS)Q(KOO)
KP) = Ko PW:h >
Q( ) Q(Wl o0 SWl ) =1 E(Wl)
where  denotes conditional number. Thus small o( K, ) might cause

problem even if P is large. Can this happen?

Theorem: Any K, such that bp, k.. > 1/~ also satisfies

o(Kx) > jf}_i‘lgv(;j);ll it a(Py) > /22 — 1.

Corollary: If o(P;) >> /72 — 1 then 0(K) > 1/y/7? — 1
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Consider now high frequency region.

G(PK) = G(Wy P K Ws)
G(KP) = (W1 K.oP,Wh

Can (K ) be large if 7(Ps) is small?

Theorem: Any K, such that bp, k. > 1/ also satisfies

7(Koo) VP14 TR :
> 1 ok —10‘(P)

Corollary: 1f7(Ps) << 1/y/7? —1theng(K) < V72 —1
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Example: Vertical Aircraft Dynamics [Glad/Ljung]

See LQG lecture (3 inputs, 3 outputs: height, forward speed, pitch)

Singular Values

Singular Values (abs)
s 3

S

s 3 3 &

0 102 10° 10*

10° 1
Frequency (rad/s)

=)
>

Open loop singular values
Will try to achieve bandwidth 10 rad/s, following Glad/Ljung.

Will need control gain about 250 in some direction at 10 rad/s



Example: Vertical Aircraft Dynamics

Singular Values
T

Singular Values (abs)
> oS
T e T

=)
T

10° 5 I - - _ :
10 10 10 10
Frequency (rad/s)

Start by adding diagonal Pl-controllers
Singular values for GW; with Wy = 8(1 + 2)I;
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Example: Vertical Aircraft Dynamics

Singular Values

Singular Values (abs)
>

. . . .
10° 10’ 102 10° 10*
Frequency (rad/s)

Squeeze singular values together near 10 rad/s

Wi = Wi(I + kRe(vsv%)) where GW4(i10) = USV*, v3 = V(:, 3)
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Vertical Aircraft Dynamics - Gang of Four

Singular Values Singular Values

Singular Values (abs)
5]

Singular Values (abs)
3

103 103 /\

2 10° 102 10 107 10° 10° 10*
Frequency (rad/s) Frequency (rad/s)

Singular Values Singular Values

Singular Values (abs)
Sﬂ

Singular Values (abs)
3

1072 10° 102 10 102 10° 10° 10*
Frequency (rad/s) Frequency (rad/s)

S and T' as wanted. Control gain quite high, see K'S

Bo Bernharsson and Karl Johan Astrom Robust Control, H -, v and Glover-McFarlane



Example: Vertical Aircraft Dynamics

Step Response
From: In(1) From: In(2) From: In(3)

Amplitude
To: Out(2)

To: Out(3)
)
3

(

[N
20 1 20 1 2
Time (seconds)

o

Nice decoupled step responses. Time constant about 0.1s.
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Example: Vertical Aircraft Dynamics

Step Response
From: In(1) From: In(2) From: In(3)

c 0 r~
3-100
3

Amplitude
To: Out(2)
8 3 o

2 0
3 -200
5

= -400

1 20 1 20 1 2
Time (seconds)

Large control signals needed to move 1 meter in 0.1s.

Too aggressive design with 10 rad/s bandwidth? Good start for futher
tuning.
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Do one of the two KTH laborations, see home page

@ H, design (easiest)
@ Dynamic Decoupling and Glover-McFarlane design
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