
Algorithms I

Pontus Giselsson

1

Today’s lecture

• optimality conditions

• subgradient method

• gradient method

• proximal point method (resolvent method)

• forward-backward splitting

2

Optimality conditions

• assume f, g proper closed and convex, L linear operator

• we want to solve

minimize f(x) + g(y)
subject to Lx = y

• optimality condition (Fermat’s rule)

0 ∈ ∂f(x) + ∂(g ◦ L)(x)

• optimality condition of dual

0 ∈ ∂(f∗ ◦ −L∗)(µ) + ∂g∗(µ)

• both can be written as sum of maximally monotone operators

3

Optimality conditions cont’d

• the condition 0 ∈ ∂f(x) + ∂(g ◦ L)(x) can be written as

0 ∈ ∂f(x) + L∗µ

0 ∈ ∂g(y)− µ
0 = Lx− y

• or

0 ∈ ∂f(x) + L∗µ

0 ∈ ∂g∗(µ)− Lx

4

Optimality conditions cont’d

• let

F (x, µ) = (∂f(x), ∂g∗(µ)), M(x, µ) = (L∗µ,−Lx)

• F,M maximally monotone (M skew symmetric, i.e. M∗ = −M)

• consider the optimality condition

0 ∈ ∂f(x) + L∗µ

0 ∈ ∂g∗(µ)− Lx

• it can be written as

0 ∈ F (x, µ) +M(x, µ)

i.e., sum of two maximal monotone operators

5

Sums of several functions

• assume f1, f2, g proper closed and convex, L1, L2 linear operators

• we want to solve

minimize f1(x) + f2(y) + g(z)
subject to L1x+ L2y = z

• let f(x, y) = f1(x) + f2(y) and L(x, y) = L1x+ L2y

• then problem is

minimize f(x, y) + g(L(x, y))

• obviously more fi functions can be added

6

Sums of several functions

• assume f, g1, g2 proper closed and convex, L1, L2 linear operators

• we want to solve

minimize f(x) + g1(y) + g2(z)
subject to L1x = y

L2x = z

• let g(y, z) = g1(y) + g2(z) and L(x) = (L1x, L2x)

• then problem is

minimize f(x) + g(Lx)

• obviously more gi functions can be added

7

Monotone inclusion problems

• optimality conditions is sum of maximally monotone operators

0 ∈ Ax+Bx

for different A and B

• consider the more general formulation

0 ∈ Ax+ L∗B(Lx)

• inclusion holds if and only if

0 ∈ Ax+ L∗µ
0 ∈ B(Lx)− µ ⇔ 0 ∈ Ax+ L∗µ

0 ∈ B−1µ− Lx

• let F (x, µ) = (Ax,B−1µ) and M(x, µ) = (L∗µ,−Lx)

• condition is sum of maximally monotone operators

0 ∈ F (x, µ) +M(x, µ)

8

How to develop an algorithm

• write optimality condition as fixed-point to some operator

• show convergence properties when iterating operator

9

Subgradient method

• assume f is closed and convex

• optimality condition

x = argmin
x

f(x) ⇔ 0 ∈ ∂f(x) ⇔ x ∈ x− γ∂f(x)

• algorithm:

xk+1 = xk − γ∂f(xk)

• if we find a fixed-point, we solve the problem

• does it converge to a fixed-point?

10

Example

• consider minimizing the function f(x) = |x|:
• let γ = c:

• iteration if xk 6= nc where n = . . . ,−1, 0, 1, . . .:

xk+1 = xk − c sign(x)

• will jump back and forth over optimal point

• fixed step-size does not work

11

Example

• consider minimizing the function f(x) = |x|:
• let γ = c:

• iteration if xk 6= nc where n = . . . ,−1, 0, 1, . . .:

xk+1 = xk − c sign(x)

• will jump back and forth over optimal point

• fixed step-size does not work

11

Example

• consider minimizing the function f(x) = |x|:
• let γ = c:

• iteration if xk 6= nc where n = . . . ,−1, 0, 1, . . .:

xk+1 = xk − c sign(x)

• will jump back and forth over optimal point

• fixed step-size does not work

11

Example

• consider minimizing the function f(x) = |x|:
• let γ = c:

• iteration if xk 6= nc where n = . . . ,−1, 0, 1, . . .:

xk+1 = xk − c sign(x)

• will jump back and forth over optimal point

• fixed step-size does not work

11

Example

• consider minimizing the function f(x) = |x|:
• let γ = c:

• iteration if xk 6= nc where n = . . . ,−1, 0, 1, . . .:

xk+1 = xk − c sign(x)

• will jump back and forth over optimal point

• fixed step-size does not work

11

Example

• consider minimizing the function f(x) = |x|:
• let γ = c:

• iteration if xk 6= nc where n = . . . ,−1, 0, 1, . . .:

xk+1 = xk − c sign(x)

• will jump back and forth over optimal point

• fixed step-size does not work

11

Example

• consider minimizing the function f(x) = |x|:
• let γ = c:

• iteration if xk 6= nc where n = . . . ,−1, 0, 1, . . .:

xk+1 = xk − c sign(x)

• will jump back and forth over optimal point

• fixed step-size does not work

11

Not descent method

• a (-) subgradient does not necessarily specify a descent direction

• subgradient is in normal cone to level set:

−N(x) N(x)Sc(f)

• would want to find element in tangent cone to get descent

Sc(f)

• such elements hard to compute

12

Not descent method

• a (-) subgradient does not necessarily specify a descent direction

• subgradient is in normal cone to level set:

−N(x) N(x)Sc(f)

• would want to find element in tangent cone to get descent

Sc(f)

• such elements hard to compute

12

Graphical interpretation of convergence

• assume that u ∈ ∂f(x) and ∂f(x) ⊆ BG(x) for all x
• subdifferential definition f? := f(x?) ≥ f(x) + 〈u, x? − x〉 implies

〈u, x− x?〉 ≥ f(x)− f? ≥ 0

• x− γu can end up in gray region:

{

γ(f(x)− f?)

x? x

γG

• half-circle due to γ∂f(x) ⊆ BγG(x)
• vertical line due to scalar-product inequality

(left of x if f(x) > f(x?)

13

Graphical interpretation of convergence

• if γ small enough, x− γu ends up somewhere in gray region:

γ(f(x)− f?)

x? x

• i.e., the distance to the fixed-point is decreased

• this γ value is not known a priori

• it depends on f(x)− f? ⇒ diminishing step-size

14

Convergence

• let u ∈ ∂f(xk) and ∂f(x) ⊆ BG(0) for all x

• recall used subgradient definition:

f? = f(x?) ≥ f(xk) + 〈u, x? − xk〉

• then

‖xk+1 − x?‖2 = ‖xk − γku− x?‖2

= ‖xk − x?‖2 − 2γk〈u, xk − x?〉+ γ2k‖u‖2

≤ ‖xk − x?‖2 − 2γk(f(xk)− f?) + γ2kG
2

15

Convergence

• apply recursively up to k = n to get

(0 ≤)‖xn+1 − x?‖2 ≤ ‖x0 − x?‖2 − 2

n∑
k=0

γk(f(xk)− f?) +G2
n∑
k=0

γ2k

• let fnbest = mink=1,...,n f(xk), since f(xk) ≥ f?, we have

(fnbest − f?)
n∑
i=0

γk =

n∑
i=0

γk(fnbest − f?) ≤
n∑
k=0

γk(f(xk)− f?)

• therefore

fbest − f? ≤
‖x0 − x?‖2 +G2

∑n
k=0 γ

2
k

2
∑n
k=0 γk

16

Step-size requirements

• under what conditions of γk do we get convergence?

fbest − f? ≤
‖x0 − x?‖2 +G2

∑n
k=0 γ

2
k

2
∑n
k=0 γk

• if, for instance,

∞∑
k=0

γk =∞,
∞∑
k=0

γ2k <∞

then numerator finite but denominator →∞
• example: γk = c/k for c ∈ (0,∞)

17

Variations

• stochastic gradient methods
• noisy unbiased subgradients
• similar convergence result in expectation

• dual averaging
• accumulates subgradients
• also includes a prox-step (if desired)
• has improved convergence compared to standard subgradient

method

18

Gradient method

• assume f is closed convex and continuously differentiable

• optimality condition:

x = argmin
x

f(x) ⇔ 0 = ∇f(x) ⇔ x = x− γ∇f(x)

• the gradient method is given by

xk+1 = xk − γ∇f(xk)

• is it guaranteed to converge for some fixed γ?

• no, not, e.g., for f(x) = x4

19

Gradient method

• assume f is closed convex and continuously differentiable

• optimality condition:

x = argmin
x

f(x) ⇔ 0 = ∇f(x) ⇔ x = x− γ∇f(x)

• the gradient method is given by

xk+1 = xk − γ∇f(xk)

• is it guaranteed to converge for some fixed γ?

• no, not, e.g., for f(x) = x4

19

Divergent example with fixed step-size

• f(x) = x4, then gradient step is

xk+1 = xk − γ4x3k = xk(1− γ4x2k)

• let x0 > 1
2
√
γ , then (1− γ4x20) < −1 which implies that

x1 < −x0

• apply iteratively (with sign shift) to show divergence

• need also Lipschitz continuity of gradient!

20

Convergence

• assume that f is β-smooth

• equivalent to that ∇f is β-Lipschitz continuous (⇒ 1
β -cocoercive)

• assume that γ = 2α/β and α ∈ (0, 1) (i.e., γ ∈ (0, 2
β))

• then (Id− γ∇f) is α-averaged

γβ = 2α

x

γ∇f

−2α

x

−γ∇f

1− 2α

x

Id− γ∇f

• iteration of α-averaged operator converges to fixed-point

• the convergence is sublinear

21

Stronger convergence

• assume that f is σ-strongly convex and β-smooth

• then γf − γσ
2 ‖ · ‖

2 is γ(β − σ)-smooth

• and γ(∇f − σId) is γ(β − σ)-Lipschitz

• then (Id− γ∇f) is max(γβ − 1, 1− γσ)-contractive

x

1− γβ 1− γσ

Id− γ∇f

x

γβγσ

γ∇f

x

γ(β − σ)0

γ∇f − γσId

• here, we get linear convergence

22

Computing the step-size

• need step-size γ ∈ (0, 2
β) to guarantee convergence

• need cocoercivity parameter 1
β to find convergent γ

23

Minimizing a quadratic approximation

• consider:

xk+1 = argmin
x
{f(xk) + 〈∇f(xk), x− xk〉+ 1

2γ ‖x− x
k‖2}

• optimality condition is 0 = ∇f(xk) + 1
γ (x− xk), i.e.,

xk+1 = xk − γ∇f(xk)

• so the gradient method minimizes a quadratic approximation of f

• since f is β-smooth, we have for all x, y:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β
2 ‖x− y‖

2

• if γ ≤ 1
β , the quadratic approximation majorizes f

(the gradient method is a majorization minimization algorithm)

24

Descent method

• the gradient method can be interpreted as a descent method

• since f is β-smooth, we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β
2 ‖x− y‖

2

• let y = xk+1 = xk − γ∇f(xk) and x = xk, then

f(xk+1) ≤ f(xk)− 〈∇f(xk), γ∇f(xk)〉+ β
2 ‖γ∇f(xk)‖2

≤ f(xk)− γ(1− γβ
2)‖∇f(xk)‖2

• that is, it is a descent method if γ(1− γβ
2) > 0 or γ ∈ (0, 2

β)

(same condition as before)

25

General Lipschitz operators

• suppose that T is β-Lipschitz:

x

γT

x

−γT

x

Id− γT

• cannot make Id− γT nonexpansive independent of γ

• iterating forward step of Lipschitz T not guaranteed to converge

• in convex function case Lipschitz ⇒ cocoercivity

• cocoercivity is important property for convergence!

• if T cocoercive, we get convergence as for gradient method!
(forward step method)

26

Accelerated versions

• here convergence means convergence in function value

• optimal convergence using gradient information is O(1/k2)

• standard gradient method has nonoptimal convergence: O(1/k)

• accelerated scheme exists that achieves optimal rate O(1/k2)

• it adds a very specific varying momentum term to iterates

• above holds in general sublinear case

• for linearly convergent case, similar acceleration can be made

27

Proximal point algorithm

• suppose that f is proper closed and convex and not differentiable

• optimality condition:

0 ∈ ∂f(x)⇔ x ∈ x+ γ∂f(x)

⇔ x ∈ (Id + γ∂f)x

⇔ x = (Id + γ∂f)−1x

⇔ x = proxγf (x)

• iterate this to get proximal point algorithm

xk+1 = proxγf (xk) := min
x
{f(x) + 1

2γ ‖x− x
k‖2}

28

Prox operator properties

recall prox operator properties (and 0 ≤ σ ≤ β):

• f convex ⇒ proxf is 1-cocoercive or 1
2 -averaged

• f is σ-strongly convex ⇒ proxf is (1 + σ)-cocoercive

• f is β-smooth ⇒ proxf is β
2(1+β) -averaged (< 1

2 -averaged)

• f is σ-strongly convex and β-smooth
• β > σ: proxf − 1

1+β
Id is 1

1
1+σ

− 1
1+β

-cocoercive

• β = σ: proxf − 1
1+β

Id is 0-Lipschitz

σ = 0
β =∞

σ > 0
β =∞

σ = 0
β <∞

σ > 0
β <∞

• all these are 1-cocoercive, hence 1
2 -averaged

29

Convergence

• since always 1
2 -averaged ⇒ sublinear convergence

• if σ > 0 then proxf is contractive ⇒ linear convergence

σ = 0
β =∞

σ > 0
β =∞

σ = 0
β <∞

σ > 0
β <∞

30

Relaxed iterations

• we can relax the proximal point algorithm with θ ∈ (0, 2):

xk+1 = ((1− θ)Id + θproxγf)xk

• example with θ = 1.5:

proxγf θproxγf (1− θ)Id + θproxγf

• θ = 1.5 gives α = 0.75-averaged iteration

• θ > 1 is called over-relaxation and θ < 1 is called under-relaxation

31

Relation to averaged iteration

• let α = θ
2 ∈ (0, 1)

• we can write the relaxed proximal point algorithm as

xk+1 = ((1− θ)Id + θproxγf)xk

= ((1− 2α)Id + 2αproxγf)xk

= ((1− α)Id + α(2proxγf − Id))xk

= ((1− α)Id + αRγf)xk

where Rγf = 2proxγf − Id is the reflected resolvent

• since Rγf is nonexpansive, it is α = θ
2 -averaged iteration

32

Iteration cost

• the problem to be solved is

minimize f(x)

• the algorithm solves in each iteration

min
x
{f(x) + 1

2γ ‖x− x
k‖2}

• often as difficult to solve as original problem

• (however, has nice convergence guarantees)

33

Resolvent method

• suppose A is maximally monotone

• we want to find x such that 0 ∈ Ax
• condition:

0 ∈ Ax⇔ x ∈ x+ γAx

⇔ x ∈ (Id + γA)x

⇔ x = (Id + γA)−1x

⇔ x = JγAx

• construct an algorithm from this

xk+1 = JγAx
k

• if fixed-point found, inclusion problem solved

• if A = ∂f , we get proximal point algorithm

• (the resolvent method is also often called proximal point method)

34

Resolvent properties

recall prox operator properties (and 0 ≤ σ ≤ β):

• A monotone ⇒ JA is 1-cocoercive or 1
2 -averaged

• A is σ-monotone ⇒ JA is (1 + σ)-cocoercive

• A is β-Lipschitz ⇒

2〈JAx− JAy, x− y〉 ≥ ‖x− y‖2 + (1− β2)‖JAx− JAy‖2

σ = 0
β =∞

σ > 0
β =∞

σ = 0
β = 1

σ ∈ (0, 1)
β = 1

• all these are 1-cocoercive, hence 1
2 -averaged

35

Convergence

• since always 1
2 -averaged ⇒ sublinear convergence

• if σ > 0 ⇒ JA contractive ⇒ linear convergence

σ = 0
β =∞

σ > 0
β =∞

σ = 0
β = 1

σ ∈ (0, 1)
β = 1

36

Relaxed iterations

• as with proximal point algorithm, we can relax with θ ∈ (0, 2):

xk+1 = ((1− θ)Id + θJγA)xk

• example with θ = 1.5:

JγA θJγA (1− θ)Id + θJγf

• equivalent to (as in proximal point case)

xk+1 = ((1− α)Id + αRγA)xk

where α = θ
2 and RγA = 2JγA − Id

37

Rewriting the iterates

• the iterations of the resolvent algorithm satisfies

xk+1 = (Id + γA)−1xk

⇔ xk ∈ (Id + γA)xk+1

⇔ 0 ∈ γAxk+1 + (xk+1 − xk)

• iterates that satisfy this correspond to iteration of a 1
2 -averaged

operator JγA

38

Resolvent method with skewed metric

• what if we have iterates that satisfy

0 ∈ γAxk+1 +G(xk+1 − xk)

for some positive semi-definite G?

• assume that xk+1 is unique (holds, e.g., if G is positive definite)

• then Gxk ∈ (A+G)xk+1 and xk+1 = (A+G)−1Gxk

• let T = (A+G)−1G, then T is 1
2 -averaged in G-norm

39

Proof of averagedness

• recall T = (A+G)−1G, let x+ = Tx, then

(A+G)x+ = ATx+GTx 3 Gx

• then, we can choose x̄1 ∈ ATx1 and x̄2 ∈ ATx2 such that

x̄1 +GTx1 = Gx1, x̄2 +GTx2 = Gx2

• since A is monotone, we have

〈x̄1 − x̄2, Tx1 − Tx2〉 ≥ 0

• therefore

‖Tx1 − Tx2‖2G + 0 ≤ 〈G(Tx1 − Tx2), Tx1 − Tx2〉
+ 〈x̄1 − x̄2, Tx1 − Tx2〉

= 〈G(x1 − x2), Tx1 − Tx2〉
= 〈Tx1 − Tx2, x1 − x2〉G

• that is 1-cocoercive, 1
2 -averaged, firmly nonexpansive in G-norm

40

Convergence

• analyze convergence of xk+1 = (A+G)1Gxk = Txk

• completion of squares gives

‖Tx1 − Tx2‖2G ≤ 〈Tx1 − Tx2, x1 − x2〉G
= 1

2‖Tx1 − Tx2‖
2
G + 1

2‖x1 − x2‖
2
G

− 1
2‖(Id− T)x1 + (Id− T)x2‖2G

• that is (compare to 1
2 -averaged, then G = Id)

‖(Id− T)x1 + (Id− T)x2‖2G ≤ ‖x1 − x2‖2G − ‖Tx1 − Tx2‖2G
• as in normal 1

2 -averaged case, let x1 = xk, x2 = x∗ where
Tx∗ = x∗:

‖(Id− T)xk‖2G ≤ ‖xk − x∗‖2G − ‖Txk − Tx∗‖2G
or

‖xk − xk+1‖2G ≤ ‖xk − x∗‖2G − ‖xk+1 − x∗‖2G
• telescope summation gives convergence in G-norm

41

Is resolvent algorithm useful?

• many algorithms can be seen as resolvent method for some
maximally monotone operator A

• actually T is 1
2 -averaged with domT = Rn ⇔ T = (Id +A)−1

with A maximally monotone

• all algorithm that iterate 1
2 -averaged operators are resolvent

algorithms

• if iterating averaged operator with other α, can be seen as
resolvent method with under- or over-relaxation

42

Forward-backward splitting

• suppose that A is maximally monotone and B is 1
β -cocoercive

• we want to find x such that

0 ∈ Ax+Bx

• for any γ ∈ (0,∞), such an x satisfies

0 ∈ Ax+Bx⇐⇒ −γBx ∈ γAx
⇐⇒ (Id− γB)x ∈ (Id + γA)x

⇐⇒ JγA(Id− γB)x = x

• construct algorithm from this

xk+1 = JγA(Id− γB)xk

(first take forward step then backward (resolvent) step)

43

Convergence

• let γ = 2α/β and α ∈ (0, 1)

• then (Id− γB) is α-averaged since B is 1
β -cocoercive

γβ = 2α

x

γB

−2α

x

−γB

1− 2α

x

Id− γB

• A is maximally monotone ⇒ JγA is 1
2 -averaged (for any γ > 0)

• therefore, JγA(Id− γB) is composition of averaged operators

• composition of averaged operators is averaged

⇒ algorithm is iteration of averaged operator!

⇒ sublinear convergence

44

Stronger convergence results

• A is σ-strongly monotone ⇒ JγA contractive

• B is σ-strongly monotone ⇒ (Id− γB) contractive (for appr. γ)

• in either of these cases JγA(Id− γB) is contractive
(composition of nonexp. and contractive operator is contractive)

⇒ algorithm converges linearly

• (obviously, the contractions factors can be quantified)

45

Application to optimization

• suppose that f is β-smooth and g is proper closed convex

• we want to solve

minimize f(x) + g(x)

• under suitable constraint qualification, it is equivalent to finding x

0 ∈ ∇f(x) + ∂g(x)

• can apply FB splitting since ∇f cocoercive and ∂g monotone

• also called (primal) proximal gradient method

46

Projected gradient method

• assume that C is a nonempty closed and convex set

• let g = ιC then FB-splitting or proximal gradient method becomes

xk+1 = Jγg(Id− γ∇f)xk

= proxγg(Id− γ∇f)xk

= projC(Id− γ∇f)xk

since

proxγg = argmin
x
{ιC(x) + 1

2γ ‖x− z‖
2} = argmin

x∈C
‖x− z‖ =: projC(z)

• that is, it is the projected gradient method

• proximal gradient method generalization of this

47

Convergence

• sublinear convergence in general case

• linear convergence under strong convexity assumptions on f or g

• (this follows from general analysis above)

48

Problem with composition

• assume f is β-smooth, g proper closed convex, L linear

• what if we want to solve

minimize f(x) + (g ◦ L)(x) = f(x) + g(Lx)

• apply forward-backward splitting:

xk+1 = proxγ(g◦L)(Id− γ∇f)xk

• often proxγ(g◦L)(z) expensive to compute:

proxγ(g◦L)(z) = argmin
x

(g(Lx) + 1
2γ ‖x− z‖

2}

if g(y) =
∑m
i gi(yi), separability of prox lost due to L

49

Problem with composition

• we want again to solve

minimize f(x) + (g ◦ L)(x) = f(x) + g(Lx)

• now with f being σ-strongly convex

• formulate dual problem

minimize (f∗ ◦ (−L∗))(µ) + g∗(µ) = f∗(−L∗µ) + g∗(µ)

• apply forward-backward splitting on dual:

µk+1 = proxγg∗(Id− γ∇(f∗ ◦ (−L∗)))µk

= proxγg∗(µk + γL∇f∗(−L∗µk))

• operator L only gives rise to multiplication with L and L∗

50

Convergence

• dual problem

minimize (f∗ ◦ (−L∗))(µ) + g∗(µ)

• f is σ-strongly convex ⇒
• f∗ is 1

σ
-smooth

• (f∗ ◦ (−L∗)) is ‖L
∗‖2
σ

-smooth
• ∇(f∗ ◦ (−L∗)) is σ

‖L∗‖2 -cocoercive

• g∗ proper closed convex

• therefore assumptions to apply FB-splitting on dual are met!

⇒ sublinear convergence if γ = 2ασ/‖L∗‖2 and α ∈ (0, 1)

51

Stronger convergence

• dual proximal gradient method (dual FB splitting)

µk+1 = proxγg∗(Id− γ∇(f∗ ◦ (−L∗)))µk

• we get linear convergence if either operator is contractive
• proxγg∗ contractive if g∗ is strongly convex iff g is smooth
• (Id− γ∇(f∗ ◦ (−L∗))) contractive if f∗ ◦ (−L∗) strongly convex

(holds if f is smooth and L is surjective (has full row rank))

52

Solving the primal

• algorithm solves dual, can we find primal solution?

• rewrite algorithm

µk+1 = proxγg∗(Id + γL∇f∗(−L∗µ))µk

by letting xk = ∇f∗(−L∗µk) to get

xk = ∇f∗(−L∗µk)

µk+1 = proxγg∗(µk + γLxk)

53

Solving the primal cont’d

• we know that µk converges to fixed-point µ̄ ⇒ xk → x̄:

x̄ = ∇f∗(−L∗µ̄)

µ̄ = proxγg∗(µ̄+ γLx̄)

• apply Fermat’s rule to prox expression:

0 ∈ ∂g∗(µ̄) + γ−1(µ̄− (µ̄+ γLx̄) = ∂g∗(µ̄)− Lx̄

• recall that

x ∈ ∂f∗(−L∗µ), Lx ∈ ∂g∗(µ)

are necessary and sufficient optimality conditions

• therefore, algorithm can output primal and dual optimal points

54

Reformulation

• consider Moreau’s identity

proxγg∗(γz) = γ(z − proxγ−1g(z))

• using this, the dual FB algorithm

xk = ∇f∗(−L∗µk)

µk+1 = proxγg∗(µk + γLxk)

can be written as

xk = ∇f∗(−L∗µk)

yk = proxγ−1g(γ
−1µk + Lxk)

µk+1 = µk + γ(Lxk − yk)

(where z in Moreau’s identity is γ−1µk + Lxk)

55

Reformulation cont’d

• state explicitly the gradient of the conjugate f∗

∇f∗(−L∗µ) = argmax
x
{〈−L∗µ, x〉 − f(x)}

= argmin
x
{f(x) + 〈x, L∗µ〉}

• state explicitly proxγ−1g:

proxγ−1g(γ
−1µk + Lxk)

= argmin
y
{g(y) + 〈µk, Lxk − y〉+ γ

2 ‖y − Lx
k‖2}

• then dual proximal gradient method can be written as

xk = argmin
x
{f(x) + 〈x, L∗µ〉}

yk = argmin
y
{g(y) + 〈µk, Lxk − y〉+ γ

2 ‖y − Lx
k‖2}

µk+1 = µk + γ(Lxk − yk)

56

Several g functions

• assume we want to solve

minimize f(x) +

k∑
i=1

gi(yi)

subject to Lix = yi for all i = 1, . . . , k

• assume that f is strongly convex and gi are proper closed convex
• introduce

y =

y1...
yk

 , L =

L1

...
Lk

 , g(y) =

k∑
i=1

gi(yi)

• then problem is

minimize f(x) +

k∑
i=1

g(y)

subject to Lx = y

• can apply forward-backward splitting to dual
• will get k parallel prox on the g∗i :s 57

Alternative formulation

• consider solving minx{f(x) + g(x)} and let

xk+1 = argmin
x
{f(xk) + 〈∇f(xk), x− xk〉+ 1

2γ ‖x− x
k‖2 + g(x)}

• Fermat’s rule implies

0 ∈ ∇f(xk) + γ−1(xk+1 − xk) + ∂g(xk+1)

= ∂g(xk+1) + γ−1(xk+1 − (xk − γ∇f(xk)))

= γ∂g(xk+1) + xk+1 − (xk − γ∇f(xk))

which is Fermat’s rule for

xk+1 = proxγg(Id− γ∇f)xk

i.e., the proximal gradient method

• can be analyzed as a descent method

58

Generalized metric

• assume that L is positive definite

• consider solving minx{f(x) + g(x)} and let

xk+1 = argmin
x
{f(xk) + 〈∇f(xk), x− xk〉+ 1

2‖x− x
k‖2L + g(x)}

• algorithm converges if f 1-smooth w.r.t. ‖ · ‖2L, i.e., if for all x, y

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ 1
2‖x− y‖

2
L

• might give better approximation of f in algorithm

⇒ might improve performance

• if L = γ−1I, we get standard method

59

Remarks

• can use back-tracking if feasible γ not known

• back-tracking can improve performance

• can also use acceleration similarly to in the gradient method

• acceleration achieves optimal convergence rate

• acceleration methods are sensitive to errors in computations
(reason: the momentum term keeps all old iterates)

60

