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Today’s lecture

e last lecture: properties of monotone operators

e today: properties of subdifferential operators



Monotonicity

e we know that the subdifferential operator is monotone, i.e.,
(51— 89,21 —x2) >0

for all (s1,x1), (s2,22) € gph Of
e proof: add subdifferential definitions

f(x2) = f(z1) + (81,22 — 71)
f(@1) > f2) + (s2, 01 — 22)

e (note: does not require convexity of f)



Maximal monotonicity

e Jf is maximally monotone if no (Z, 3) & gph 9f exists such that
(§—s,z2—x)>0

for all (z,s) € gph Of

e Jf of a (proper) closed convex function f is maximally monotone



Strong monotonicity

e recall: the subdifferential operator is o-strongly monotone iff
2
(s1 = s2,m1 — w2) = 0w — a2

holds for all (s1,21), (s2,22) € gph Jf



Strong monotonicity characterization

Jdf is o-strongly monotone
—
df — old is monotone

e proof: o-strong monotonicity:

(u—v,z—y) >ollz—yl
& (u=oz) = (v—0y),x—y) 20

the result holds since u — oz € df(z) — ox



Strong monotonicity and strong convexity

assume f : R™ — R is proper closed and convex:

f is o-strongly convex
=
df is o-strongly monotone

first statement is equivalent to that g = f — &/ - [|* is convex

further f =g+ |- [|? and 0f = d(g + 5| - |*) = 0g + old
therefore dg = df — old
definition of dg with s, € Jf(x)

fW) = Sllyl? = f(=) = Sllz)® + (s — o,y — )
& fy) > f(@) + (s,y — ) + &z — y|?

add definitions with = and y swapped = o-strong monotonicity
(actually < also holds, will show this later)



More properties

e assume again that f is proper closed and convex, then

e what we actually showed on previous slide was

f is o-strongly convex
—
fy) = fz) + (s,y — 2) + §llw — y|
for all z € domdf,y € R", s € f(x)
_—
Of is o-strongly monotone

e (since third = first (shown later) we have equivalence)



Graphical interpretation - strong convexity

e strong convexity:

Fy) = fz) + (s,y — @) + §llz — y?

i.e., has affine plus norm squared minorizer

e compare to standard convex function with affine minorizer



Norm squared majorizers

e what happens if we instead have a norm-square majorizer

Fy) < f@) +(s,y —2) + 5o~y

to a convex function?

o f is squeezed between the affine minorizer and quadratic majorizer
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Smoothness

we define this property as smoothness
assume that f : R™ — R is convex and differentiable
then f is S-smooth if

fy) < f@) + (Vf(@),y —a) + §llz =yl

holds for all z,y € R™

unlike strong convexity, smoothness - convexity = assume!
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Alternative definition of smoothness

e assume f : R™ — R is convex and differentiable

e then f is S-smooth if g := §|| -||* = f is convex
equivalent to other definition?
e since g is differentiable, convexity of g is equivalent to that
9(y) = g(z) + (Vg(x),y — x)

holds for all z,y € R"

o insert g = 2| |2~ f and Vg = BId — V, to get
fly) < fl@)+ (Vf(@)y = 2) + 5(=llz* + [ly]* - 2(2,y — 2))
which is equivalent to S-smoothness since

=Ml ll* + lyl* = 262,y — @) = |2 + [yll* = 2(z, 9) = [l - y|I?
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Cocoercivity

gradients of S-smooth convex functions are %—cocoercive

let ¢(y) = fy) = (Vf(20),y) with Vé(y) = Vf(y) = Vf(z0)

¢ is convex and is optimized at y* = x( since Fermat's rule says:
0=Vf(y") = Vf(zo)
further, ¢ is S-smooth: let h = gH |2 = f (h is convex)

Syl = o(y) = Sllyll* = £(y) + (VF(0),y) = b+ (Vf(0), )

which is convex, i.e., ¢ is S-smooth
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Cocercivity cont’d

e next, use that
® 1o optimizes ¢
e ¢ is B-smooth
* Vo(y) = Vf(y) — Vf(z)
e let s, = Vf(y) and s, = Vf(x¢), then

Blw0) < 0y — L5y — 52))
< B(y) + (sy — sy — 5(sy — 52) —9) + 5lly —
= 6(y) — llsy — 5.l
o or, using 6(y) = f(y) — (V(z0),y) and letting = = o
F(@) < fy) + (50,7 —y) — 55ll50 — 542

e add with arguments interchanged = %—cocoercivity:

(30 = 8y, 7 =) = 5llse — sy
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Differentiability

we assumed differentiability of f before smoothness definition

convexity and smoothness imply cocoercivity without
differentiability assumption

since cocoercivity = single-valuedness of subdifferential
= differentiability, the differentiability assumption is not needed
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Lipschitz continuity

Assume f : R™ — R is convex

we know that -smooth functions have %-cocoercive gradients

also %—cocoercivity implies S-Lipschitz continuity
proof: by Cauchy-Schwarz, we have

Vi) = ViWlllz =yl = (Vi(z) = Vi), —y)
> 5IVf(@) = V)l

divide by ||V f(z) — V f(y)|| and multiply by 8 to get result
graphical representation:
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Lipschitz implies cocoercivity

Assume f : R™ — R is convex

actually, the reverse also holds!

i.e., B-Lipschitz continuity of V f implies %—cocoercivity

to show this, let h(7) = f(x 4+ 7(y — z)), then
Vh(r) =y —2,Vf(z+7(y - 2)))

e since f(y) = h(1) and f(x) = h(0), we get

ﬂw—f@%=MU—M®=[:VMﬂW
1

:/nyLVﬂx+ﬂy—m»m

0



Lipschitz implies cocoercivity cont’'d

e using the previous characterization of f(y) — f(x), we get
fy) = flx) =(Vf(z),y —z)
1
= [ (Vi@ =)y - a)r = (Vi(@).y )

- / (Vf(x+ 7y — 2)) — V(2),y — 2

S/ IVf(x+7(y —x)) — V@)|llz—ylldr
0

SBHx—yH/O |z + 7(y — 7) — al|dr

1
:m\x—yu/o rlly — zldr = £z — y|?

e i.e., fis B-smooth which implies %—cocoercivity of Vf
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Graphical interpretation

Assume f convex = V f monotone

o result: Vfis %—cocoercive if and only if Vf is §-Lipschitz
e Lipschitz V f cannot end up in lighter gray area!
e (does not hold for general Lipschitz operators T')
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Summary: Smooth functions

Let f be convex, then the following are equivalent
e f is B-smooth
o Vfis %—cocoercive
e Vf is B-Lipschitz continuous
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Duality correspondence

we know that for proper closed convex f
sedf(x) <& xe€df(s)

(since f = f** in that case)
that is Of* = (0f)~!

therefore, for proper closed convex f:

o-cocoercivity of V f
—
o-strong monotonicity of (9f)~! = df*

(recall that cocoercivity is also called inverse strong monotonicity)
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Duality correspondence

e summarizing results from lecture:

(i
(i
(iv

(v

i) 0
) Vf is o-cocoercive
)
)

fis f-smooth

Let f be proper closed and convex, and consider:

0 f* is o-strongly convex
* is o-strongly monotone

Vf is 1-Lipschitz continuous
[eg

o all these conditions are equivalent

e proof: we have shown (i)=(ii)< (i) (iv)<(v)

e we know from before that (v)<

(i), i.e., equivalences everywhere
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Duality correspondence 2

o for proper closed and convex f, we have f = f**

o therefore duality correspondence holds with f and f* swapped:

Let f be proper closed and convex, and consider:
(i) f is o-strongly convex
(i) Of is o-strongly monotone
(iii) Vf* is o-cocoercive
)
)
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Composition

e consider a problem of the form
minimize f(z) + g(Lx)
e the dual is then
minimize f*(—L*pn) + g* (1)

e properties of d = f* o —L*7?
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Composition cont’d

assume that f is o-strongly convex
* (12
then f* is %—smooth and (fo—L*)is w—smooth

assume that f is B-smooth and ||L*pu|| > 0]|p| for all u
(NM(L*) =0 or R(L) =R™)
62

then f* is %—strongly convex and (fo—L*) is “5-strongly convex
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Second order differentiability

assume that f is o-strongly convex

then f* is 1-smooth

and V f* is Lipschitz continuous (even cocoercive)

what about V2 f*?

V f Lipschitz = V2 differentiable almost everywhere
that is, a unique Hessian V2 f* exists almost everywhere
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Example

e consider f(y) = inf, {||z|i + ||z — y||3}
e epif is set sum of || - ||y and | - ||3

e that is
—x—0.25 ifz<-05
f(z) =<2 if —05<z<0.5
z —0.25 if x> 0.5

27



e we have

e therefore

e and

Example cont’d

—x—0.25 ifx<-0.5
flx) =< 2?2 if —05<x<0.5
z —0.25 if x> 0.5

—1 ifz<-05
Vix)=<2z if —05<z2<05
1 ifz>05

0 ifx<-05
Vif(r) =42 if —05<z2<05
0 ifz>05

(unique almost everywhere)
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