Subdifferential Properties

Pontus Giselsson

Today's lecture

- last lecture: properties of monotone operators
- today: properties of subdifferential operators

Monotonicity

- we know that the subdifferential operator is monotone, i.e.,

$$
\left\langle s_{1}-s_{2}, x_{1}-x_{2}\right\rangle \geq 0
$$

for all $\left(s_{1}, x_{1}\right),\left(s_{2}, x_{2}\right) \in \operatorname{gph} \partial f$

- proof: add subdifferential definitions

$$
\begin{aligned}
& f\left(x_{2}\right) \geq f\left(x_{1}\right)+\left\langle s_{1}, x_{2}-x_{1}\right\rangle \\
& f\left(x_{1}\right) \geq f\left(x_{2}\right)+\left\langle s_{2}, x_{1}-x_{2}\right\rangle
\end{aligned}
$$

- (note: does not require convexity of f)

Maximal monotonicity

- ∂f is maximally monotone if no $(\bar{x}, \bar{s}) \notin$ gph ∂f exists such that

$$
\langle\bar{s}-s, \bar{x}-x\rangle \geq 0
$$

for all $(x, s) \in \operatorname{gph} \partial f$

- ∂f of a (proper) closed convex function f is maximally monotone

Strong monotonicity

- recall: the subdifferential operator is σ-strongly monotone iff

$$
\left\langle s_{1}-s_{2}, x_{1}-x_{2}\right\rangle \geq \sigma\left\|x_{1}-x_{2}\right\|^{2}
$$

holds for all $\left(s_{1}, x_{1}\right),\left(s_{2}, x_{2}\right) \in \operatorname{gph} \partial f$

Strong monotonicity characterization

∂f is σ-strongly monotone \Longleftrightarrow
 $\partial f-\sigma \operatorname{Id}$ is monotone

- proof: σ-strong monotonicity:

$$
\begin{aligned}
& \langle u-v, x-y\rangle \geq \sigma\|x-y\|^{2} \\
\Leftrightarrow & \langle(u-\sigma x)-(v-\sigma y), x-y\rangle \geq 0
\end{aligned}
$$

the result holds since $u-\sigma x \in \partial f(x)-\sigma x$

Strong monotonicity and strong convexity

- assume $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is proper closed and convex:

$$
\begin{gathered}
f \text { is } \sigma \text {-strongly convex } \\
\Longrightarrow \\
\partial f \text { is } \sigma \text {-strongly monotone }
\end{gathered}
$$

- first statement is equivalent to that $g=f-\frac{\sigma}{2}\|\cdot\|^{2}$ is convex
- further $f=g+\frac{\sigma}{2}\|\cdot\|^{2}$ and $\partial f=\partial\left(g+\frac{\sigma}{2}\|\cdot\|^{2}\right)=\partial g+\sigma \mathrm{Id}$
- therefore $\partial g=\partial f-\sigma \mathrm{Id}$
- definition of ∂g with $s_{x} \in \partial f(x)$

$$
\begin{array}{rlrl}
& & f(y)-\frac{\sigma}{2}\|y\|^{2} & \geq f(x)-\frac{\sigma}{2}\|x\|^{2}+\left\langle s_{x}-\sigma x, y-x\right\rangle \\
\Leftrightarrow & f(y) & \geq f(x)+\left\langle s_{x}, y-x\right\rangle+\frac{\sigma}{2}\|x-y\|^{2}
\end{array}
$$

- add definitions with x and y swapped $\Rightarrow \sigma$-strong monotonicity
- (actually \Leftarrow also holds, will show this later)

More properties

- assume again that f is proper closed and convex, then
- what we actually showed on previous slide was

$$
\begin{aligned}
& f \text { is } \sigma \text {-strongly convex } \\
& \begin{array}{l}
f(y) \geq f(x)+\langle s, y-x\rangle+\frac{\sigma}{2}\|x-y\|^{2} \\
\text { for all } x \in \operatorname{dom} \partial f, y \in \mathbb{R}^{n}, s \in \partial f(x) \\
\\
\partial f \text { is } \sigma \text {-strongly monotone }
\end{array}
\end{aligned}
$$

- (since third \Rightarrow first (shown later) we have equivalence)

Graphical interpretation - strong convexity

- strong convexity:

$$
f(y) \geq f(x)+\langle s, y-x\rangle+\frac{\sigma}{2}\|x-y\|^{2}
$$

i.e., has affine plus norm squared minorizer

- compare to standard convex function with affine minorizer

Norm squared majorizers

- what happens if we instead have a norm-square majorizer

$$
f(y) \leq f(x)+\langle s, y-x\rangle+\frac{\beta}{2}\|x-y\|^{2}
$$

to a convex function?

- f is squeezed between the affine minorizer and quadratic majorizer

Smoothness

- we define this property as smoothness
- assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and differentiable
- then f is β-smooth if

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\beta}{2}\|x-y\|^{2}
$$

holds for all $x, y \in \mathbb{R}^{n}$

- unlike strong convexity, smoothness \nRightarrow convexity \Rightarrow assume!

Alternative definition of smoothness

- assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and differentiable
- then f is β-smooth if $g:=\frac{\beta}{2}\|\cdot\|^{2}-f$ is convex equivalent to other definition?
- since g is differentiable, convexity of g is equivalent to that

$$
g(y) \geq g(x)+\langle\nabla g(x), y-x\rangle
$$

holds for all $x, y \in \mathbb{R}^{n}$

- insert $g=\frac{\beta}{2}\|\cdot\|^{2}-f$ and $\nabla g=\beta \mathrm{Id}-\nabla f$, to get

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\beta}{2}\left(-\|x\|^{2}+\|y\|^{2}-2\langle x, y-x\rangle\right)
$$

which is equivalent to β-smoothness since

$$
-\|x\|^{2}+\|y\|^{2}-2\langle x, y-x\rangle=\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle=\|x-y\|^{2}
$$

Cocoercivity

- gradients of β-smooth convex functions are $\frac{1}{\beta}$-cocoercive
- let $\phi(y)=f(y)-\left\langle\nabla f\left(x_{0}\right), y\right\rangle$ with $\nabla \phi(y)=\nabla f(y)-\nabla f\left(x_{0}\right)$
- ϕ is convex and is optimized at $y^{\star}=x_{0}$ since Fermat's rule says:

$$
0=\nabla f\left(y^{\star}\right)-\nabla f\left(x_{0}\right)
$$

- further, ϕ is β-smooth: let $h=\frac{\beta}{2}\|\cdot\|^{2}-f$ (h is convex)

$$
\frac{\beta}{2}\|y\|^{2}-\phi(y)=\frac{\beta}{2}\|y\|^{2}-f(y)+\left\langle\nabla f\left(x_{0}\right), y\right\rangle=h+\left\langle\nabla f\left(x_{0}\right), y\right\rangle
$$

which is convex, i.e., ϕ is β-smooth

Cocercivity cont'd

- next, use that
- x_{0} optimizes ϕ
- ϕ is β-smooth
- $\nabla \phi(y)=\nabla f(y)-\nabla f(x)$
- let $s_{y}=\nabla f(y)$ and $s_{x}=\nabla f\left(x_{0}\right)$, then

$$
\begin{aligned}
\phi\left(x_{0}\right) & \leq \phi\left(y-\frac{1}{\beta}\left(s_{y}-s_{x}\right)\right) \\
& \leq \phi(y)+\left\langle s_{y}-s_{x}, y-\frac{1}{\beta}\left(s_{y}-s_{x}\right)-y\right\rangle+\frac{\beta}{2}\left\|y-\frac{1}{\beta}\left(s_{y}-s_{x}\right)-y\right\|^{2} \\
& =\phi(y)-\frac{1}{2 \beta}\left\|s_{y}-s_{x}\right\|^{2}
\end{aligned}
$$

- or, using $\phi(y)=f(y)-\left\langle\nabla f\left(x_{0}\right), y\right\rangle$ and letting $x=x_{0}$:

$$
f(x) \leq f(y)+\left\langle s_{x}, x-y\right\rangle-\frac{1}{2 \beta}\left\|s_{x}-s_{y}\right\|^{2}
$$

- add with arguments interchanged $\Rightarrow \frac{1}{\beta}$-cocoercivity:

$$
\left\langle s_{x}-s_{y}, x-y\right\rangle \geq \frac{1}{\beta}\left\|s_{x}-s_{y}\right\|^{2}
$$

Differentiability

- we assumed differentiability of f before smoothness definition
- convexity and smoothness imply cocoercivity without differentiability assumption
- since cocoercivity \Rightarrow single-valuedness of subdifferential \Rightarrow differentiability, the differentiability assumption is not needed

Lipschitz continuity

Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex

- we know that β-smooth functions have $\frac{1}{\beta}$-cocoercive gradients
- also $\frac{1}{\beta}$-cocoercivity implies β-Lipschitz continuity
- proof: by Cauchy-Schwarz, we have

$$
\begin{aligned}
\|\nabla f(x)-\nabla f(y)\|\|x-y\| & \geq\langle\nabla f(x)-\nabla f(y), x-y\rangle \\
& \geq \frac{1}{\beta}\|\nabla f(x)-\nabla f(y)\|^{2}
\end{aligned}
$$

divide by $\|\nabla f(x)-\nabla f(y)\|$ and multiply by β to get result

- graphical representation:

Lipschitz implies cocoercivity

Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex

- actually, the reverse also holds!
- i.e., β-Lipschitz continuity of ∇f implies $\frac{1}{\beta}$-cocoercivity
- to show this, let $h(\tau)=f(x+\tau(y-x))$, then

$$
\nabla h(\tau)=\langle y-x, \nabla f(x+\tau(y-x))\rangle
$$

- since $f(y)=h(1)$ and $f(x)=h(0)$, we get

$$
\begin{aligned}
f(y)-f(x) & =h(1)-h(0)=\int_{0}^{1} \nabla h(\tau) d \tau \\
& =\int_{0}^{1}\langle y-x, \nabla f(x+\tau(y-x))\rangle d \tau
\end{aligned}
$$

Lipschitz implies cocoercivity cont'd

- using the previous characterization of $f(y)-f(x)$, we get

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla & f(x), y-x\rangle \\
& =\int_{0}^{1}\langle\nabla f(x+\tau(y-x)), y-x\rangle d \tau-\langle\nabla f(x), y-x\rangle \\
& =\int_{0}^{1}\langle\nabla f(x+\tau(y-x))-\nabla f(x), y-x\rangle d \tau \\
& \leq \int_{0}^{1}\|\nabla f(x+\tau(y-x))-\nabla f(x)\|\|x-y\| d \tau \\
& \leq \beta\|x-y\| \int_{0}^{1}\|x+\tau(y-x)-x\| d \tau \\
& =\beta\|x-y\| \int_{0}^{1} \tau\|y-x\| d \tau=\frac{\beta}{2}\|x-y\|^{2}
\end{aligned}
$$

- i.e., f is β-smooth which implies $\frac{1}{\beta}$-cocoercivity of ∇f

Graphical interpretation

Assume f convex $\Rightarrow \nabla f$ monotone

- result: ∇f is $\frac{1}{\beta}$-cocoercive if and only if ∇f is β-Lipschitz
- Lipschitz ∇f cannot end up in lighter gray area!
- (does not hold for general Lipschitz operators T)

Summary: Smooth functions

Let f be convex, then the following are equivalent

- f is β-smooth
- ∇f is $\frac{1}{\beta}$-cocoercive
- ∇f is β-Lipschitz continuous

Duality correspondence

- we know that for proper closed convex f

$$
s \in \partial f(x) \quad \Leftrightarrow \quad x \in \partial f^{*}(s)
$$

(since $f=f^{* *}$ in that case)

- that is $\partial f^{*}=(\partial f)^{-1}$
- therefore, for proper closed convex f :

$$
\begin{gathered}
\sigma \text {-cocoercivity of } \nabla f \\
\sigma \text {-strong monotonicity of }(\partial f)^{-1}=\partial f^{*}
\end{gathered}
$$

- (recall that cocoercivity is also called inverse strong monotonicity)

Duality correspondence

- summarizing results from lecture:

Let f be proper closed and convex, and consider:
(i) f^{*} is σ-strongly convex
(ii) ∂f^{*} is σ-strongly monotone
(iii) ∇f is σ-cocoercive
(iv) ∇f is $\frac{1}{\sigma}$-Lipschitz continuous
(v) f is $\frac{1}{\sigma}$-smooth

- all these conditions are equivalent
- proof: we have shown $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Leftrightarrow(\mathrm{iii}) \Leftrightarrow(\mathrm{iv}) \Leftrightarrow(\mathrm{v})$
- we know from before that $(\mathrm{v}) \Leftrightarrow$ (i), i.e., equivalences everywhere

Duality correspondence 2

- for proper closed and convex f, we have $f=f^{* *}$
- therefore duality correspondence holds with f and f^{*} swapped:

Let f be proper closed and convex, and consider:
(i) f is σ-strongly convex
(ii) ∂f is σ-strongly monotone
(iii) ∇f^{*} is σ-cocoercive
(iv) ∇f^{*} is $\frac{1}{\sigma}$-Lipschitz continuous
(v) f^{*} is $\frac{1}{\sigma}$-smooth

Composition

- consider a problem of the form

$$
\operatorname{minimize} f(x)+g(L x)
$$

- the dual is then

$$
\operatorname{minimize} f^{*}\left(-L^{*} \mu\right)+g^{*}(\mu)
$$

- properties of $d=f^{*} \circ-L^{*}$?

Composition cont'd

- assume that f is σ-strongly convex
- then f^{*} is $\frac{1}{\sigma}$-smooth and $\left(f \circ-L^{*}\right)$ is $\frac{\left\|L^{*}\right\|^{2}}{\sigma}$-smooth
- assume that f is β-smooth and $\left\|L^{*} \mu\right\| \geq \theta\|\mu\|$ for all μ $\left(\mathcal{N}\left(L^{*}\right)=0\right.$ or $\left.\mathcal{R}(L)=\mathbb{R}^{m}\right)$
- then f^{*} is $\frac{1}{\beta}$-strongly convex and $\left(f \circ-L^{*}\right)$ is $\frac{\theta^{2}}{\beta}$-strongly convex

Second order differentiability

- assume that f is σ-strongly convex
- then f^{*} is $\frac{1}{\sigma}$-smooth
- and ∇f^{*} is Lipschitz continuous (even cocoercive)
- what about $\nabla^{2} f^{*}$?
- ∇f Lipschitz $\Rightarrow \nabla^{2} f$ differentiable almost everywhere
- that is, a unique Hessian $\nabla^{2} f^{*}$ exists almost everywhere

Example

- consider $f(y)=\inf _{x}\left\{\|x\|_{1}+\|x-y\|_{2}^{2}\right\}$
- epi f is set sum of $\|\cdot\|_{1}$ and $\|\cdot\|_{2}^{2}$

- that is

$$
f(x)= \begin{cases}-x-0.25 & \text { if } x \leq-0.5 \\ x^{2} & \text { if }-0.5 \leq x \leq 0.5 \\ x-0.25 & \text { if } x \geq 0.5\end{cases}
$$

Example cont'd

- we have

$$
f(x)= \begin{cases}-x-0.25 & \text { if } x \leq-0.5 \\ x^{2} & \text { if }-0.5 \leq x \leq 0.5 \\ x-0.25 & \text { if } x \geq 0.5\end{cases}
$$

- therefore

$$
\nabla f(x)= \begin{cases}-1 & \text { if } x \leq-0.5 \\ 2 x & \text { if }-0.5 \leq x \leq 0.5 \\ 1 & \text { if } x \geq 0.5\end{cases}
$$

- and

$$
\nabla^{2} f(x)= \begin{cases}0 & \text { if } x \leq-0.5 \\ 2 & \text { if }-0.5 \leq x \leq 0.5 \\ 0 & \text { if } x \geq 0.5\end{cases}
$$

(unique almost everywhere)

