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Introduction

A simple idea

Strong impact on development of control theory

The only constraint is reachability and observability

The robustness debate
Classic control vs State feedback

Easy to apply for simple systems

Polynomial equations notoriously badly conditioned: zn = 0

OK for low order systems, use matrix formulation for high order
systems

How to choose closed loop poles - The Million $ question
How do the closed loop poles influence performance
How do the closed loop poles influence robustness
A bit of history - Mats Lilja’s PhD thesis TFRT 1031 (1989)
Insight into model reduction
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Control of First Order Systems

State: variables required to characterize storage of mass,
momentum and energy

Many systems are approximately of first order

The key is that the storage of mass, momentum and energy can
be captured by one parameter

Examples
Velocity of car on the road
Control of velocity of rotating system
Electric systems where energy storage is essentially in one
capacitor or one inductor
Incompressible fluid flow in a pipe
Level control of a tank
Pressure control in gas tank
Temperature in a body with essentially uniform temperature
distribution (e.g. steam filled vessel)
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PI Control of First Order Systems

Process, controller and loop- transfer function

P (s) =
b

s + a
, Cfb(s) = kp +

ki

s
, Cff = βkp +

ki

s

Closed loop transfer functions with error feedback

Gyr(s) =
PC

1 + PC
=

b(kps + ki)

s2 + (a + bkp)s + bki

Gyd(s) =
P

1 + PC
=

bs

s2 + (a + bkp)s + bki

Controller with set point weighting

Gyr(s) =
PC

1 + PC
=

b(βkps + ki)

s2 + (a + bkp)s + bki

Poles chosen by controller gains kp, ki, zero by set-point weight β
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Block Diagram Representations

Error feedback. Controller gives the zero −ki/kp in Gyr(s)

kp + ki/s PΣ
r e u y

−1

Controller with two degrees of freedom with β = 0. Controller
generates no zeros in Gyr(s).

ki/s

kp

PΣΣ
r e u y

−1
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Gang of Seven

Transfer function of Gang of Four

S =
s(s + a)

s2 + (a + bkp)s + bki
, PS =

bs

s2 + (a + bkp)s + bki

CS =
(kps + ki)(s + a)

s2 + (a + bkp)s + bki
, T =

b(kps + ki)

s2 + (a + bkp)s + bki

Transfer functions from command signal

Gyr(s) =
b(βkps + ki)

s2 + (a + bkp)s + bki

Gur(s) =
(βkps + ki)(s + a)

s2 + (a + bkp)s + bki

Ger(s) =
s(s + a + (1 − β)bkp)

s2 + (a + bkp)s + bki
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Second Order Systems

Two states because storage of mass, momentum and energy can
be captured by two parameter

Examples
Position of car on the road
Control of angle of rotating system
Stabilization of satellites
Electric systems where energy is stored in two elements
(inductors or capacitors)
Levels in two connected tanks
Pressure in two connected vessels
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PD Control of Second Order System

Process and controller transfer functions

P (s) =
b

s2 + a1s + a2
, C(s) = kp + kds

Closed loop transfer function from reference to output

Gyr(s) =
PC

1 + PC
=

b(kds + kp)

s2 + (a1 + bkd)s + a2 + bkp

Closed loop system of second order, controller has two parameters.
All closed loop poles can be chosen, but no integral action. With
setpoint weighting

Gyr(s) =
PC

1 + PC
=

b(γkds + kp)

s2 + (a1 + bkd)s + a2 + bkp
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PI Control of Second Order Systems

Process and controller transfer functions

P (s) =
b1s + b2

s2 + a1s + a2
, C(s) = kp +

ki

s

Closed loop transfer function from reference r to output y

Gyr(s) =
PC

1 + PC
=

(kps + ki)(b1s + b2)

s3 + (a1 + b1kp)s2 + (a2 + b1ki + b2kp)s + b2ki

Closed loop system of third order, controller has only two parameters.
Not enough degrees of freedom. A more complex controller is required
to choose closed loop characteristic polynomial.
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PID Control of Second Order System

Process and controller transfer functions

P (s) =
b1s + b2

s2 + a1s + a2
, C(s) = kp +

ki

s
+ kds

Closed loop transfer function from reference r to output y

Gyr(s) =
(b1s + b2)(kds2 + kps + ki)

(1 + b1kd)s3 + (a1 + b1kp + b2kd)s2 + (a2 + b1ki + b2kp)s + b2ki

All closed loop poles can be chosen arbitrarily; with setpoint weighting

Gyr(s) =
(b1s + b2)(γkds2 + βkps + ki)

(1 + b1kd)s3 + (a1 + b1kp + b2kd)s2 + (a2 + b1ki + b2kp)s + b2ki

some zeros of Gyr can also be chosen arbitrarily weighting, but
process zero remains.
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Polynomial Design

Process and controller

dp(s)Y (s) = np(s)U(s), dc(s)U(s) = ncff (s)R(s)−nc(s)Y (s)

Closed loop transfer function

Gyr(s) =
np(s)ncff (s)

dp(s)dc(s) + np(s)nc(s)
=

np(s)ncff (s)

dcl(s)

Determine dc(s) and nc(s) to give the desired closed loop polynomial
dcl(s). The zeros can be partially influenced through ncff(s).

Parameter count

deg dc + deg nc + 1 = deg dcl

Introduce unknown coefficients and solve linear equation
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The Diophantine Equation

The equation
3x + 2y = 1,

where x and y are integers, has the solution: x = 1 and y = −1.
Many other solutions can be obtained by adding 2 to x and subtracting
3 from y.

The equation
6x + 4y = 1,

cannot have a solution, because the left hand side is even and the
right hand side is odd.

The equation
6x + 4y = 2,

has a solution, because we can divide by 2 and obtain the first
equation.
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Main Result

Let a, b, c, x and y be integers, the equation

ax + by = c

has a solution if and only if the greatest common factor of a and b
divides c. If the equation has a solution x0 and y0 then x = x0 − bn
and y = y0 + an, where n is an arbitrary integer, is also a solution.

Integers and polynomials same algebra, add, subtract, divide with
remainder (size replaced by degree)

Euclid’s algorithm holds for polynomials (the same algebra add &
mult!)
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Proof - Euclid’s Algorithm

Assume that the degree of a is greater than or equal to the degree of
b. Let a0 = a and b0 = b. Iterate the equations

an+1 = bn, bn+1 = an mod bn

until bn+1 = 0. The greatest common divisor is then g = bn. If a and b
are co-prime we have bn = 1. Back-tracking we find that

ax + by = bn = g

where the polynomials x and y can be found by keeping track of the
quotients and the remainders in the iterations. When a and b are
co-prime (g = 1) we get

ax + by = 1

Multiplying x and y by c gives the original equation ax + by = c.
When a and b have a common factor the largest common divisor of a
and b must be a factor of c.
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An Algorithm

Let g be the greatest common divisor of a and b and let u and v be the
minimal degree solutions to ax + by = 0.











x y
u v





















a 1 0
b 0 1











=











g x y
0 u v











Make row transformations to transform (Gaussian elimination)

A(0) =











a 1 0
b 0 1











to A(n) =











g x y
0 u v











It follows from Euclid’s algorithm that g = A
(n)
11 is the largest common

divisor of a and b, and that a and b are co-prime if and only if

A
(n)
11 = 1. The equation

ax + by = c

has a solution if A
(n)
11 is a factor of c.
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Non-uniqueness I

Closed loop characteristic polynomial

dpdc + npnc = dcl, C = nc/dc

If dc0, nc0 is a solution then so is dc0 − qnp, nc0 + qdp, where q is an
arbitrary polynomial. Many different choices:

Minimal numerator degree deg nc < deg dp, generically
deg dc = deg nc = deg dp − 1, deg dcl = 2 deg dp − 1
(Luenberger observer)
deg dc = deg dp, deg nc = deg dp − 1, deg dcl = 2 deg dp

(Kalman filter)
Minimal denominator degree deg dc ≤ deg np (controller has
excess of zeros, derivative action). Generically

deg dc = deg np − 1, deg nc = deg dp − 1, deg dcl =
deg dp + deg np − 1
deg np = 0, dc = 1, deg nc = deg dp − 1, deg dcl = deg dp

Integral action: Add s as an extra factor of dp(s) solve for dc and
nc and the controller is then C = nc(s)/(sdc(s)).
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Non-uniqueness II

Process and controller transfer functions

P (s) =
np(s)

dp(s)
, C(s) =

nc(s)

dc(s)

Closed loop characteristic equation

dp(s)dc(s) + np(s)nc(s) = dcl(s)

If C0 = nc0(s)/dc0(s) is a controller that gives the closed loop
characteristic polynomial dcl(s) then the controller

C(s) =
nc0(s) + q(s)dp(s)

dc0(s) − q(s)np(s)

where q(s) is an arbitrary polynomial also gives char. pol dcl(s).

dp(s)
(

dc00(s) − q(s)np(s)
)

+ np(s)
(

nc0 + q(s)dp(s)
)

=

dp(s)dc0(s) + np(s)nc0(s) = dcl(s)
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Youla-Kucera Parametrization I

Consider a process with a stable transfer function P . Let the desired
transfer function from reference to output be T . Let the requirement
be realized by feedforward with the transfer function Q, where
T = PQ. Since Q must be stable, T and P should have the same
zeros in the right half plane. The transfer function T can also be
obtained by error feedback with the controller

C =
Q

1 − PQ

For any stable Q, GoF is linear in Q:

T = PQ, S = 1 − T = 1 − PQ

PS = P (1 − PQ), CS = Q

Q

Σ

Σ

v

−1

−P

P

All stabilizing controllers C can be represented by some such Q.
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Youla-Kučera Parametrization II

Process transfer function P = B/A, where A and B are stable
co-prime rational functions. Assume that the controller C0 = G0/F0

stabilizes P . All stabilizing controllers are given by

C =
G0 + QA

F0 − QB

Q is an arbitrary stable rational transfer function. GoF:

S =
A(F0 − QB)

AF0 + BG0
, PS =

B(F0 − QB)

AF0 + BG0

CS =
A(G0 + QA)

AF0 + BG0
, T =

B(G0 + QA)

AF0 + BG0

The system is stable since the rational function AF0 + BG0 has all its
zeros in the left half plane and A, B, F0, G0 and Q are stable rational
functions.
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Block Diagram Interpretation

Controller

C =
G0 + QA

F0 − QB
, F0U = −G0Y + Q(BU − AY )

v

−G0 F −1

0 P

Q −AB

Σ

Σ

Notice that the input to Q is nominally zero
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Where to Place the Poles - Standard Forms

Butterworth configurations

G(s) =
ω2

0

s2 + 1.414ω0s + ω2

0

, G(s) =
ω3

0

s3 + 2ω0s2 + 2ω2

0
s + ω3

0

G1(s) =
anωn

0

sn + a1ω0sn−1 + a2ω2

0
sn−2 + · · · + anωn

0

G2(s) =
an−1ωn−1

0
s + anωn

0

sn + a1ω0sn−1 + a2ω2

0
sn−2 + · · · + anωn

0

G1 zero step error min ITAE, G2 zero ramp error min ITAE

G1(s) G2(s)

n a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

1 1 1
2 1.505 1 3.2 1
3 1.783 2.721 1 1.75 3.25 1
4 1.953 3.247 2.648 1 2.41 4.93 5.14 1
5 2.068 4.499 4.675 3.252 1 2.19 6.50 6.30 5.24 1

http://www.mathworks.com/matlabcentral/fileexchange/18547-the-optimal-itae-
transfer-function-for-step-input/content/itae/html/itaeoptimtf.htmlBo Bernharsson and Karl Johan Åström Pole Placement Design



Summary - Pole Placement

Simple useful method easy to use for low order systems

The only requirement is that there are no common zeros in the
numerator and denominator polynomials of the process transfer
function, or equivalently that the system is reachable and
observable.

There are multivariable extensions based on matrix polynomials

BUT polynomial computations are numerically poorly conditioned
for high order systems

sn = ǫ, s = ǫ1/n, n = 10, ǫ = 10−8, ǫ1/n = 0.16

State space approach gives more reliable computations and
other insights
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To Add

Integral action

Interpretation 1: dynamics of a controller arises from the observer

Nice interpretation of closed loop characteristic polynomial
det(sI − A + BL) × det(sI − A + KC)

Emphasize different 2DOF architectures

Can we separate a given polynomial?

How to apply the design rules - where should cancellation take
part L or K?
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Combining State Feedback with an Observer

Consider a system which is assumed to be observable and reachable

dx

dt
= Ax + Bu, y = Cx

Determine the state with an observer and use state feedback from the
observed state. This gives the controller

dx̂

dt
= Ax̂ + Bu + K(y − Cx̂)

u = −Lx̂ + Lrr

The controller is a dynamical system whose dynamics is represented
by the observer dynamics (the internal model principle). Controller
complexity is given by model complexity.
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Architecture of Basic Controller

r u yxẋ

x̂

−ŷ

B

B

Σ

Σ

Σ

Σ

∫

∫

A

A

C

−C

K

−L

Lr

Process

Observer

The controller contains a model of the process and its environment
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The Closed Loop System 1

Process
dx

dt
= Ax + Bu, y = Cx.

Controller

dx̂

dt
= Ax̂ + Bu + K(y − Cx̂), u = −Lx̂ + Lrr.

Introduce the state x̃ = x − x̂ instead of x̂.

dx

dt
= Ax + Bu = Ax − BLx̂ + Blrr

= (A − BL)x + BLx̃ + Blrr

dx̃

dt
= (A − KC)x̃

If the system is observable the observer can be designed so that the
observer error x̃ goes to zero as fast as desired. The system behaves
like a system with state feedback when x̃ = 0
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Closed Loop System 2

The closed loop system

d

dt











x
x̃











=











A − BL BL
0 A − KC





















x
x̃











+











Blr
0











r

y =


C 0




Observe

Block triangular structure of dynamics matrix

Closed loop eigenvalues are eigenvalues of A − BL and
A − KC

State feedback gain L and observer gain K can be designed
independently

The state x̃ is not reachable from the reference. Intuitively:
changes in the reference should not generate observer errors!
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More Flexible Architecture with Full 2DOF

Model and
Feedforward
Generator

r

u

-x̂

xm

ProcessΣ Σ
State

Feedback

Observer

uff

ufb y

A nice two degree-of-freedom (2DOF) structure which decouples
response to disturbances (handled by state feedback and observer)
from response to reference signals (handled by reference model and
feedforward)

There are many ways to generate the signals xm and uff
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Robustness

Intuitively we may expect that well-damped closed loop poles
would guarantee robustness

Unfortunately this is not true!!!

Always necessary to check robustness if it is not part of design
process

Always check requirements that are not explicit requirements in
the design procedure, particularly if you optimize

Looking at the Gang of Four is a good idea

A long forgotten problem (Mats Lilja’s PhD #31 1989)

Two examples that give insight

Two simple design rules for placing poles properly
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Example 1

Consider a first order system with PI control

P (s) =
b

s + a
=

1

s + 1
, C(s) = kp +

ki

s

where the controller parameters are chosen to give a closed loop
system with the characteristic polynomial s2 + ω0s + ω2

0 .

Characteristic polynomial

s(s + a) + b(kps + ki) = s2 + ω0s + ω2
0

Controller parameters

kp =
ω0 − a

b
= ω0 − 1, ki =

ω2
0

b
= ω2

0

What is special about ω0 = 1? What does it mean that kp is negative?
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Nyquist Plot ω0/a = 0.1 (red), 1 and 10 (blue)
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Gang of Four ω0/a = 0.1 (red), 1 and 10 (blue)
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Looks OK for ω0/a = 1 and 10 BUT not for ω0 = 0.1 (red curves)
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Reflections

We have made what looks like a perfectly reasonable pole
placement design with nicely damped closed loop poles ζ0 = 0.5.

The results look good for ω0/a = 1 and 10

The design for ω0/a = 0.1 have very high sensitivities Ms = 9.4
and Mt = 10

It is apparently important where we place the poles

Can we understand what goes on and fix it?
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The Sensitivity Function

We have for a = 1 and ω0 = 0.1, Ms ≈ 0.1

0.011
= 9 (9.4)

S =
(s + a)s

s2 + ω0s + ω2
0

=
(s + 1)s

s2 + 0.1s + 0.01
=

dp(s)dc(s)

dp(s)dc(s) + np(s)nc(s)

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

ω

|S
(i

ω
)|

What creates the peak? Start from high frequencies.
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Generalization

Transfer functions of process and controller

P (s) =
np(s)

dp(s)
, C(s) =

nc(s)

dc(s)
,

Sensitivity functions

S(s) =
1

1 + PC
=

dp(s)dc(s)

dp(s)dc(s) + np(s)nc(s)

At high frequencies we have S ≈ 1. As the frequency decreases there
will be a break-point at the process poles (zeros of dp. To avoid having
high sensitivities high frequency process poles must be matched by
corresponding closed loop poles. In the example there was a process
pole at s = 1 but the closed loop poles were at 0.1.
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Complementary Sensitivity Function

We have for a = 1 and ω0 = 0.1

T =
(ω0 − 1)s + ω2

0

s2 + ω0s + ω2
0

=
−0.9s + 0.01

s2 + 0.1s + 0.01
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)

Notice slow zero in the controller!!

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

ω

|T
(i

ω
)|

We have approximately Mt ≈ 0.1

0.01
= 10 (10.04)
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Example 2

Consider the process and controller

P (s) =
b1s + b2

s2
, C(s) =

g0s + g1

s2 + f1s + f2

Desired closed loop characteristic polynomial

dcl(s) = (s2 + 2ζcωcs + ω2

c )(s2 + 2ζoωos + ω2

o)

We have

s2(s2 + f1s + f2) + (b1s + b2)(g0s + g1) = c(s)

Identification of coefficients of equal powers of s gives

f1 = 2(ζoωo + ζcωc)

f2 = ω2

o + ω2

c + 4ζ0ζcωoωc − b1g0

g0 =
2b2(ζoωc + ζcωo)ωoωc − b1ω2

0
ω2

c

b2

2

g1 = ω2

0
ω2

c /b2
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Another Simple Pole Placement Problem ...

With b1 = 0.5, b2 = 1, ωc = 10, ζc = 0.707, ωo = 20 and ζo = 0.707
we get

C(s) =
−11516s + 40000

s2 + 42.4s + 6658
.

10
−3

10
−1

10
1

10
3

10
−1

10
0

10
1

10
2

10
3

−360

−270

−180

|L
(i

ω
)|

∠
L

(i
ω

)

Frequency ω [rad/s]

Extremely poor robustness Ms = 13 and Mt = 12
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Complementary Sensitivity Function

P (s) =
0.5s + 1

s2
, C(s) =

−11516s + 40000

s2 + 42.4s + 6658

Notice slow zero in the controller!!

10
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10
0

10
1

10
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10
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10
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10
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10
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|T
(i

ω
)|
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Generalization

Transfer functions of process and controller

P (s) =
np(s)

dp(s)
, C(s) =

nc(s)

dc(s)
,

Sensitivity functions

T (s) =
PC

1 + PC
=

np(s)nc(s)

dp(s)dc(s) + np(s)nc(s)

At low frequencies we have T ≈ 1. As the frequency increases there
will be breakpoints at the process zeros of (zeros of np). To avoid
having high sensitivities low frequency process zeros must be
matched by corresponding closed loop poles. In the example there
was a process zero at s = 0.5 but the slowest closed loop poles were
at s = 10, hence a peak of ≈ 10.
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Design Rules

Formally only reachability and observability are required

To obtain robust closed loop systems the poles and zeros of the
process must be taken into account. Design rule.

Choose bandwidth ωb or dominating closed loop poles: classify
poles and zeros as slow < ωb or fast > ωb

Slow unstable zeros (time delays) and fast unstable poles restrict
the choice of closed loop bandwidth ωb

Design rule: Pick closed loop poles close to slow stable process

zeros and fast stable process poles. Picking closed loop poles
and zeros identical to slow stable zeros and fast stable poles give
cancellations and simple calculations.

Violating the design rule leads to closed loop systems that are
not robust.
Unstable poles and zeros cannot be canceled, slow unstable
zeros and fast unstable poles therefore give fundamental
limitations.

Bo Bernharsson and Karl Johan Åström Pole Placement Design



Pole Placement Design

1 Introduction

2 Simple Examples

3 Polynomial Design

4 State Space Design

5 Robustness and Design Rules

6 Model Reduction

7 Oscillatory Systems

8 Summary

Theme: Be aware where you place them!

Bo Bernharsson and Karl Johan Åström Pole Placement Design



Model Reduction - Fast Stable Poles

Neglect fast modes in the model, explore a simple case

P (s) =
a

s + a
≈ 1

Reduced order model is a static system, I controller sufficient

C(s) =
ki

s

Choose ki to give the closed loop pole a0, hence ki = a0, closed loop
characteristic polynomial with true plant model

s(s + a) + aa0 = 0

s = −a0 − a2
0

a
− . . . , s = −a + a0 +

a2
0

a
− . . .

Simple rule: neglect stable poles that are an order of magnitude
larger than a0

Notice a closed loop pole close to neglected pole a
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Model Reduction - Slow Zeros

For large ω0 we can approximate the process model by neglecting
slow zeros

P (s) =
s + a

s2
≈ 1

s

Use a PI controller kp = 2ζω0, ki = ω2
0.

Closed loop characteristic polynomial with true model

s3 + (s + a)(kps + ki) = s(s2 + kps + ki) + a(kps + ki) = 0

For small a roots close to s2 + kps + ki = 0

For small s roots close to s + a = 0

Simple rule: neglect stable zeros that an order of magnitude
smaller than ω0
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Design Rules

Simple models are useful

How to approximate?

Start with desired bandwidth ωbw which is of the order of
ωms, ωmt, ωgc

Neglect process poles and zeros that are an order of magnitude
faster than ωbw unless they are highly oscillatory.

Neglect process zeros that are an order of magnitude slower than
ωbw, approximate slow poles by integrators.

Cancel fast process poles and slow process zeros that cannot be
neglected. Make the design based on the simplified model, add
the canceled factors to the controller after the design. Add high
frequency roll-off if necessary.
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An Example

Consider

P (s) =
Kp(1 + sT4)(1 + sT5)

(1 + sT1)(1 + sT2)(1 + sT3)
e−sL

where T1 is significantly larger than L and the other time constants.

For controller with very low performance, settling times slower than T1,
approximate the process by its gain and use an integrating controller.

For slightly higher performance approximate by

P (s) ≈ Kp

1 + s(T1 + Te)
e−sTe or P (s) ≈ Kp(1 − sTe)

(1 + sT1)(1 + sTe)

where Te = (T2 + T3 + L − T4 − T5)/2 and Te > 0
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Oscillatory Systems

Truxal 1961: The design of feedback systems to effect satisfactorily
the control of very lightly damped physical systems is perhaps the
most basic of the difficult control problems.

A simple prototype problem

P (s) =
ω2

0

s2 + 2ζ0ω0s + ω2
0

with very low damping ζ = 0.01 (Q = 50)

Integral (I) control

PI control

PID Control - Notch-filter design

PID Control - Active damping of oscillatory modes

Systems with many resonances
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Integrating (I) Control

Any stable system with P (0) 6= 0 can be controlled by an integrating

controller provided that requirements are modest. Approximate the
process transfer function by neglecting the oscillatory mode

P (s) =
ω2

0

s2 + 2ζ0ω0s + ω2
0

≈ 1

With pure integral control we have

C(s) =
ki

s
, L(s) =

kiω
2
0

s(s2 + 2ζ0ω0s + ω2
0)

≈ ki

s

Requirements on the gain margin limits integral gain ki = ωgc

gm = − 1

L(i ω0)
=

2ζ0ω0

ki
, ki =

2ζ0ω0

gm
, ωgc =

ω0

Qgm
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I Control

Any stable system with P (0) 6= 0 can be controlled by an integrating
controller provided that requirements are modest.

L(s) =
kiω

2
0

s(s2 + 2ζ0ω0s + ω2
0)

, ki =
2ζ0ω0

gm

Numerical values: ζ0 = 0.01, gm = 2.5 (⇒ Ms ≈ 1.7) gives ki = 0.008ω0
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Gang of Four for Integral Control
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Good robustness Ms = 1.7, Mt = 1

low bandwidth ωgc = 0.008ω0

extra sensitive to load disturbances at resonance frequency
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I Control with Roll-off

Controller transfer function with high-frequency roll-off

C(s) =
ki

s(1 + sTf + s2T 2
f /2)

Loop transfer function and low frequency approximation

L(s) =
kiω

2
0

s(s2T 2
f /2 + sTf + 1)(s2 + 2ζ0ω0s + ω2

0)

≈ ki

s
(1 − sTf − s

2ζ0

ω0
) ≈ ki

s
− kiTf

Choosing Tf = 0.5/ki gives a Nyquist curve that is close to the
robustness valley (Re L(iω) = −0.5) for small s, adjust ki to be as
large as possible without sacrificing robustness, ki = 0.1ω0 an order
of magnitude larger than without a filter (ki = 0.008ω0).
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I Control with Roll-off ... Nyquist Plot
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The filter shifts the red circle to a safer region (2nd order filter
important!)
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I Control with Roll-off ...
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I Control: ki = 0.008 ω0 (red)

I Control: with filter: ki = 0.1 ω0 (blue)

The filter gives a significant improvement at least 10X
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Summary of I Control

Gain crossover frequency is limited to

ki = ωgc <
2ζ0ω0

gm
= 0.008 ω0

Proportional action does not give any improvements

Roll-off filter helps to increase ki significantly to 0.1ω0

Notice bending of the loop to a safer region

High resonant peak in PS remains

Controller noise gains CS moderate
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PID Control - Notch filter design

The resonant poles must be considered in order to increase the
bandwidth. If the bandwidth is less than ω0 we must choose closed
loop poles that are close to the process poles. A simple way to do this
is to cancel the fast process poles by controller zeros. Controller
(C(s)) and the loop transfer function (L(s)) become

C(s) = ki
s2 + 2ζ0ω0s + ω2

0

ω2
0s

=
kds2 + kps + ki

s
, L(s) =

ki

s

Add high frequency roll-off

C(s) =
ki(s

2 + 2ζ0ω0s + ω2
0)

ω2
0s(1 + sTf + s2T 2

f /2)
, L(s) =

ki

s(1 + sTf + s2T 2
f /2)

Relate Tf to gain crossover frequency ωgc ≈ ki, Tf ki = 0.5
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Gang of Four for PID Notch Filter Control
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ki = 0.5ω0, Tf = 0.5/ki, Ms = 1.6, Mt = 1 (robustness valley!)
Without filter red, with filter blue

High peak in response to load disturbances.
High frequency roll-off important
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Parameter Variations 1% for ki = 0.2 ω0
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Parameter Variations 1% for ki = ω0
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Nyquist Plots for ki = 0.2 ω0 and ki = ω0
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ω0 = 0.99, ki = 0.2 ω0 = 1.00, ki = 0.2 ω0 = 1.01, ki = 0.2

ω0 = 0.99, ki = 1.0 ω0 = 1.00, ki = 1.0 ω0 = 1.01, ki = 1.0

Underestimating ω0 better than overestimating (ωdesign = 1.00)
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Summary of Notch-filter Design

Bandwidth can be increased significantly compared to I-Control

Maximum sensitivities are OK.

Small parameter variations give moderate changes for designs
with ωb = ki = 0.2ω0 but very high sensitivities for designs with
ki = ω0.

High sensitivity to small time delay variations for designs with
ki = ω0.

Still very sensitive to disturbances with energy at the resonance
frequency, which are not attenuated by the feedback loop.
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Active Damping of Resonant Mode

A PID controller is sufficient. The loop transfer function is

L(s) =
(kds2 + kps + ki)ω

2
0

s(s2 + 2ζ0ω0s + ω2
0)

.

Closed loop characteristic polynomial

s3 + (kdω2
0 + 2ζ0ω0)s2 + (kp + 1)ω2

0s + kiω
2
0.

A general third order polynomial can be parameterized as

(s + αcωc)(s
2 + 2ζcωcs + ω2

c )

= s3 + (αc + 2ζc)ωcs
2 + (1 + 2αcζc)ω

2
c s + αcω

3
c .

Identification of coefficients of equal powers of s give

kd =
(αc + 2ζc)ωc − 2ζ0ω0

ω2
0

, kp =
(1 + 2αcζc)ω

2
c

ω2
0

−1, ki =
αcω

3
c

ω2
0
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The Controller

Add high frequency roll-off

C(s) =
kds2 + kps + ki

s(1 + sTf + s2T 2
f /2)

Parameters:

kd =
(αc + 2ζc)ωc − 2ζ0ω0

ω2
0

kp =
(1 + 2αcζc)ω

2
c

ω2
0

− 1

ki =
αcω

3
c

ω2
0

Tf =
Td

10
=

kd

10kp
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Changing Integral Gain ki = 0.27ω0, ω0, 8 ω0
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ki = 0.27ω0 (dash-dotted), ki = ω0 (dashed) and ki = 8ω0, (full).
Notice dramatic increase of bandwidth and controller HF gain and bandwidth!

Bandwidth increased while maintaining robustness Ms = 1.7, Mt = 1.6.
But we have to look at parametric uncertainty too!
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Admissible High Frequency Controller Gain

To estimate allowable high frequency gains we must consider

High frequency measurement noise

Range of control signal

Bandwidth of sensors and actuators

Model accuracy

Robustness
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Robustness to Parameter Variations
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Closed Loop Poles I and Ifilt
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Closed Loop Poles Notch and Damp
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Posicast Control

A scheme for command signal control of oscillatory systems

Proposed by Otto Smith who also invented the Smith predictor

The idea: move a hanging load from one position to another
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Time Response and Transfer Function

Transfer function inter-
pretation

G(s) =
1

2

(

1 + e−sTp/2)

Notice that G(iω) = 0
for ωTp = 2π + 4nπ

0 2 4 6 8 10
0
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1
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2

0 2 4 6 8 10
0
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1

Time t
u

y

Posicast controller is an efficient notch filter

Can be modified to handle damped oscillations

Application to MEMS drives
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I Control with I Posicast Notch with Filter

Controller transfer function

C(s) =
ki

s

(

γ + (1 − γ)e−sTd
)

γ =
(

1 + e−ζ0π/
√

1−ζ2

0

)

−1
, Td =

π

ω0

√

1 − ζ2
0

Loop transfer function

L(s) =
ki

(

γ + (1 − γ)e−sTd
)

ω2
0

s(s2 + 2ζ0ω0s + ω2
0)

.

Series expansion for small s

L(s) ≈ ki

s

(

1 − (1 − γ)Tds − 2ζ0s

ω0

)

=
ki

s
− ki

(1 − γ)π

ω0

√

1 − ζ2

0

− 2ζ0ki

ω0

Pick ki is so that Re L(iω) = −0.5 for small s,

ki = 0.5
ω0

√

1 − ζ2

0

(1 − γ)π + 2ζ0

√

1 − ζ2

0

.
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Bode and Nyquist Plots
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Integral gain ki = 0.32 ω0, bandwidth ωB = 0.63 ω0 maximum
sensitivities: Ms = 1.53, Mt = 1.00, Mps = 50.0, Mcs = 1.00.
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Gang of Four
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Integral gain ki = 0.32 ω0, bandwidth ωB = 0.63 ω0 maximum
sensitivities: Ms = 1.53, Mt = 1.00, Mps = 50.0, Mcs = 1.00
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Summary

I control: ki ≤ 2ζ0ω0/gm (ki = 0.008 ω0), high sensitivity for
disturbances at resonance frequency

I control with filter: ki = 0.1 ω0, high sensitivity for disturbances
at resonance frequency

I control with posicast notch ki = 0.32 ω0, high sensitivity to
disturbance at resonance frequency

PI: Proportional action gives no improvement

PID Notch with roll-off: ki = 0.8 ω0 high sensitivity for
disturbances at resonance frequency, high sensitivity to variations
in resonance frequency

PID with active damping and roll-off: ki = 8 ω0, sensitivity for
disturbances at resonance frequency reduced, requires high gain
of controller at high frequencies Mcs = 100, and a wide band
controller ωccs = 200 ω0

Bo Bernharsson and Karl Johan Åström Pole Placement Design



Pole Placement Design

1 Introduction

2 Simple Examples

3 Polynomial Design

4 State Space Design

5 Robustness and Design Rules

6 Model Reduction

7 Oscillatory Systems

8 Summary

Theme: Be aware where you place them!

Bo Bernharsson and Karl Johan Åström Pole Placement Design



Summary

Simple design method for SISO systems

Probably quickest way to introduce design

Most importantly we get insight and design rules

Insights through Euclid’s algorithm and Youla parametrization

Polynomials are bad numerically, matrix calculations much more
robust

There are multivariable versions but they are complicated
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Reading Suggestions

Åström Murray Feedback Systems - An Introduction for Scientists and
Engineers, Princeton 2008 (also on Richards home page). GoF Ch 11.
Use index for other things.

Åström Hägglund. Advanced PID control - Second edition has full
chapter on oscillatory systems - drafts available
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