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Today’s lecture

• last lecture: properties of monotone operators

• today: properties of subdifferential operators
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Monotonicity

• we know that the subdifferential operator is monotone, i.e.,

〈s1 − s2, x1 − x2〉 ≥ 0

for all (s1, x1), (s2, x2) ∈ gph ∂f

• proof: add subdifferential definitions

f(x2) ≥ f(x1) + 〈s1, x2 − x1〉
f(x1) ≥ f(x2) + 〈s2, x1 − x2〉

• (note: does not require convexity of f)
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Maximal monotonicity

• ∂f is maximally monotone if no (x̄, s̄) 6∈ gph ∂f exists such that

〈s̄− s, x̄− x〉 ≥ 0

for all (x, s) ∈ gph ∂f

• ∂f of a (proper) closed convex function f is maximally monotone
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Strong monotonicity

• recall: the subdifferential operator is σ-strongly monotone iff

〈s1 − s2, x1 − x2〉 ≥ σ‖x1 − x2‖2

holds for all (s1, x1), (s2, x2) ∈ gph ∂f
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Strong monotonicity characterization

∂f is σ-strongly monotone
⇐⇒

∂f − σId is monotone

• proof: σ-strong monotonicity:

〈u− v, x− y〉 ≥ σ‖x− y‖2

⇔ 〈(u− σx)− (v − σy), x− y〉 ≥ 0

the result holds since u− σx ∈ ∂f(x)− σx
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Strong monotonicity and strong convexity

• assume f : Rn → R is proper closed and convex:

f is σ-strongly convex
=⇒

∂f is σ-strongly monotone

• first statement is equivalent to that g = f − σ
2 ‖ · ‖

2 is convex

• further f = g + σ
2 ‖ · ‖

2 and ∂f = ∂(g + σ
2 ‖ · ‖

2) = ∂g + σId

• therefore ∂g = ∂f − σId

• definition of ∂g with sx ∈ ∂f(x)

f(y)− σ
2 ‖y‖

2 ≥ f(x)− σ
2 ‖x‖

2 + 〈sx − σx, y − x〉
⇔ f(y) ≥ f(x) + 〈sx, y − x〉+ σ

2 ‖x− y‖
2

• add definitions with x and y swapped ⇒ σ-strong monotonicity

• (actually ⇐ also holds, will show this later)
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More properties

• assume again that f is proper closed and convex, then

• what we actually showed on previous slide was

f is σ-strongly convex
=⇒

f(y) ≥ f(x) + 〈s, y − x〉+ σ
2 ‖x− y‖

2

for all x ∈ dom∂f, y ∈ Rn, s ∈ ∂f(x)
=⇒

∂f is σ-strongly monotone

• (since third ⇒ first (shown later) we have equivalence)
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Graphical interpretation - strong convexity

• strong convexity:

f(y) ≥ f(x) + 〈s, y − x〉+ σ
2 ‖x− y‖

2

i.e., has affine plus norm squared minorizer

f(y)

• compare to standard convex function with affine minorizer
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Norm squared majorizers

• what happens if we instead have a norm-square majorizer

f(y) ≤ f(x) + 〈s, y − x〉+ β
2 ‖x− y‖

2

to a convex function?

f(y)

• f is squeezed between the affine minorizer and quadratic majorizer
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Smoothness

• we define this property as smoothness

• assume that f : Rn → R is convex and differentiable

• then f is β-smooth if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β
2 ‖x− y‖

2

holds for all x, y ∈ Rn

• unlike strong convexity, smoothness 6⇒ convexity ⇒ assume!
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Alternative definition of smoothness

• assume f : Rn → R is convex and differentiable

• then f is β-smooth if g := β
2 ‖ · ‖

2 − f is convex

equivalent to other definition?

• since g is differentiable, convexity of g is equivalent to that

g(y) ≥ g(x) + 〈∇g(x), y − x〉

holds for all x, y ∈ Rn

• insert g = β
2 ‖ · ‖

2 − f and ∇g = βId−∇f , to get

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β
2 (−‖x‖2 + ‖y‖2 − 2〈x, y − x〉)

which is equivalent to β-smoothness since

−‖x‖2 + ‖y‖2 − 2〈x, y − x〉 = ‖x‖2 + ‖y‖2 − 2〈x, y〉 = ‖x− y‖2
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Cocoercivity

• gradients of β-smooth convex functions are 1
β -cocoercive

• let φ(y) = f(y)− 〈∇f(x0), y〉 with ∇φ(y) = ∇f(y)−∇f(x0)

• φ is convex and is optimized at y? = x0 since Fermat’s rule says:

0 = ∇f(y?)−∇f(x0)

• further, φ is β-smooth: let h = β
2 ‖ · ‖

2 − f (h is convex)

β
2 ‖y‖

2 − φ(y) = β
2 ‖y‖

2 − f(y) + 〈∇f(x0), y〉 = h+ 〈∇f(x0), y〉

which is convex, i.e., φ is β-smooth
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Cocercivity cont’d

• next, use that
• x0 optimizes φ
• φ is β-smooth
• ∇φ(y) = ∇f(y)−∇f(x)

• let sy = ∇f(y) and sx = ∇f(x0), then

φ(x0) ≤ φ(y − 1
β (sy − sx))

≤ φ(y) + 〈sy − sx, y − 1
β (sy − sx)− y〉+ β

2 ‖y −
1
β (sy − sx)− y‖2

= φ(y)− 1
2β ‖sy − sx‖

2

• or, using φ(y) = f(y)− 〈∇f(x0), y〉 and letting x = x0:

f(x) ≤ f(y) + 〈sx, x− y〉 − 1
2β ‖sx − sy‖

2

• add with arguments interchanged ⇒ 1
β -cocoercivity:

〈sx − sy, x− y〉 ≥ 1
β ‖sx − sy‖

2
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Differentiability

• we assumed differentiability of f before smoothness definition

• convexity and smoothness imply cocoercivity without
differentiability assumption

• since cocoercivity ⇒ single-valuedness of subdifferential
⇒ differentiability, the differentiability assumption is not needed
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Lipschitz continuity

Assume f : Rn → R is convex

• we know that β-smooth functions have 1
β -cocoercive gradients

• also 1
β -cocoercivity implies β-Lipschitz continuity

• proof: by Cauchy-Schwarz, we have

‖∇f(x)−∇f(y)‖‖x− y‖ ≥ 〈∇f(x)−∇f(y), x− y〉
≥ 1

β ‖∇f(x)−∇f(y)‖2

divide by ‖∇f(x)−∇f(y)‖ and multiply by β to get result

• graphical representation:

0 x− y
β
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Lipschitz implies cocoercivity

Assume f : Rn → R is convex

• actually, the reverse also holds!

• i.e., β-Lipschitz continuity of ∇f implies 1
β -cocoercivity

• to show this, let h(τ) = f(x+ τ(y − x)), then

∇h(τ) = 〈y − x,∇f(x+ τ(y − x))〉

• since f(y) = h(1) and f(x) = h(0), we get

f(y)− f(x) = h(1)− h(0) =

∫ 1

0

∇h(τ)dτ

=

∫ 1

0

〈y − x,∇f(x+ τ(y − x))〉dτ
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Lipschitz implies cocoercivity cont’d

• using the previous characterization of f(y)− f(x), we get

f(y)− f(x)− 〈∇f(x), y − x〉

=

∫ 1

0

〈∇f(x+ τ(y − x)), y − x〉dτ − 〈∇f(x), y − x〉

=

∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ

≤
∫ 1

0

‖∇f(x+ τ(y − x))−∇f(x)‖‖x− y‖dτ

≤ β‖x− y‖
∫ 1

0

‖x+ τ(y − x)− x‖dτ

= β‖x− y‖
∫ 1

0

τ‖y − x‖dτ = β
2 ‖x− y‖

2

• i.e., f is β-smooth which implies 1
β -cocoercivity of ∇f
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Graphical interpretation

Assume f convex ⇒ ∇f monotone

x− y0

β

• result: ∇f is 1
β -cocoercive if and only if ∇f is β-Lipschitz

• Lipschitz ∇f cannot end up in lighter gray area!

• (does not hold for general Lipschitz operators T )

19



Summary: Smooth functions

Let f be convex, then the following are equivalent

• f is β-smooth

• ∇f is 1
β -cocoercive

• ∇f is β-Lipschitz continuous
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Duality correspondence

• we know that for proper closed convex f

s ∈ ∂f(x) ⇔ x ∈ ∂f∗(s)

(since f = f∗∗ in that case)

• that is ∂f∗ = (∂f)−1

• therefore, for proper closed convex f :

σ-cocoercivity of ∇f
⇐⇒

σ-strong monotonicity of (∂f)−1 = ∂f∗

• (recall that cocoercivity is also called inverse strong monotonicity)
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Duality correspondence

• summarizing results from lecture:

Let f be proper closed and convex, and consider:

(i) f∗ is σ-strongly convex
(ii) ∂f∗ is σ-strongly monotone
(iii) ∇f is σ-cocoercive
(iv) ∇f is 1

σ
-Lipschitz continuous

(v) f is 1
σ
-smooth

• all these conditions are equivalent

• proof: we have shown (i)⇒(ii)⇔(iii)⇔(iv)⇔(v)

• we know from before that (v)⇔(i), i.e., equivalences everywhere
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Duality correspondence 2

• for proper closed and convex f , we have f = f∗∗

• therefore duality correspondence holds with f and f∗ swapped:

Let f be proper closed and convex, and consider:

(i) f is σ-strongly convex
(ii) ∂f is σ-strongly monotone
(iii) ∇f∗ is σ-cocoercive
(iv) ∇f∗ is 1

σ
-Lipschitz continuous

(v) f∗ is 1
σ
-smooth
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Composition

• consider a problem of the form

minimize f(x) + g(Lx)

• the dual is then

minimize f∗(−L∗µ) + g∗(µ)

• properties of d = f∗ ◦ −L∗?
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Composition cont’d

• assume that f is σ-strongly convex

• then f∗ is 1
σ -smooth and (f ◦ −L∗) is ‖L

∗‖2
σ -smooth

• assume that f is β-smooth and ‖L∗µ‖ ≥ θ‖µ‖ for all µ
(N (L∗) = 0 or R(L) = Rm)

• then f∗ is 1
β -strongly convex and (f ◦ −L∗) is θ2

β -strongly convex
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Second order differentiability

• assume that f is σ-strongly convex

• then f∗ is 1
σ -smooth

• and ∇f∗ is Lipschitz continuous (even cocoercive)

• what about ∇2f∗?

• ∇f Lipschitz ⇒ ∇2f differentiable almost everywhere

• that is, a unique Hessian ∇2f∗ exists almost everywhere
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Example

• consider f(y) = infx{‖x‖1 + ‖x− y‖22}
• epif is set sum of ‖ · ‖1 and ‖ · ‖22

• that is

f(x) =


−x− 0.25 if x ≤ −0.5

x2 if − 0.5 ≤ x ≤ 0.5

x− 0.25 if x ≥ 0.5
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Example cont’d

• we have

f(x) =


−x− 0.25 if x ≤ −0.5

x2 if − 0.5 ≤ x ≤ 0.5

x− 0.25 if x ≥ 0.5

• therefore

∇f(x) =


−1 if x ≤ −0.5

2x if − 0.5 ≤ x ≤ 0.5

1 if x ≥ 0.5

• and

∇2f(x) =


0 if x ≤ −0.5

2 if − 0.5 ≤ x ≤ 0.5

0 if x ≥ 0.5

(unique almost everywhere)
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