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Introduction

The purpose of this lecture is to build up the machinery to understand

and formulate the requirements for control system design. There are

two main issues: performance and robustness. We will cover

System Architecture

Feedback Fundamentals

Fundamental limitations

Broad understanding of design issues

Insight and understanding

Trade-offs

How to capture essential system properties

Parameters that capture requirements

Design parameters
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Control Requirements

Requirements are key, they should drive design

Choose requirements wisely and early in the design

Many possibilities, make a sensible choice and use it

systematically

Check requirements automatically at each stage in the design

process by simulation (SIL) or hardware in the loop simulation

(HIL)

Design equipment so that requirements can be checked

experimentally

Provide access points and measurement points

Steps and ramps for time responses, chirp signals to measure

frequency response

Bo Bernhardsson and Karl Johan Åström Requirements



Design Issues

Disturbances

Effect of feedback on disturbances

Attenuate effects of load disturbances

Moderate measurement noise injection

Robustness

Reduce effects of process variations

Reduce effects of modeling errors

Command signal response

Follow command signals

Architectures with two degrees of freedom (2DOF)
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A Basic Feedback System

F C P

Controller Process

−1
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x
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Ingredients:

Controller: feedback C , feedforward F

Load disturbance d : Drives the system from desired state

Process: transfer function P

Measurement noise n : Corrupts information about x

Process variable x should follow reference r
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A More General Setting

Load disturbances need not enter at the process input and

measurement noise may also enter in different way. More general

structures are.

C

P
yu

zw

r

w = (d, n), z = (e, v, . . .)

C

P
y, ru

zw

w = (d, n, r), z = (e, v, . . .)

These problems can be dealt with in the same way but we stick to the

simpler case. In practice always useful to understand the nature of the

disturbances.
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Typical Requirements

A controller should

A: Reduce effects of load disturbances

B: Do not inject too much measurement noise into the system

C: Make the closed loop insensitive to variations in the process

D: Make output follow command signals well

Systems with two degrees of freedom

Design feedback for A, B and C

Then design feed-forward to handle D

Systems with error feedback do not allow this separation of responses

to command signal and disturbances.
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Architecture with Two Degrees of Freedom

F C P

Controller Process

−1

Σ Σ Σ
r e u

d

x

n

yv

Horowitz Synthesis of Frieedback Systems 1963: Design the feedback

C to achieve

Low sensitivity to load disturbances d
Low injection of measurement noise n
High robustness to process uncertainty and process variations

Design the feedforward F to achieve

Desired response to command signals r
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Other Architectures with 2DOF

ΣΣ

r

Fy

Fu

C P

−1

uff

ym ufb y

For linear systems all 2DOF configurations have the same properties.

For the systems above we have CF = Fu + CFy

PID Control - Setpoint weighting

u(t) = kp
(

βysp(t)−yf (t)
)

+ki

∫ t

0

(

ysp(τ)−yf (τ)
)

dτ−kd

(

γ
dysp

dt
−dyf

dt

)

Tune kp, ki, kd and filtering (yf = Gf y) for load disturbances,

robustness and measurement noise

Tune β and γ for set point response
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State Feedback - Kalman Filter Architecture

Trajectory

Generator

r

u

-x̂

xm

ProcessΣ Σ
State

Feedback

Kalman

Filter

ufb

uff

y

A nice separation of the different functions

The signals xm and uff can be generated from r in real time or

from stored tables (robotics)
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Some Systems only Allow Error Feedback

Disk drive

Atomic Force Microscope

Only error can be measured

Design for command disturbance attenuation and

command signal response can not be separated!
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The Gangs of Four and Seven

F C P
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d
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X =
P

1 + PC
D − PC

1 + PC
N +

PCF

1 + PC
R

Y =
P

1 + PC
D +

1

1 + PC
N +

PCF

1 + PC
R

E = − P

1 + PC
D − 1

1 + PC
N +

F

1 + PC
R

U = − PC

1 + PC
D − C

1 + PC
N +

CF

1 + PC
R
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Observations

A system based on error feedback is characterized by four

transfer functions (The Gang of Four GoF)

PC

1 + PC

P

1 + PC

C

1 + PC

1

1 + PC

The system with a controller having two degrees of freedom is

characterized by seven transfer function (The Gang of Seven

GoS)
PCF

1 + PC

CF

1 + PC

F

1 + PC

To fully understand a system it is necessary to look at all transfer

functions

It may be strongly misleading to only show properties of a few

systems for example the response of the output to command

signals, a common omission in literature.
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The Gangs of Four and Seven

Response of y to load disturbance d is characterized by

P

1 + P C

Response of u to measurement noise n is characterized by

C

1 + P C

Robustness to process variations is characterized by

S =
1

1 + P C
, T =

P C

1 + P C
, S + T = 1

Responses of y, u and e to reference signal r are characterized by

P CF

1 + P C
,

CF

1 + P C
,

F

1 + P C

Requirements are based on features of the Gangs
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Gain Curves of the Gang of Four
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Gain curves of the Gang of Four for a heat conduction process with I (dash-dotted), PI

(dashed) and PID (full) controllers.

One plot gives a good overview of performance and robustness!
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Time Response of the Gang of Seven
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One plot gives a good overview!
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Testing Requirements

er u yv

v n

x

Controller Process

ΣΣ

Σ

ΣΣF (s) C(s) P (s)

−1

w1

w2

s11 s12

s21s22

S Change w1 measure s12 or change w2 measure s22

T Change w1 measure s11 or change w2 measure s21

Gyv Change w1 measure s21

Gun Change w2 measure s11

T F Change ysp measure s21

SFC Change ysp measure s11
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Key Issues

Understand the process, its static and dynamic properties

Possible equilibria, wide sense controllable

Experiments and physical models are useful

Stable, unstable, integrators

Large signal behavior

Rate and level saturation of actuators

Small signal behavior

Noise, AD and DA quantization, friction

Dynamics limitations (more later)

RHP poles and zeros

Time delays

The cardinal sin is to believe that the process is given!

Move or add sensors (changes zeros)

Change the process
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Static Characteristics
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Start by exploring the static input-output relation practically and

theoretically. Sweep input up and down, look for hysteresis.

Information about signal levels and variations in static gain

Robust or gain scheduling
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Large Signal Behavior

Process may be strongly nonlinear

Control signals and their rates are often limited (JAS)

Actuator and drive amplifier selection

Limitations on response time and bandwidth

Optimal control theory and algorithms are very useful

Make sure you understand the problem and constraints!

Tools: Optimal control

Time optimal control - Tell what is possible

Optimize energy or other criteria

Grundelius Thesis 2001 #62 - Move quickly and avoid sloshing

minimum time + minimum energy
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Voice coil drive for a hard disk drive

J
d2ϕ

dt2
= T = kt r I

m
d2x

dt2
= F = ktI

r = 0.05 m

J = 5 × 10−6 kg m2

m = 2 × 10−3 kg

kt = 2 N/A

Imax = 0.5A

Vmax = 5 V

Maximum acceleration amax =
ktImax

m
= 500 m/s2 (≈ 50g)

Maximum velocity vmax =
Vmax

kt
= 2.5 m/s

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1003997
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amax = 500 m/s2, vmax = 2.5 m/s
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Small Signal Behavior

Important factors:

Noise

Sensor resolution

Resolution of AD converter

Resolution of DA converter

Friction

The consequences are typically small variations around the

equilibrium which limits the achievable precision
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Measurement Noise

F C P

−1

ΣΣΣ
r e u

d

x

n

y

Measurement noise typically dominated by high frequencies.

TAL: What does it mean if there is a bias?

Gun(s) = − C

1 + PC
= −SC, Gyn =

PC

1 + PC
= T

Gun is the important transfer function.
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Friction

Coulomb friction model

System oscillates with the frequency where G(iω) has a phase

lag of 180◦

Exact analysis possible but more complicated

There are many friction models
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Friction generated oscillations

Olsson+kj IEEE Trans CST 9(2001) 629-636
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Describing Function Analysis - Harmonic Balance

NL −G(s)

Approximate output of non-linearity with first harmonics. Propagation

of the first harmonic can be described by the function N(a) where a is

the amplitude of the sinusoidal input. Tracing signals around the loops

give the following condition for oscillation: N(a)G(iω) = −1.

Describing function for relay: Nrelay(a) = 4d/(πa). Locus of

−1/Nrelay(a) is the negative real axis.

TAL: Does the intersection represent a stable oscillation?
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AD and DA Resolution - Noise Approximation

C
u

δDA

P

δAD

ΣΣΣ
y

−1

Approximate round-off errors by high frequency noise with variance

σ2
δ =

δ2

12

Y =
1

1 + PC
δAD +

P

1 + PC
δDA

U = − C

1 + PC
δAD − PC

1 + PC
δDA

Make an estimate by using the gains of the transfer functions at the

frequency obtaind by describing function analysis
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Describing Functions for Round-off
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Nrelay(a) = 2d/(πa)

Ndead−zone(a) =

{

0 a < d/2

4d
√

1 − d2/(2a)2 /(πa) a ≥ d/2
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Computer Control of Double Integrator DA Quantization
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Computer Control of Double Integrator AD Quantization
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Describing Function Analysis

Nyquist curve for computer control of double integrator with

quantization in DA converter
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Command Signal Following - System Inversion

Find a stable feedforward controller F that combined with the process

P gives a desired relation from reference r to output y

r u y

F P

Hence

Gm = PF, F = P −1Gm

Feedforward design requires system inversion!

To avoid differentiation: Pole excess of Gm equal to or greater

than pole excess of P

Fast response requires large signals and large signal rates

Time delays and RHP zeros cannot be inverted
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Difficulties with System Inversion

Let P (s) =
1

s + 1
and Gm(s) = 1, then F (s) = s + 1. The control

signal is u(t) = r(t) +
dr(t)

dt
, which can be very large if the reference

signal changes rapidly. The control signal is infinite for a step input.

Let P (s) =
1

s + 1
and Gm(s) =

a

s + a
, then F (s) =

a(s + 1)

s + a
. For

rapidly changing control signals we have u(t) ≈ ar(t). The control

signal is then large if we require a fast response (large a).

The inverse is always stable for processes with minimum phase

dynamics, the achievable performance is limited by limitations on the

control signal.

Processes with right half plane zeros have unstable inverses,

processes with time delays cannot be inverted exactly, approximations

are required.
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Approximate Inverse Theorem kj 1968

Consider transfer function P (s) which is proper and stable with no

zeros on the imaginary axis. Let P (s) = P +(s)P −(s) be a

normalized factorization of P (s) such that P +(s) has all its zeros in

the left half plane and P −(s) has all its zeros in the left half plane and

P −(0) = 1, P −(s)P −(−s) = 1. Let the input to the system be a unit

step in the reference, then the approximate inverse

P †(s) =
1

P +(s)

minimizes the mean square error e = r − y and we have

min

∫ ∞

0
(r(t) − y(t))2dt = −d log P −(s)

ds

∣

∣

∣

∣

∣

s=0

= Tar(P −(s))
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Sketch of Proof

Parsevals relation gives

J(H) =

∫ ∞

0

e2(t)dt =
1

2πi

∫ s=i∞

s=−i∞

(

1−P (s)H(s)
)(

1−P (−s)H(−s)
) ds

−s2

The integral is finite only if P (0)H(0) = 1, completion of squares give

(

1 − P (s)H(s)
)(

1 − P (−s)H(−s)
)

=
(

1 − P +(s)H(s)
)(

1 − P +(−s)H(−s)
)

+
(

P +(s) − P (s)
)

H(s) +
(

P +(−s) − P (−s)
)

H(−s)

The function F (s) =
(

P +(s) − P (s)
)

H(s)s−2 is analytic in the right half

plane, hence

∫

Γ

F (s)ds =

∫

I

F (s)ds +

∫

γ+

F (s)ds +

∫

Γ+

F (s)ds = 0

where I is the imaginary axis, γ+ a small right semicircle at the origin and

Γ+ a large right semicircle.
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Sketch of Proof ...

The integral along Γ+ is zero. The integral around a small circle around the

origin is obtained by residue calculus. The residue of F (s) at the origin is

R = lim
s→0

sF (s) = lim
s→0

(

P +(s) − P (s)
)

H(s)

s
= lim

s→0

P +(s)
(

1 − P −(s)
)

H(s)

s

= −P +(0)P −′

(0)H(0) = −P −′

(0)

P −(0)
= −d log P −(s)

ds

∣

∣

∣

s=0

where the last equality follows from P (0)H(0) = 1. Furthermore we have
∫

γ+

F (−s)ds = −
∫

−γ+

F (−s)ds =

∫

γ+

F (s)ds = πiR

Collecting the pieces we have

J(H) =

∫ ∞

0

e2(t)dt =
1

2πi

∫ s=i∞

s=−i∞

(

1 − P (s)H(s)
)(

1 − P (−s)H(−s)
) ds

−s2

≥ 2R = −d log P −(s)

ds

∣

∣

∣

s=0

= Tar(P −)

Where equality is obtained for

H(s) = P †(s) = 1/P +(s)

which proves the theorem
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Example of Approximate Inverse

Right half plane zero

P (s) =
a − s

s + 2
, P − =

a − s

a + s
, P + =

s + a

s + 2
, P † =

s + 2

s + a

min

∫ ∞

0
e2(t)dt = −(log P −(s))′|s=0 =

1

2a

slow zeros are bad

Time delay

P (s) =
e−sL

s + 1
, P − = e−sL, P +(s) =

1

s + 1
, P † = s + 1,

∫ ∞

0
e2(t)dt = −(log P −(s))′|s=0 = L

Notice equivalence between L and 2/a compare e−sL ≈ 1 − sL/2

1 + sL/2
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Ideal Transfer Functions Gyr(s)

Neglecting limitations of input signal amplitude and rates we have the

following “ideal” transfer functions Gyr(iω) obtained by feedforward

compensation

Minimum phase process: Gyr(s) = 1

Process with right half plane zero at s = b: Gyr =
b − s

b + s

Process with time delay: Gyr = e−sL

Notice that all transfer functions are all-pass |G(iω)| = 1
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Requirements - Time domain

ysp

y0

o

TsTmax

2p

umax

u0

Tr

Settling time Ts

Average residence time

Tar =
∫ ∞

0 th(t)dt

Rise time Tr

Overshoot o

Steady state error ess
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Tracking Slow Signals - Error Coefficients

Tracking signals with constant velocity (ramps) or constant

acceleration is some times important.

Gyr(s) =
a(s)

b(s)
, Ger(s) = 1 − Gyr(s) =

a(s) − b(s)

a(s)
=

b̄(s)

a(s)

where

a(s) = sn + a1sn−1 + · · · + an−1s + an

b(s) = b0sn + b1sn−1 + · · · + bn−1s + bn

We have

G(s) = G(0) + sG′(0) +
s2

2
G′′(0) + · · ·

e(t) = e0r(t) + e1
de

dt
+ e2

d2e

dt2
+ · · ·

e0 = G(0), e1 = G′(0), e2 = G′′(0)/2, e3 = G(3)(0)/3!
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Tracking Slow Signals - Error Coefficients ...

G(s) = G(0) + sG′(0) +
s2

2
G′′(0) + · · ·

e(t) = e0r(t) + e1
de

dt
+ e2

d2e

dt2
+ · · ·

e0 = G(0) e1 = G′(0) e2 = G′′(0)/2 e3 = G(3)(0)/3!

The numbers ek =
G(k)(0)

k!
, which have good physical interpretation,

are called error coefficients

Zero tracking error for a constant input requires Ge(0) = 0, hence

b̄n = an − bn = e0 = 0. If Ger(0) = 0 the steady state tracking error

for a ramp input r(t) = v0(t) becomes eramp(t) = Ger(0)) = e1v0.

If G(0) = 0 and G′(0) = 0 the steady state tracking errors for step

and ramp inputs are zero and the steady state tracking error for an

input with constant acceleration r(t) = a0t2 is eacc(t) = e2a0
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Requirements - Frequency Response

10
-1

10
0

10
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1/
√

2
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Bandwidth ωb

Peak frequency ωp frequency peak Mp
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Rise Time Bandwidth Product

Consider a stable transfer function G(s) and impulse response h(t). Rise

time is based on the unit step response several definitions:

(1) Tt =
G(0)

maxt h(t)

(2) The time for the output to go from 10% to 90% of steady state value

The bandwidth ωbw can also be defined in many different ways

(1) ωbwG(0) =
∫ ∞

0
|G(iω)|dω (2) |G(iωbw)| =

√
2

2
G(0)

We obtain the following estimate of the steepest slope of the unit step

response

max
0≤t≤∞

h(t) = max
t

∣

∣

∣

∣

∣

1

2π

∫ ∞

−∞

eiωtG(iω)dω

∣

∣

∣

∣

∣

≤ 1

π

∫ i∞

0

|G(iω)|dω =
G(0)ωbw

π

Definition (1) of the rise time and (2) the bandwidth give

Trωbw ≤ π

Bo Bernhardsson and Karl Johan Åström Requirements



Examples of Bandwidth-Risetime Product

Here we use |G(iωbw)| = G(0)
√

2/2

First order system

P (s) =
a

s + a
Tr =

1

a
, ωbw = a, Tr ωbw = 1

Second order system

P (s) =
a2

(s + a)2
Tr =

e

a
=

2.72

a
, ωbw = a

√√
2 − 1 Tr ωbw = 1.75

Second order system P (s) =
1

s2 + 2ζs + 1
,

Tr ωbw = eφ/tanφ

√

1 − 2ζ2 +
√

(1 − 2ζ2)2 + 1, φ = arccos ζ

ζ = 0.707 gives Trωbw = 2.19
ζ = 1 gives Tr × ωbw = 1.75.

A reasonable rule of thumb is Tr ωbw ≈ 2(1 − 3)
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Effect of Feedback on Disturbances

v

c p

C P

−1

Σ Σ Σ
r = 0 e u

d

x

n

y

Output without control Yol = N + PD

Output with feedback control

Ycl =
1

1 + PC

(

N + PD
)

= SYol

The sensitivity function S = 1/(1 + PC) tells how feedback

influences the effect of disturbances. Disturbances with frequencies

such that |S(iω)| < 1 are reduced by feedback, disturbances with

frequencies such that |S(iω)| > 1 are amplified by feedback.
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Assessment of Disturbance Reduction

We have

Ycl = SYol(t), S(s) =
1

1 + P (s)C(s)

Feedback attenuates disturbances when |S(iω)| < 1

Feedback amplifies disturbances when |S(iω)| > 1

The sensitivity crossover frequency ωsc (S(iωsc) = 1) is an

important parameter, (there may be many values)

10
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10
0

10
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10
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10
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10
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10
1

Sensitivity Function

ω

|S
(i

ω
)|

ωms

ωsc

−1
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The Water Bed Effect - Bode’s Integral

0 1 2 3
−3
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−1

0
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Frequency ω [rad/s] (linear scale)
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|S
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ω
)|
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Frequency
0.0 0.5 1.0 1.5 2.0

∫ ∞

0
log |S(iω)|dω = π

∑

Re pk − π

2
Kv, Kv = lim

s→∞
sL(s)

pi RHP pole. The sensitivity can be decreased at one frequency at the

cost of increasing it at another frequency. Feedback design is a

trade-off!.
∫ ∞

0
ω2log|T (iω)|dω = πτ + π

∑

Re
1

zi
− π

2Kv
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The First IEEE Bode Lecture 1989

A video was made by IEEE and the Lecture was published in the IEEE

Control Systems Magazine in 2003!

http://www.ieeecss-oll.org/lectures/1989/respect-unstable
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Right Half Plane Zeros

10
-1

10
0

10
1

10
-1

10
0

Ms

ω/a

|S
r

e
q
(i

ω
)—

Consider a process with a real right half plane zero at s = z, assume that we

want the sensitivity function S to be below a given specification Sreq where

Sreq(s) =
sMs

s + aMs

, |S(iω)| < |Sreq(iω)|,
∣

∣

∣

S(iω)

Sreq(iω)

∣

∣

∣
< 1

Since S(z) = 1 and Sreq is regular and analytic in the RHP it follows from

the maximum modulus theorem that a conservative requirement is that

Sreq(z) > 1. Hence

zMs > z + aMs ⇒ a < z
Ms − 1

Ms
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Right Half Plane Poles

10
-1

10
0

10
1

10
-1

10
0

Mt

ω/a

|T
r

e
q
(i

ω
)—

Consider a process with a real right half plane pole at s = p, assume that we

want the sensitivity function T to be below a given specification Treq where

Treq(s) =
a

s + a/Mt

, |T (iω)| < |Treq(iω)|,
∣

∣

∣

T (iω)

Treq(iω)

∣

∣

∣
< 1

Since T (p) = 1 and Treq is regular and analytic in the RHP it follows from

the maximum modulus theorem that a conservative requirement is that

Treq(p) > 1. Hence

a > p + a/Mt ⇒ a > p
Mt

Mt − 1
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Time Delays and RHP Zeros Impose Limitations

A RHP zero s = z limit the sensitivity crossover frequency ωbw

ωbw ≈< z
Ms − 1

Ms

A time delay L limits (based on e−sL ≈ 1 − sL/2

1 + sL/2

ωtc ≈>
2

L
A RHP pole s = p requires a high sensitivity crossover frequency ωbw

ωbw > p
Mt

Mt − 1

Poles and zeros in the RHP give high sensitivity if they are too close

Ms ≥
∣

∣

∣

p + z

p − z

∣

∣

∣

A right half plane pole p and a time delay L limit the sensitivity

Mt ≥ epL
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RHP Pole and Zero

Consider a process P (s) with a pole p and a zero z in the RHP

P (s) =
s − z

s − p
P̄ (s)

The sensitivity function is

S(s) =
1

1 + P (s)C(s)
=

s − p

s − p + (s − z)P̄ (s)C(s)
S(z) = 1

Introduce the weight

wp(s) =
s + p

s − p
, |wp(iω)| = 1

The function wp(s)S(s) is then regular in the RHP and the maximum

modulus theorem gives

Ms = max
ω

|S(iω)| = max
ω

|wp(iω)S(iω)| ≥ |wp(z)S(z)| =
∣

∣

∣

z + p

z − p

∣

∣

∣
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RHP Pole and Time Delay

Consider a process with a pole p in the RHP and a time delay L

P (s) =
e−sL

s − p
P̄ (s)

The complementary sensitivity function is

T (s) =
P (s)C(s)

1 + P (s)C(s)
=

e−sLP̄ (s)C(s)

s − p + e−sLP̄ (s)C(s)
, T (p) = 1

Introduce the weight

wL(s) = esL, |wL(iω)| = 1

The function wL(s)T (s) is then regular in the RHP and the maximum

modulus theorem gives

Mt = max
ω

|T (iω)| = max
ω

|wL(iω)T (iω)| ≥ |wL(p))T (p)| = epL
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Complex RHP Pole and Zero

RHP zero at s = x0 ± iy0

ωsc <

√

M2
s x2

0 + (M2
s − 1)y2

0 − x0

Ms

Pure real or imaginary zeros

ωsc < x0
Ms − 1

Ms
, ωsc <

√

M2
s − 1

Ms
y0

RHP pole at s = x0 ± iy0

ωst >
x0M1 +

√

M4
t x2

0 + M2
t (M2

t − 1)y2
0 + Mtx0

√

M2
t − 1

Pure real or imaginary poles

ωst >
Mt

Mt − 1
x0, ωst >

Mt
√

M2
t − 1

y0
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Tune for Load Disturbances

G. Shinskey Intech Letters 1993: “The user

should not test the loop using set-point

changes if the set point is to remain constant

most of the time. To tune for fast recovery from

load changes, a load disturbance should be

simulated by stepping the controller output in

manual, and then transferring to auto. For lag-

dominant processes, the two responses are

markedly different.”

Motion control is different!
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Load Disturbance Attenuation

v

Controller Process

C P

−1

Σ Σ Σ
r e u

d

x

n

ycl

Load disturbances typically have low frequencies, low frequency

approximations are relevant. Transfer functions

Gyd =
P

1 + PC
= PS =

T

C
≈ 1

C
Gud =

PC

1 + PC
= T ≈ 1

For controller with integral action we have for small s

Gyd ≈ s/ki
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Load Disturbance Attenuation

Low frequencies

P

1 + PC
≈ 1

C
≈ s

ki

High frequencies

P

1 + PC
≈ P

Maximum error

emax ≈ P (0)

1 + kpP (0)

P = 2/(s + 1)4 PI: kp = 0.25, ki = 0.125
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P dashed, PI full
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Frequency Domain Criteria

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

ω

|G
y

d
(ω

)|

Approximations for different frequencies

Gyd ≈ s

ki
, |Gyd| ≤ Ms|P |, Gyd =

P

1 + PC
= PS ≈ P

Criteria: ωs ≈ K ki max |Gyd(iω)| ≈ KMs K = P (0)
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Time Domain Criteria

Error and control signals for unit step load disturbance at process input

0 5 10 15 20 25 30

0

1

2

0 5 10 15 20 25 30

-1

-0.5

0

t

u
y

Criteria: emax maximum error, tmax time when maximum occurs,

IAE ≈ IE = 1/ki
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Time Domain Criteria

Calculated control error for unit step disturbance.

Peak error

emax = max
0≤t<∞

|e(t)|, tmax = arg max |e(t)|.

Integral criteria

IE =

∫ ∞

0
e(t)dt, IAE =

∫ ∞

0
|e(t)|dt, ISE =

∫ ∞

0
e(t)2dt

QE =

∫ ∞

0
(e2(t) + ρu2(t))dt,
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Integral Error IE and Integral Gain ki

PID control or any controller with integral action

u(t) = ke(t) + ki

∫ t

0
e(t)dt − kd

dy

dt
.

Assume that the closed-loop system is stable. Apply a unit step load

disturbance at process input.

u(∞) − u(0) = ki

∫ ∞

0
e(t)dt.

The change in control signal is equal to the change of the disturbance,

u(∞) − u(0) = 1, hence

IE =

∫ ∞

0
e(t)dt =

1

ki
.

Integral gain ki is thus inversely proportional to the integrated error

caused by a unit step load disturbance applied to the process input.
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Approximations for PID Control

Response of y to load disturbance d is characterized by

P

1 + P C
≈ s

ki

, Ms, ωs

Response of u to measurement noise n is characterized by

C

1 + P C
= SC ≈ s

1 + Kki

ki + kps + kds2

s(1 + sTf + (sTf)2)
, K = P (0)

Robustness to process variations is characterized by

S =
1

1 + P C
, T =

P C

1 + P C
, Ms, Mt

Responses of y and u to reference signal r is characterized by

P CF

1 + P C
,

CF

1 + P C

Use setpoint weighting or feedforward
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Measurement Noise Injection

v

Controller Process

C P

−1

Σ Σ Σ
r e u

d

x

n

ycl

Measurement noise typically has high requencies (why). High

frequency approximations are relevant. Transfer functions

Gyn =
1

1 + PC
= S ≈ 1 −Gun =

C

1 + PC
= CS ≈ C

High frequency roll-off of C is very important
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Approximations of Gun for PID Control
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Blue lines true transfer function red lines approximations

−Gun(s) =
C

1 + PC
= −SC

≈ ki + kps + kds2

(s + Kki)(1 + sTf + (sTf )2/2)

K = P (0) 6= ∞
More details in PID lecture
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Requirements for Noise Injection

Difficult to obtain good information about noise spectrum

Control actions generated by the noise is the important factor

Captured by Gun = C
1+P C = SC ≈ C

High frequency roll-off of C (noise filter) is important

max |Gun(iω)|, ||Gun||2 =
∫ ∞

−∞ |Gun(iω)|2dω
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Process Uncertainty

Process dynamics may change

Feedback can deal with process variations

How to characterize uncertainty

Parameter variations, more general variations, unmodeled

dynamics

Main results (the usual suspects S and T )

Additive ∆, multiplicative δ and feedback uncertainty ∆fb

P Σ

∆

P Σ

δ

PΣ

∆fb
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When are Two Systems Close

For stable systems

δ(P1, P2) = max
ω

|P1(iω) − P2(iω)|

as a measure of of closeness of two processes.

Is this a good measure?

Are there other alternatives?

A long story

Gap metric (Zames)

Graph metric coprime factorization (Vidyasagar) G = N/D
Vinnicombe’s metric
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When are Two Systems Close?
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0

50

100
Open loop

t

y

0 0.1 0.2 0.3 0.4 0.5
-1

0

1

2

3
Closed loop

t

y

0 0.5 1 1.5 2
0

100

200

300

400

500
Open loop

t

y

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

Closed loop

t
y

Comparing step responses can be misleading!

Frequency responses are better

Better to compare closed loop responses
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Similar Open Loop Different Closed Loop

0 1 2 3 4 5
0

50

100
Open loop

t

y

0 0.1 0.2 0.3 0.4 0.5
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0

1

2

3
Closed loop

t

y

P1(s) =
100

s + 1
, P2(s) =

100

(s + 1)(1 + 0.025s)2

Complementary sensitivity functions with unit feedback C = 1

T1 =
100

s + 101
, T2 =

1.616e5

(s + 83.9)(s2 − 2.90s + 1926s + 1926)

Very different closed loop systems
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Different Open Loop Similar Closed Loop
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Systems and complementary sensitivity functions

P1(s) =
100

s + 1
, T1(s) =

100

s + 101
, P2(s) =

100

s − 1
, T2(s) =

100

s + 99

Closed loop systems are very similar
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The Graph Metric

We know how to compare stable systems. What to do with unstable

systems? Let

P (s) =
B(s)

A(s)

where A and B are polynomials. Choose a stable polynomial C
whose degree is not lower than the degrees of A and B, then

P (s) =

B(s)

C(s)

A(s)

C(s)

=
N(s)

D(s)

Compare the numerator and denominator transfer functions jointly.
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How to Choose D and N

Two rational functions D and N are called coprime if there exist

rational functions X and Y which satisfy the equation

XD + Y N = 1

The condition for coprimeness is essentially that D(s) and N(s) do

not have any common factors.

Let D∗(s) = D(−s). A factorization P = N/D such that

DD∗ + NN∗ = 1

is called a normalized coprime factorization of P .
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Robustness

Additive perturbations P → P + ∆P , ∆P stable

|∆P (iω)|
|P (iω)| <

|P (iω)C(iω)|
|1 + P (iω)C(iω)| =

1

|T (iω)|
For normalized Co-prime factor perturbations

P = N/D → (N + ∆N)(D + ∆D) this generalizes to

||(∆N(iω), ∆D(iω))|| <
1

γ(ω)

where sm =
1

maxω γ(ω)
is a generalized (sm = 1/Ms) stability margin

γ = σ̄

























1

1 + P (iω)C(iω)

P (iω)

1 + P (iω)C(iω)

P (iω)

1 + P (iω)C(iω)

P (iω)C(iω)

1 + P (iω)C(iω)

























=

√

(1 + |P (iω)|2)(1 + |C(iω)|2)

|1 + P (iω)C(iω)|
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Vinnicombe’s Metric

Consider two systems with the normalized coprime factorizations

P1 =
D1

N1
, P2 =

D2

N2

To compare the systems it must be required that

1

2π
∆ argΓ(N1N∗

2 + D1D∗
2) = 0

where Γ is the Nyquist contour. In the polynomial representation this

condition implies

1

2π
∆ argΓ(B1B∗

2 + A1A∗
2) = deg A2

The winding number constraint!
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Vinnicombe’s Metric

If the winding number constraint is satisfied Vinnicombe’s Metric can

be defined as

δν(P1, P2) = sup
ω

|P1(iω) − P2(iω)|
√

(1 + |P1(iω)|2)(1 + |P2(iω)|2)

Examples:

P1(s) =
100

s + 1
, P2(s) =

100

(s + 1)(1 + 0.025s)2
, δ(P1, P2) = 0.98

P1(s) =
100

s + 1
, P2(s) =

100

s − 1
, δ(P1, P2) = 0.02
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Feedback Interpretation

Consider systems with the transfer functions P1 and P2. Compare the

complementary sensitivity functions for the closed loop systems

obtained with a controller C that stabilizes both systems.

δ(P1, P2) =
∣

∣

∣

P1C

1 + P1C
− P2C

1 + P2C

∣

∣

∣ =
∣

∣

∣

(P1 − P2)C

(1 + P1C)(1 + P2C)

∣

∣

∣

We have

δ(P1, P2) ≤ Ms1Ms2|C(P1 − P2)|
It can be shown that δ is a good measure of closeness of processes.

More in lecture about H∞

Vinnicombes metric corresponds to C = 1, i.e. unit feedback.
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Geometric Interpretation
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Small Process Variations

T =
PC

1 + PC
,

dT

T
=

1

1 + PC

dP

P
= S

dP

P

S =
1

1 + PC
,

dS

S
=

−PC

1 + PC

dP

P
= −T

dP

P

Gyd =
P

1 + PC
,

dGyd

Gyd
= S

dP

P

Gun =
C

1 + PC
,

dGun

Gun
= −T

dP

P

Recall properties of S and T

S + T = 1

S small at low frequencies S ≈ 1 at high frequencies

T small at high frequencies T ≈ 1 at low frequencies
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Large Process Variations

ag replacements

1 + P C

A

B

C∆P

−1

Re PC

Im PC

|C∆P | < |1 + PC|,
∣

∣

∣

∆P

P

∣

∣

∣ <
∣

∣

∣

1 + PC

PC

∣

∣

∣ =
1

|T |

Large variations permitted when T is small

Small variations when T is large, Mt = max |T (iω)|
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Another View of Robustness

A feedback system where the process has multiplicative uncertainty,

i.e. P (1 + δ), where δ is the relative error, can be represented with the

following block diagrams

P

−C

Σ

δ δ

− P C
1+P C

The small gain theorem gives the stability condition

|δ| <
∣

∣

∣

1 + PC

PC

∣

∣

∣ =
1

|T |

Same result as obtained before!
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Robustness and Sensitivity

Gain margin

gm ≥ Ms

Ms − 1

Phase margin

ϕm ≥ 2 arcsin
1

2Ms

1/Ms ωms

ωs

−1

Constraints on both gain and phase margins can be replaced by

constraints on Ms.

Ms = 2 guarantees gm ≥ 2 and ϕm ≥ 30◦

Ms = 1.6 guarantees gm ≥ 2.7 and ϕm ≥ 36◦

Ms = 1.4 guarantees gm ≥ 3.5 and ϕm ≥ 42◦

Ms = 1 guarantees gm = ∞ and ϕm ≥ 60◦
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Stability Margins

Re PC(iω)

Im PC(iω)

PC(iω)

−1

ϕm

1/Ms

−1/gm Re PC(iω)

Im PC(iω)

Necessary to specify both gm and ϕm

Not sufficient to specify both gm and ϕm (right figure)

Ms can replace ϕm and gm

ϕm and gm are widely used in industry difficulties when the

Nyquist curve has warts
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Delay Margin
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0

ω

|P
C

(i
ω

)|
∠

P
C

(i
ω

)
Time delay required to make the system unstable

Peaks in the loop transfer function PC are dangerous

They are often caused by resonances

P (s) =
100

s(0.5s + 1)2(s2 + 0.004s + 100)
, C(s) =

0.25

s
, L = 0.3
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Summary

Necessary with a broad view: large and small signals, dynamics

Limits on control signals and their rate

Fundamental limitations: time delays and RHP poles and zeros

Consider adding or shifting sensors

Requirements: performance and robustness

Load disturbance attenuation

Measurement noise injection

Command signal following

Robustness

The closed loop system is characterized by a collection of

transfer functions:

Error feedback Gang of Four: S, T , P C, CS
System with 2DOF: FS, T F , CSF

Requirements are based on properties of these transfer functions

Bode plots, time responses or their features
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Properties of the Sensitivity Function

Can the sensitivity be small for all frequencies?

No we have S(∞) = 1!

Can we have |S(iω)| ≤ 1?

If the Nyquist curve of L = P C is in the first and fourth quadrant!

Passive systems!

Bode’s integral, pk RHP poles of L(s)

∫ ∞

0
log |S(iω)|dω = π

∑

Re pk − π

2
lim

s→∞
sL(s)

The ”water-bed effect”. Push the curve down at one frequency

and it pops up at another!

Time delays, poles and zeros in the RHP limit performance

Useful to let the loop transfer function go to zero rapidly for high

frequencies (high-frequency roll-off)
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Testing Requirements

er u yv

v n

x

Controller Process

ΣΣ

Σ

ΣΣF (s) C(s) P (s)

−1

w1

w2

s11 s12

s21s22

S Change w1 measure s12 or change w2 measure s22

T Change w1 measure s11 or change w2 measure s21

Gyv Change w1 measure s21

Gun Change w2 measure s11

T F Change ysp measure s21

SFC Change ysp measure s11

Bo Bernhardsson and Karl Johan Åström Requirements



Transfer functions and Parameters

Requirement Transfer functions Parameters

General assessment P, Pnmp, PC, S ωgc, ωsc, ngc, Tar

Robustness S, T, PC Ms, Mt, gm, ϕm,δm

Load disturbances S, Gyd, Gud Ms, IE, IAE, emax, temax

Measurement noise Gun, Gyn ||Gun||∞, ||Gun||2

Command signal Gyr, Gur, T Trise, Tsettling, o, ωB , ev
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