Subdifferential Properties

Pontus Giselsson

Today's lecture

- last lecture: properties of monotone operators
- today: properties of subdifferential operators

Monotonicity

• we know that the subdifferential operator is monotone, i.e.,

$$\langle s_1 - s_2, x_1 - x_2 \rangle \ge 0$$

for all $(s_1, x_1), (s_2, x_2) \in \operatorname{gph} \partial f$

• proof: add subdifferential definitions

$$f(x_2) \ge f(x_1) + \langle s_1, x_2 - x_1 \rangle$$

$$f(x_1) \ge f(x_2) + \langle s_2, x_1 - x_2 \rangle$$

• (note: does not require convexity of f)

Maximal monotonicity

• ∂f is maximally monotone if no $(\bar{x},\bar{s}) \not\in \operatorname{gph} \partial f$ exists such that

$$\langle \bar{s} - s, \bar{x} - x \rangle \ge 0$$

for all $(x,s) \in \operatorname{gph} \partial f$

• ∂f of a (proper) closed convex function f is maximally monotone

Strong monotonicity

• recall: the subdifferential operator is σ -strongly monotone iff

$$\langle s_1 - s_2, x_1 - x_2 \rangle \ge \sigma ||x_1 - x_2||^2$$

holds for all $(s_1, x_1), (s_2, x_2) \in \operatorname{gph} \partial f$

Strong monotonicity characterization

 ∂f is σ -strongly monotone \Longleftrightarrow $\partial f - \sigma \mathrm{Id}$ is monotone

• proof: σ -strong monotonicity:

$$\begin{split} \langle u-v,x-y\rangle \geq \sigma \|x-y\|^2 \\ \Leftrightarrow \qquad \langle (u-\sigma x)-(v-\sigma y),x-y\rangle \geq 0 \end{split}$$

the result holds since $u - \sigma x \in \partial f(x) - \sigma x$

Strong monotonicity and strong convexity

• assume $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper closed and convex:

 $\begin{array}{c} f \text{ is } \sigma \text{-strongly convex} \\ \Longrightarrow \\ \partial f \text{ is } \sigma \text{-strongly monotone} \end{array}$

- first statement is equivalent to that $g = f \frac{\sigma}{2} \| \cdot \|^2$ is convex
- further $f = g + \frac{\sigma}{2} \|\cdot\|^2$ and $\partial f = \partial(g + \frac{\sigma}{2} \|\cdot\|^2) = \partial g + \sigma \mathrm{Id}$
- therefore $\partial g = \partial f \sigma \mathrm{Id}$
- definition of ∂g with $s_x \in \partial f(x)$

$$f(y) - \frac{\sigma}{2} \|y\|^2 \ge f(x) - \frac{\sigma}{2} \|x\|^2 + \langle s_x - \sigma x, y - x \rangle$$

$$\Leftrightarrow \qquad f(y) \ge f(x) + \langle s_x, y - x \rangle + \frac{\sigma}{2} \|x - y\|^2$$

- add definitions with x and y swapped $\Rightarrow \sigma$ -strong monotonicity
- (actually \Leftarrow also holds, will show this later)

More properties

- assume again that f is proper closed and convex, then
- · what we actually showed on previous slide was

• (since third \Rightarrow first (shown later) we have equivalence)

Graphical interpretation - strong convexity

• strong convexity:

$$f(y) \ge f(x) + \langle s, y - x \rangle + \frac{\sigma}{2} ||x - y||^2$$

i.e., has affine plus norm squared minorizer

· compare to standard convex function with affine minorizer

Norm squared majorizers

• what happens if we instead have a norm-square majorizer

$$f(y) \le f(x) + \langle s, y - x \rangle + \frac{\beta}{2} ||x - y||^2$$

to a convex function?

• f is squeezed between the affine minorizer and quadratic majorizer

Smoothness

- we define this property as smoothness
- assume that $f~:~\mathbb{R}^n \to \mathbb{R}$ is convex and differentiable
- $\bullet \mbox{ then } f \mbox{ is } \beta\mbox{-smooth if }$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{\beta}{2} ||x - y||^2$$

holds for all $x, y \in \mathbb{R}^n$

• unlike strong convexity, smoothness \Rightarrow convexity \Rightarrow assume!

Alternative definition of smoothness

- assume $f~:~\mathbb{R}^n \rightarrow \mathbb{R}$ is convex and differentiable
- then f is β -smooth if $g := \frac{\beta}{2} \| \cdot \|^2 f$ is convex

equivalent to other definition?

- since \boldsymbol{g} is differentiable, convexity of \boldsymbol{g} is equivalent to that

$$g(y) \geq g(x) + \langle \nabla g(x), y - x \rangle$$

holds for all $x, y \in \mathbb{R}^n$

• insert $g = \frac{\beta}{2} \| \cdot \|^2 - f$ and $\nabla g = \beta \mathrm{Id} - \nabla f$, to get

 $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \tfrac{\beta}{2} (-\|x\|^2 + \|y\|^2 - 2\langle x, y - x \rangle)$

which is equivalent to β -smoothness since

$$-\|x\|^{2} + \|y\|^{2} - 2\langle x, y - x \rangle = \|x\|^{2} + \|y\|^{2} - 2\langle x, y \rangle = \|x - y\|^{2}$$

Cocoercivity

- gradients of β -smooth convex functions are $\frac{1}{\beta}$ -cocoercive
- let $\phi(y)=f(y)-\langle \nabla f(x_0),y\rangle$ with $\nabla \phi(y)=\nabla f(y)-\nabla f(x_0)$
- ϕ is convex and is optimized at $y^{\star} = x_0$ since Fermat's rule says:

$$0 = \nabla f(y^*) - \nabla f(x_0)$$

• further, ϕ is β -smooth: let $h = \frac{\beta}{2} \| \cdot \|^2 - f$ (h is convex)

$$\frac{\beta}{2} \|y\|^2 - \phi(y) = \frac{\beta}{2} \|y\|^2 - f(y) + \langle \nabla f(x_0), y \rangle = h + \langle \nabla f(x_0), y \rangle$$

which is convex, i.e., ϕ is β -smooth

Cocercivity cont'd

- next, use that
 - x_0 optimizes ϕ
 - ϕ is β -smooth

•
$$\nabla \phi(y) = \nabla f(y) - \nabla f(x)$$

• let $s_y = \nabla f(y)$ and $s_x = \nabla f(x_0)$, then

$$\begin{split} \phi(x_0) &\leq \phi(y - \frac{1}{\beta}(s_y - s_x)) \\ &\leq \phi(y) + \langle s_y - s_x, y - \frac{1}{\beta}(s_y - s_x) - y \rangle + \frac{\beta}{2} \|y - \frac{1}{\beta}(s_y - s_x) - y\|^2 \\ &= \phi(y) - \frac{1}{2\beta} \|s_y - s_x\|^2 \end{split}$$

• or, using $\phi(y) = f(y) - \langle \nabla f(x_0), y \rangle$ and letting $x = x_0$:

$$f(x) \le f(y) + \langle s_x, x - y \rangle - \frac{1}{2\beta} ||s_x - s_y||^2$$

• add with arguments interchanged $\Rightarrow \frac{1}{\beta}$ -cocoercivity:

$$\langle s_x - s_y, x - y \rangle \ge \frac{1}{\beta} \| s_x - s_y \|^2$$

Differentiability

- ${\mbox{ \bullet}}$ we assumed differentiability of f before smoothness definition
- convexity and smoothness imply cocoercivity without differentiability assumption
- since cocoercivity \Rightarrow single-valuedness of subdifferential \Rightarrow differentiability, the differentiability assumption is not needed

Lipschitz continuity

Assume $f : \mathbb{R}^n \to \mathbb{R}$ is convex

- we know that β -smooth functions have $\frac{1}{\beta}$ -cocoercive gradients
- also $\frac{1}{\beta}$ -cocoercivity implies β -Lipschitz continuity
- proof: by Cauchy-Schwarz, we have

$$\begin{aligned} \|\nabla f(x) - \nabla f(y)\| \|x - y\| &\geq \langle \nabla f(x) - \nabla f(y), x - y \rangle \\ &\geq \frac{1}{\beta} \|\nabla f(x) - \nabla f(y)\|^2 \end{aligned}$$

divide by $\|\nabla f(x) - \nabla f(y)\|$ and multiply by β to get result

• graphical representation:

Lipschitz implies cocoercivity

Assume $f : \mathbb{R}^n \to \mathbb{R}$ is convex

- actually, the reverse also holds!
- i.e., β -Lipschitz continuity of ∇f implies $\frac{1}{\beta}$ -cocoercivity
- to show this, let $h(\tau)=f(x+\tau(y-x)),$ then

$$\nabla h(\tau) = \langle y - x, \nabla f(x + \tau(y - x)) \rangle$$

• since
$$f(y) = h(1)$$
 and $f(x) = h(0)$, we get

$$\begin{aligned} f(y) - f(x) &= h(1) - h(0) = \int_0^1 \nabla h(\tau) d\tau \\ &= \int_0^1 \langle y - x, \nabla f(x + \tau(y - x)) \rangle d\tau \end{aligned}$$

Lipschitz implies cocoercivity cont'd

- using the previous characterization of $f(\boldsymbol{y}) - f(\boldsymbol{x})$, we get

$$\begin{split} f(y) - f(x) - \langle \nabla f(x), y - x \rangle \\ &= \int_0^1 \langle \nabla f(x + \tau(y - x)), y - x \rangle d\tau - \langle \nabla f(x), y - x \rangle \\ &= \int_0^1 \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau \\ &\leq \int_0^1 \| \nabla f(x + \tau(y - x)) - \nabla f(x) \| \| x - y \| d\tau \\ &\leq \beta \| x - y \| \int_0^1 \| x + \tau(y - x) - x \| d\tau \\ &= \beta \| x - y \| \int_0^1 \tau \| y - x \| d\tau = \frac{\beta}{2} \| x - y \|^2 \end{split}$$

• i.e., f is β -smooth which implies $\frac{1}{\beta}$ -cocoercivity of ∇f

Graphical interpretation

Assume f convex $\Rightarrow \nabla f$ monotone

- result: ∇f is $\frac{1}{\beta}$ -cocoercive if and only if ∇f is β -Lipschitz
- Lipschitz ∇f cannot end up in lighter gray area!
- (does not hold for general Lipschitz operators T)

Summary: Smooth functions

Let f be convex, then the following are equivalent

- f is $\beta\text{-smooth}$
- ∇f is $\frac{1}{\beta}$ -cocoercive
- ∇f is β -Lipschitz continuous

Duality correspondence

 $\bullet\,$ we know that for proper closed convex f

$$s \in \partial f(x) \quad \Leftrightarrow \quad x \in \partial f^*(s)$$

(since $f = f^{**}$ in that case)

- that is $\partial f^* = (\partial f)^{-1}$
- therefore, for proper closed convex f:

• (recall that cocoercivity is also called inverse strong monotonicity)

Duality correspondence

• summarizing results from lecture:

Let f be proper closed and convex, and consider: (i) f^* is σ -strongly convex (ii) ∂f^* is σ -strongly monotone (iii) ∇f is σ -cocoercive (iv) ∇f is $\frac{1}{\sigma}$ -Lipschitz continuous (v) f is $\frac{1}{\sigma}$ -smooth

- all these conditions are equivalent
- proof: we have shown (i) \Rightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v)
- we know from before that (v) \Leftrightarrow (i), i.e., equivalences everywhere

Duality correspondence 2

- for proper closed and convex f, we have $f=f^{\ast\ast}$
- therefore duality correspondence holds with f and f^* swapped:

Let f be proper closed and convex, and consider: (i) f is σ -strongly convex (ii) ∂f is σ -strongly monotone (iii) ∇f^* is σ -cocoercive (iv) ∇f^* is $\frac{1}{\sigma}$ -Lipschitz continuous (v) f^* is $\frac{1}{\sigma}$ -smooth

Composition

• consider a problem of the form

minimize f(x) + g(Lx)

• the dual is then

minimize
$$f^*(-L^*\mu) + g^*(\mu)$$

• properties of $d = f^* \circ -L^*$?

Composition cont'd

- assume that f is $\sigma\text{-strongly convex}$
- then f^* is $\frac{1}{\sigma}$ -smooth and $(f \circ -L^*)$ is $\frac{\|L^*\|^2}{\sigma}$ -smooth
- assume that f is β -smooth and $||L^*\mu|| \ge \theta ||\mu||$ for all μ $(\mathcal{N}(L^*) = 0 \text{ or } \mathcal{R}(L) = \mathbb{R}^m)$
- then f^* is $\frac{1}{\beta}\text{-strongly convex and }(f\circ -L^*)$ is $\frac{\theta^2}{\beta}\text{-strongly convex}$

Second order differentiability

- assume that f is $\sigma\text{-strongly convex}$
- then f^* is $\frac{1}{\sigma}$ -smooth
- and ∇f^* is Lipschitz continuous (even cocoercive)
- what about $\nabla^2 f^*$?
- ∇f Lipschitz $\Rightarrow \nabla^2 f$ differentiable almost everywhere
- that is, a unique Hessian $\nabla^2 f^*$ exists almost everywhere

Example

- consider $f(y) = \inf_x \{ \|x\|_1 + \|x y\|_2^2 \}$
- epif is set sum of $\|\cdot\|_1$ and $\|\cdot\|_2^2$

• that is

$$f(x) = \begin{cases} -x - 0.25 & \text{if } x \le -0.5 \\ x^2 & \text{if } -0.5 \le x \le 0.5 \\ x - 0.25 & \text{if } x \ge 0.5 \end{cases}$$

Example cont'd

• we have

$$f(x) = \begin{cases} -x - 0.25 & \text{if } x \le -0.5 \\ x^2 & \text{if } -0.5 \le x \le 0.5 \\ x - 0.25 & \text{if } x \ge 0.5 \end{cases}$$

• therefore

$$\nabla f(x) = \begin{cases} -1 & \text{if } x \le -0.5\\ 2x & \text{if } -0.5 \le x \le 0.5\\ 1 & \text{if } x \ge 0.5 \end{cases}$$

• and

$$\nabla^2 f(x) = \begin{cases} 0 & \text{if } x \le -0.5\\ 2 & \text{if } -0.5 \le x \le 0.5\\ 0 & \text{if } x \ge 0.5 \end{cases}$$

(unique almost everywhere)