Conjugate Functions

Pontus Giselsson
Today’s lecture

- conjugates and biconjugates
- Fenchel’s inequality
- Fenchel-Young’s equality
- conjugation and optimization
- subdifferentials using the conjugate
- conjugates of
 - image functions
 - functions precomposed with linear mappings
- subdifferential calculus rules
Conjugate functions

• standing assumption:

 we assume that f is proper and has an affine minorizer

• the conjugate function is defined as

 $f^*(s) \triangleq \sup_x \{ \langle s, x \rangle - f(x) \}$
Graphical interpretation

- consider $f^*(s) = \sup_x \{\langle s, x \rangle - f(x)\} = -\inf_x \{f(x) - \langle s, x \rangle\}$
- “(−) smallest value of f when tilted by $\langle s, x \rangle$”
- example: $f^*(\frac{1}{2})$

Interpretation 1

Interpretation 2
Conjugate properties

recall from lecture on convex functions:

- the conjugate is convex, since supremum of affine functions
- it is closed since epigraph intersection of closed half-spaces
Further properties

• assume affine minorizer to $f(x)$ on form $\langle s_0, x \rangle - b$

• the conjugate function $f^* \neq \infty$:

$$f^*(s_0) = \sup_x \{ \langle s_0, x \rangle - f(x) \} \leq \sup_x \{ \langle s_0, x \rangle - \langle s_0, x \rangle + b \} \leq b$$

• the conjugate $f^*(s) > -\infty$ for all s and has affine minorizer:

$$f^*(s) = \sup_x \{ \langle s, x \rangle - f(x) \} \geq \langle s, \bar{x} \rangle - f(\bar{x})$$

where \bar{x} is a points with $f(\bar{x}) < \infty$ (exists by assumption)

(use same \bar{x} for all s to get affine minorizer)

• conjugate satisfies assumptions for taking conjugate!
Biconjugate

- the biconjugate f^{**} is obtained by conjugating twice, i.e.
 \[f^{**}(x) = (f^*)^*(x) \]
- biconjugate can be written as
 \[
 f^{**}(x) = \sup_s \{ \langle x, s \rangle - f^*(s) \}
 = \sup_s \left\{ \langle x, s \rangle - \sup_z \{ \langle s, z \rangle - f(z) \} \right\}
 = \sup_{s,r} \left\{ \langle x, s \rangle - r \mid r = \sup_z \{ \langle s, z \rangle - f(z) \} \right\}
 = \sup_{s,r} \left\{ \langle x, s \rangle - r \mid r \geq \sup_z \{ \langle s, z \rangle - f(z) \} \right\}
 = \sup_{s,r} \{ \langle x, s \rangle - r \mid \langle s, z \rangle - r \leq f(z) \text{ for all } z \}
 = \sup_{s,r} \{ \langle s, x \rangle - r \mid \langle s, z \rangle - r \leq f(z) \text{ for all } z \}

- do you recall this expression?
Graphical interpretation

- expression:

\[f^{**}(x) = \sup_{y,r} \{ \langle y, x \rangle - r \mid \langle y, z \rangle - r \leq f(z) \text{ for all } z \} \]

“search for affine minorizers to \(f \) with largest value at \(x \)”

- biconjugate is closed convex hull
- \(f^{**} \leq f \)
- \(f = f^{**} \iff \text{cl conv } f = f \iff f \text{ proper closed convex} \)
Fenchel’s inequality

- from definition of conjugate function

\[f^*(s) = \sup_x \{ \langle s, x \rangle - f(x) \} \]

we get for any \(x, s \in \mathbb{R}^n \)

\[f^*(s) + f(x) \geq \langle s, x \rangle \quad \text{or} \quad f(x) \geq \langle s, x \rangle - f^*(s) \]

• affine function \(x \mapsto \langle s, x \rangle - f^*(s) \) minorizes \(f(x) \)
Fenchel-Young’s equality

- how do x and s relate when we have equality in

 \[f(x) \geq \langle s, x \rangle - f^*(s) \]

 i.e., when

 \[f(x) = \langle s, x \rangle - f^*(s) \]

 we have equality iff $(s, -1) \in N_{\text{epi } f(x, f(x))}$ or $s \in \partial f(x)$
Proof

\[f(x) = \langle s, x \rangle - f^*(s) \iff s \in \partial f(x) \]

- \(s \in \partial f(x) \) iff (definition of subgradient)

\[f(y) \geq f(x) + \langle s, y - x \rangle \text{ for all } y \]

\[\iff \langle s, y \rangle - f(y) \leq \langle s, x \rangle - f(x) \text{ for all } y \]

\[\iff \sup_y \{ \langle s, y \rangle - f(y) \} \leq \langle s, x \rangle - f(x) \]

\[\iff f^*(s) \leq \langle s, x \rangle - f(x) \]

- Fenchel’s inequality always holds:

\[f^*(s) \geq \langle s, x \rangle - f(x) \]

inequality reversed \(\Rightarrow \) equality holds

- simple yet powerful result!
Consequence of Fenchel-Young

for general \(f \) we have

\[s \in \partial f(x) \implies x \in \partial f^*(s) \]

- proof: since \(s \in \partial f(x) \), Fenchel-Young and \(f \geq f^{**} \) gives

\[
0 = f^*(s) + f(x) - \langle s, x \rangle \geq f^*(s) + f^{**}(x) - \langle s, x \rangle
\]

- Fenchel’s inequality says that other direction holds:

\[
0 \leq f^*(s) + f^{**}(x) - \langle s, x \rangle
\]

i.e., this implies equality,

\[
0 = f^*(s) + (f^*)^*(x) - \langle s, x \rangle
\]

which is equivalent to \(x \in \partial f^*(s) \)
Consequence of Fenchel-Young

for general \(f \) we have

\[
x \in \partial f^*(x) \Rightarrow s \in \partial f^{**}(s)
\]

- apply \(x \in \partial g(s) \Rightarrow s \in \partial g^*(x) \) to \(g(s) = f^*(s) \):

\[
x \in \partial g(s) = \partial f^*(s) \quad \Rightarrow \quad s \in \partial g^*(x) = \partial f^{**}(x)
\]
Consequence of Fenchel-Young

proper closed convex f:

• we have

$$f(x) + f^*(s) - \langle s, x \rangle = 0 \iff s \in \partial f(x) \iff x \in \partial f^*(s)$$

• proof:

• First equivalence: Fenchel-Young’s equality
• Second equivalence \Rightarrow: as above
• Second equivalence \Leftarrow: follows from $f^{**} = f$:

$$x \in \partial f^*(s) \Rightarrow s \in \partial f^{**}(x) = \partial f(x)$$
Conjugation and optimization

• we have

\[\inf_x f(x) = -\sup_x \{ \langle 0, x \rangle - f(x) \} = -f^*(0) \]

• Fermat’s rule says:

\[x \text{ minimizes } f(x) \iff 0 \in \partial f(x) \]

• can you characterize Argmin_x f(x) if f proper closed convex?

\[\text{Argmin}_x f(x) = \partial f^*(0) \]

(since \(x \in \partial f^*(0) \iff 0 \in \partial f(x) \))
Subdifferential of conjugate

• the subdifferential to the conjugate function satisfies

\[\partial f^*(s) \supseteq \text{Argmax} \{ \langle s, x \rangle - f(x) \} \]

proof:

\[x^* \in \text{Argmax}_x \{ \langle s, x \rangle - f(x) \} \iff x^* \in \text{Argmin}_x \{ f(x) - \langle s, x \rangle \} \]

\[\iff 0 \in \partial (f(x^*) - \langle s, x^* \rangle) \]

(assume) \iff 0 \in \partial f(x^*) - s

\[\iff s \in \partial f(x^*) \]

\[\Rightarrow x^* \in \partial f^*(s) \]

• if in addition \(f \) is closed convex, then

\[\partial f^*(s) = \text{Argmax}_x \{ \langle s, x \rangle - f(x) \} \]

proof: last implication is equivalence in above proof
Proof of assumption

• for any proper f, we have $\partial (f(x) - \langle s, x \rangle) = \partial f(x) - s$

• $u \in \partial (f(x) - \langle s, x \rangle)$ iff

$$f(y) - \langle s, y \rangle \geq f(x) - \langle s, x \rangle + \langle u, y - x \rangle$$

$$\Leftrightarrow$$

$$f(y) \geq f(x) + \langle u + s, y - x \rangle$$

i.e., iff $u + s \in \partial f(x)$ or $\partial (f(x) - \langle s, x \rangle) + s = \partial f(x)$

• example:
Subdifferential of function

• from previous slide: if \(f \) is closed convex, then

\[
\partial f^*(s) = \arg\max_x \{ \langle s, x \rangle - f(x) \}
\]

• apply to \(f^* \) (since closed convex):

\[
\partial f^{**}(x) = \arg\max_s \{ \langle x, s \rangle - f^*(s) \}
\]

• if \(f \) closed convex, then \(f = f^{**} \) and

\[
\partial f(x) = \arg\max_s \{ \langle x, s \rangle - f^*(s) \}
\]
Relation between subdifferentials

• we know that for proper closed convex f

$$s \in \partial f(x) \iff x \in \partial f^*(s)$$

• ∂f and ∂f^* are each others images under mapping $(x, s) \mapsto (s, x)$

• example: $f(x) = |x|$, draw ∂f^*
Conjugate of image function and precomposition

- next we will compute the conjugates of image functions \((Lg)\):

\[
(Lg)(x) = \inf_{L_y = x} g(y)
\]

- and the functions with precomposition \((g \circ L)\):

\[
(g \circ L)(x) = g(Lx)
\]
Conjugate of image function

- let g be proper with affine minorizer and L be a linear mapping
- assume:
 \[\text{Im} L \cap \text{dom} g \neq \emptyset \]
- then Lg is proper and has an affine minorizer and its conjugate is
 \[(Lg)^* = g^* \circ L^* \]
- proof: (first show that Lg is proper and has affine minorizer)

\[
(Lg)^*(s) = \sup_x \left\{ \langle s, x \rangle - \inf_{Ly=x} g(y) \right\} \\
= \sup_{x, Ly=x} \{ \langle s, x \rangle - g(y) \} \\
= \sup_y \{ \langle s, Ly \rangle - g(y) \} \\
= \sup_y \{ \langle L^* s, y \rangle - g(y) \} \\
= g^*(L^* s) = (g^* \circ L^*)(s)
\]
Conjugate of precomposition function

- let g be proper closed convex and L be a linear operator
- assume:
 \[\text{Im}L \cap \text{ri dom}g \neq \emptyset \]
- then $(g \circ L)^* = L^*g^*$ and for every $s \in \text{dom}(g \circ L)^*$,
 \[(g \circ L)^*(s) = L^*g^*(s) = \min_p \{g^*(p) \mid L^*p = s\} \]
 i.e., the minimum is attained
- proof: apply previous result:
 \[(L^*g^*)^* = g^{**} \circ L^{**} = g \circ L \]
 taking again the conjugate:
 \[(g \circ L)^* = (L^*g^*)^{**} \overset{?}{=} L^*g^* \]
 where the last equality holds if (L^*g^*) is proper closed convex
- proper and convex shown before, closedness can be shown if
 \[\text{Im}L \cap \text{ri dom}g \neq \emptyset \]
Key result 1

- let’s summarize the results from the previous slides:

Assume that g is proper closed and convex, that L is a linear operator, and that $\text{Im} L \cap \text{ri dom} g \neq \emptyset$ then for $s \in \text{dom} \ (g \circ L)^*$:

$$(g \circ L)^*(s) = (L^* g^*)(s) = \min_p \{g^*(p) \mid L^* p = s\}$$

i.e., the conjugate of the precomposition function $g \circ L$ is the image function $(L^* g^*)$, and the minimum in the image function definition is attained.

- this result will be the main result from which we can:
 - prove subdifferential calculus rules
 - derive strong duality
 - show necessary and sufficient optimality conditions
Key result 2

- let \(f, g \) be proper closed convex and \(L \) be linear and assume

\[
\text{ri dom } g \cap \text{ri } L(\text{dom } f) \neq \emptyset \iff \text{ri dom } (g \circ L) \cap \text{ri dom } f \neq \emptyset
\]

- then

\[
\min_{\mu} \{ f^*(s - L^* \mu) + g^*(\mu) \} = (f + g \circ L)^*(s)
\]

- (note that minimum attained)
- (actually a Corollary of Key result 1)
Proof sketch of “Key result 2”

- let

\[h(x, y) := f(x) + g(y) \]
\[Kx := (x, Lx) \]

- then: \((f + g \circ L)^* = (h \circ K)^*\)

- properties of \(h\) and \(K\): assumption that

\[\text{ri dom } f \cap \text{ri dom } (g \circ L) \neq \emptyset \]
\[\iff \exists x \mid x \in \text{ri dom } f \cap \text{ri dom } (g \circ L) \]
\[\iff \exists x \mid (x, x) \in \text{ri dom } f \times \text{ri dom } (g \circ L) \]
\[\iff \exists x \mid (x, Lx) \in \text{ri dom } f \times \text{ri dom } g \]
\[\iff \exists x \mid (x, Lx) \in \text{ri} (\text{dom } f \times \text{dom } g) \]
\[\iff \text{Im } K \cap \text{ri dom } h \neq \emptyset \]

- \(\Rightarrow\) can apply “Key result 1”!
Proof continued

• to use “Key result” \(((h \circ K)^*(s) = (K^* h^*)(s))\) compute \(K^*, h^*:\)

• adjoint \(K^*\) to \(Kx = (x, Lx)\) is given by:

\[
\langle Kx, (y, z) \rangle = \langle x, y \rangle + \langle Lx, z \rangle = \langle x, y \rangle + \langle x, L^* z \rangle \\
= \langle x, y + L^* z \rangle = \langle x, K^*(y, z) \rangle
\]

i.e., \(K^*(y, z) = y + L^* z\) and

• conjugate \(h^*\) is given by:

\[
h^*(\lambda, \mu) = \sup_{x,y} \{\langle (\lambda, \mu), (x, y) \rangle - f(x) - g(y) \}
\]

\[
= \sup_{x,y} \{\langle \lambda, x \rangle + \langle \mu, y \rangle - f(x) - g(y) \}
\]

\[
= \sup_x \{\langle \lambda, x \rangle - f(x) \} + \sup_y \{\langle \mu, y \rangle - g(y) \}
\]

\[
= f^*(\lambda) + g^*(\mu)
\]
Proof continued

• apply “Key result 1”:

\[
(f + g \circ L)^*(s) = (h \circ K)^*(s) \\
= (K^* h^*)(s) \\
= \min_{K^*(\lambda,\mu) = s} h^*(\lambda, \mu) \\
= \min_{\mu,\lambda} \{ f^*(\lambda) + g^*(\mu) : \lambda + L^* \mu = s \} \\
= \min_{\mu} \{ f^*(s - L^* \mu) + g^*(\mu) \}
\]

• where we get existence of \(\mu \) and \(\lambda \) due to “Key result 1”
Notes on Key results

• Key result 2 is Corollary of Key result 1
• Key result 1 and 2 will be used to show when

\[\partial(f + g \circ L) = \partial f + L^* \circ \partial g \circ L \]

(which will be used to show optimality conditions)
• Key result 2 will also be used to show when strong duality holds
Subdifferential sum

• for differentiable f and g, the chain-rule gives

$$\nabla (f + g \circ L) = \nabla f + L^* \circ \nabla g \circ L$$

• for subdifferentiable functions f and g, when do we have

$$\partial (f + g \circ L) = \partial f + L^* \circ \partial g \circ L$$
Subdifferential sum

- we start with the case where \(L = \text{Id} \)
- assume that \(f, g \) are proper closed and convex and that

\[
\text{ri dom } g \cap \text{ri dom } f \neq \emptyset
\]

then

\[
\partial (f + g)(x) = \partial f(x) + \partial g(x)
\]

for every \(x \in \text{dom } (f + g) = \text{dom } f \cap \text{dom } g \)
Proof of subdifferential sum \iff

- assume that $s_1 \in \partial f(x)$ and $s_2 \in \partial g(x)$
- add definitions of subdifferential operator

$$f(y) + g(y) \geq f(x) + g(x) + \langle s_1 + s_2, y - x \rangle$$

\iff

$$(f + g)(y) \geq (f + g)(x) + \langle s_1 + s_2, y - x \rangle$$

- therefore $s_1 + s_2 \in \partial (f + g)(x)$
Proof of subdifferential sum ⇒

• assume that $s \in \partial(f + g)(x)$
• Fenchel-Young’s equality gives

\[
(f + g)^*(s) + (f + g)(x) - \langle s, x \rangle = 0
\]

• since $s \in \text{dom}(f + g)^*$ we apply “Key result 2”, i.e., there $\exists \mu$:

\[
f^*(s - \mu) + g^*(\mu) + f(x) + g(x) - \langle s, x \rangle = 0 \quad (1)
\]

• by Fenchel-Young’s inequality, we have

\[
f^*(s - \mu) + f(x) - \langle s - \mu, x \rangle \leq 0
\]
\[
g^*(\mu) + g(x) - \langle \mu, x \rangle \leq 0
\]

• by (1), these must be equalities, i.e.:

\[
s - \mu \in \partial f(x) \quad \mu \in \partial g(x)
\]

and

\[
s = (s - \mu) + \mu \in \partial f(x) + \partial g(x)
\]
Example – First-order optimality condition

• assume that $\text{ri dom } f \cap \text{ri } C \neq \emptyset$
• an x optimizes $\inf_{x \in C} f(x)$ iff there exists $s \in \partial f(x)$ such that
 \[\langle s, y - x \rangle \geq 0 \text{ for all } y \in C \]
 and $x \in C$
• proof: $\partial(f + \iota_C)(x) = \partial f(x) + N_C(x)$
• optimality condition: $0 \in \partial f(x) + N_C(x)$ or for any $\bar{s} \in \partial f(x)$:
 \[-\bar{s} \in N_C(x) = \{ s \mid \langle s, y - x \rangle \leq 0 \text{ for all } y \in C \} \]
 for $x \in C$ (otherwise $N_C(x)$ is empty)
Graphical interpretation

- first-order optimality condition: there exists \(\bar{s} \in \partial f(x) \) such that

\[
-\bar{s} \in N_C(x) = \{s \mid \langle s, y - x \rangle \leq 0 \text{ for all } y \in C\}
\]
Precomposition

- next, we cover the pure composition case
- assume that \(f \) is proper closed and convex and that

\[
\text{Im } L \cap \text{ri dom } g \neq \emptyset \iff \text{ri dom } (g \circ L) \neq \emptyset
\]

then

\[
\partial (g \circ L)(x) = L^* \circ \partial g(Lx)
\]

for every \(Lx \in \text{dom } g \)
Precomposition proof \Leftarrow

- assume that $p \in \partial g(Lx)$ with $Lx \in \text{dom } g$
- subdifferential definition with $z = Ly$:

$$g(z) \geq g(Lx) + \langle p, z - Lx \rangle$$

$$\implies g(Ly) \geq g(Lx) + \langle p, Ly - Lx \rangle$$

$$\implies (g \circ L)(y) \geq (g \circ L)(x) + \langle L^*p, y - x \rangle$$

that is, $L^*p \in \partial (g \circ L)(x)$ or $L^* \partial g(Lx) \subseteq \partial (g \circ L)(x)$
Precomposition proof ⇒

• assume that \(s \in \partial(g \circ L)(x) \), i.e., that

\[
(g \circ L)^*(s) + (g \circ L)(x) - \langle s, x \rangle = 0
\] \hspace{1cm} (2)

• assumptions imply “Key result 1” can be used:

\[
(g \circ L)^*(s) = (L^*g^*)(s) = \min_p \{g^*(p) \mid L^*p = s\} = g^*(\bar{p})
\]

where \(L^*\bar{p} = s \)

• therefore (2) becomes

\[
0 = g^*(\bar{p}) + g(Lx) - \langle L^*\bar{p}, x \rangle = g^*(\bar{p}) + g(Lx) - \langle \bar{p}, Lx \rangle
\]

• which implies \(\bar{p} \in \partial g(Lx) \), \(s \in L^*\partial g(Lx) \), and

\(\partial(g \circ L)(x) \subseteq L^*\partial g(Lx) \)
Sum and composition

• adding the two previous results on f and $h = g \circ L$, we get:

$$\partial(f + h)(x) = \partial f(x) + \partial(g \circ L)(x) = \partial f(x) + L^* \partial g(Lx) \quad (3)$$

provided that assumptions hold

• we assume:

$$\text{ri dom } g \cap \text{ri } L(\text{dom } f) \neq \emptyset \iff \text{ri dom } (g \circ L) \cap \text{ri dom } f \neq \emptyset$$

• since $\text{ri dom } (g \circ L) = \text{ri dom } h \neq \emptyset$, composition and sum OK!

• (will use (3) to derive optimality conditions)
• suppose that f is proper closed and convex
• suppose that $x \in \text{dom}(Lg) = L(\text{dom}g)$ and that there exists \bar{y}
 with $L\bar{y} = x$ and $g(\bar{y}) = (Lg)(x)$, which holds e.g., if
 \[\text{Im}L^* \cap \text{ri dom } g^* \neq \emptyset \]
• then
 \[\partial (Lg)(x) = \{ s \mid L^* s \in \partial g(\bar{y}) \} \]
Proof

• recall \(\exists \bar{y} \) with \(L\bar{y} = x \) and \(g(\bar{y}) = (Lg)(x) \)

• that \(s \in \partial(Lg)(x) \) is, by Fenchel-Young, equivalent to that

\[
(Lg)^*(s) + (Lg)(x) - \langle s, x \rangle = 0
\]

or

\[
(Lg)^*(s) + g(\bar{y}) - \langle s, L\bar{y} \rangle = 0
\]

since \((Lg)^* = g^* \circ L^* \), i.e., \((Lg)^*(s) = g^*(L^*s) \) we have

\[
g^*(L^*s) + g(\bar{y}) - \langle L^*s, \bar{y} \rangle = 0
\]

or equivalently \(L^*s \in \partial g(\bar{y}) \), i.e. \(\partial(Lg) = \{ s \mid L^*s \in \partial g(\bar{y}) \} \)