Algorithms I

Pontus Giselsson

Today's lecture

- optimality conditions
- subgradient method
- gradient method
- proximal point method (resolvent method)
- forward-backward splitting

Optimality conditions

- assume f, g proper closed and convex, L linear operator
- we want to solve

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+g(y) \\
\text { subject to } & L x=y
\end{array}
$$

- optimality condition (Fermat's rule)

$$
0 \in \partial f(x)+\partial(g \circ L)(x)
$$

- optimality condition of dual

$$
0 \in \partial\left(f^{*} \circ-L^{*}\right)(\mu)+\partial g^{*}(\mu)
$$

- both can be written as sum of maximally monotone operators

Optimality conditions cont'd

- the condition $0 \in \partial f(x)+\partial(g \circ L)(x)$ can be written as

$$
\begin{aligned}
& 0 \in \partial f(x)+L^{*} \mu \\
& 0 \in \partial g(y)-\mu \\
& 0=L x-y
\end{aligned}
$$

- or

$$
\begin{aligned}
& 0 \in \partial f(x)+L^{*} \mu \\
& 0 \in \partial g^{*}(\mu)-L x
\end{aligned}
$$

Optimality conditions cont'd

- let

$$
F(x, \mu)=\left(\partial f(x), \partial g^{*}(\mu)\right), \quad M(x, \mu)=\left(L^{*} \mu,-L x\right)
$$

- F, M maximally monotone (M skew symmetric, i.e. $M^{*}=-M$)
- consider the optimality condition

$$
\begin{aligned}
& 0 \in \partial f(x)+L^{*} \mu \\
& 0 \in \partial g^{*}(\mu)-L x
\end{aligned}
$$

- it can be written as

$$
0 \in F(x, \mu)+M(x, \mu)
$$

i.e., sum of two maximal monotone operators

Sums of several functions

- assume f_{1}, f_{2}, g proper closed and convex, L_{1}, L_{2} linear operators
- we want to solve

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}(x)+f_{2}(y)+g(z) \\
\text { subject to } & L_{1} x+L_{2} y=z
\end{array}
$$

- let $f(x, y)=f_{1}(x)+f_{2}(y)$ and $L(x, y)=L_{1} x+L_{2} y$
- then problem is

$$
\text { minimize } f(x, y)+g(L(x, y))
$$

- obviously more f_{i} functions can be added

Sums of several functions

- assume f, g_{1}, g_{2} proper closed and convex, L_{1}, L_{2} linear operators
- we want to solve

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+g_{1}(y)+g_{2}(z) \\
\text { subject to } & L_{1} x=y \\
& L_{2} x=z
\end{array}
$$

- let $g(y, z)=g_{1}(y)+g_{2}(z)$ and $L(x)=\left(L_{1} x, L_{2} x\right)$
- then problem is

$$
\operatorname{minimize} f(x)+g(L x)
$$

- obviously more g_{i} functions can be added

Monotone inclusion problems

- optimality conditions is sum of maximally monotone operators

$$
0 \in A x+B x
$$

for different A and B

- consider the more general formulation

$$
0 \in A x+L^{*} B(L x)
$$

- inclusion holds if and only if

$$
\begin{aligned}
& 0 \in A x+L^{*} \mu \quad \Leftrightarrow \quad 0 \in A x+L^{*} \mu \\
& 0 \in B(L x)-\mu \quad 0 \in B^{-1} \mu-L x
\end{aligned}
$$

- let $F(x, \mu)=\left(A x, B^{-1} \mu\right)$ and $M(x, \mu)=\left(L^{*} \mu,-L x\right)$
- condition is sum of maximally monotone operators

$$
0 \in F(x, \mu)+M(x, \mu)
$$

How to develop an algorithm

- write optimality condition as fixed-point to some operator
- show convergence properties when iterating operator

Subgradient method

- assume f is closed and convex
- optimality condition

$$
x=\underset{x}{\operatorname{argmin}} f(x) \quad \Leftrightarrow \quad 0 \in \partial f(x) \quad \Leftrightarrow \quad x \in x-\gamma \partial f(x)
$$

- algorithm:

$$
x^{k+1}=x^{k}-\gamma \partial f\left(x^{k}\right)
$$

- if we find a fixed-point, we solve the problem
- does it converge to a fixed-point?

Example

- consider minimizing the function $f(x)=|x|$:
- let $\gamma=c$:
- iteration if $x^{k} \neq n c$ where $n=\ldots,-1,0,1, \ldots$:

$$
x^{k+1}=x^{k}-c \operatorname{sign}(x)
$$

- will jump back and forth over optimal point

- fixed step-size does not work

Example

- consider minimizing the function $f(x)=|x|$:
- let $\gamma=c$:
- iteration if $x^{k} \neq n c$ where $n=\ldots,-1,0,1, \ldots$:

$$
x^{k+1}=x^{k}-c \operatorname{sign}(x)
$$

- will jump back and forth over optimal point

- fixed step-size does not work

Example

- consider minimizing the function $f(x)=|x|$:
- let $\gamma=c$:
- iteration if $x^{k} \neq n c$ where $n=\ldots,-1,0,1, \ldots$:

$$
x^{k+1}=x^{k}-c \operatorname{sign}(x)
$$

- will jump back and forth over optimal point

- fixed step-size does not work

Example

- consider minimizing the function $f(x)=|x|$:
- let $\gamma=c$:
- iteration if $x^{k} \neq n c$ where $n=\ldots,-1,0,1, \ldots$:

$$
x^{k+1}=x^{k}-c \operatorname{sign}(x)
$$

- will jump back and forth over optimal point

- fixed step-size does not work

Example

- consider minimizing the function $f(x)=|x|$:
- let $\gamma=c$:
- iteration if $x^{k} \neq n c$ where $n=\ldots,-1,0,1, \ldots$:

$$
x^{k+1}=x^{k}-c \operatorname{sign}(x)
$$

- will jump back and forth over optimal point

- fixed step-size does not work

Example

- consider minimizing the function $f(x)=|x|$:
- let $\gamma=c$:
- iteration if $x^{k} \neq n c$ where $n=\ldots,-1,0,1, \ldots$:

$$
x^{k+1}=x^{k}-c \operatorname{sign}(x)
$$

- will jump back and forth over optimal point

- fixed step-size does not work

Example

- consider minimizing the function $f(x)=|x|$:
- let $\gamma=c$:
- iteration if $x^{k} \neq n c$ where $n=\ldots,-1,0,1, \ldots$:

$$
x^{k+1}=x^{k}-c \operatorname{sign}(x)
$$

- will jump back and forth over optimal point

- fixed step-size does not work

Not descent method

- a (-) subgradient does not necessarily specify a descent direction
- subgradient is in normal cone to level set:

Not descent method

- a (-) subgradient does not necessarily specify a descent direction
- subgradient is in normal cone to level set:

- would want to find element in tangent cone to get descent

- such elements hard to compute

Graphical interpretation of convergence

- assume that $u \in \partial f(x)$ and $\partial f(x) \subseteq B_{G}(x)$ for all x
- subdifferential definition $f^{\star}:=f\left(x^{\star}\right) \geq f(x)+\left\langle u, x^{\star}-x\right\rangle$ implies

$$
\left\langle u, x-x^{\star}\right\rangle \geq f(x)-f^{\star} \geq 0
$$

- $x-\gamma u$ can end up in gray region:

- half-circle due to $\gamma \partial f(x) \subseteq B_{\gamma G}(x)$
- vertical line due to scalar-product inequality (left of x if $f(x)>f\left(x^{\star}\right)$

Graphical interpretation of convergence

- if γ small enough, $x-\gamma u$ ends up somewhere in gray region:

- i.e., the distance to the fixed-point is decreased
- this γ value is not known a priori
- it depends on $f(x)-f^{\star} \Rightarrow$ diminishing step-size

Convergence

- let $u \in \partial f\left(x^{k}\right)$ and $\partial f(x) \subseteq B_{G}(0)$ for all x
- recall used subgradient definition:

$$
f^{\star}=f\left(x^{\star}\right) \geq f\left(x^{k}\right)+\left\langle u, x^{\star}-x^{k}\right\rangle
$$

- then

$$
\begin{aligned}
\left\|x^{k+1}-x^{\star}\right\|^{2} & =\left\|x^{k}-\gamma_{k} u-x^{\star}\right\|^{2} \\
& =\left\|x^{k}-x^{\star}\right\|^{2}-2 \gamma_{k}\left\langle u, x^{k}-x^{\star}\right\rangle+\gamma_{k}^{2}\|u\|^{2} \\
& \leq\left\|x^{k}-x^{\star}\right\|^{2}-2 \gamma_{k}\left(f\left(x^{k}\right)-f^{\star}\right)+\gamma_{k}^{2} G^{2}
\end{aligned}
$$

Convergence

- apply recursively up to $k=n$ to get

$$
(0 \leq)\left\|x^{n+1}-x^{\star}\right\|^{2} \leq\left\|x^{0}-x^{\star}\right\|^{2}-2 \sum_{k=0}^{n} \gamma_{k}\left(f\left(x^{k}\right)-f^{\star}\right)+G^{2} \sum_{k=0}^{n} \gamma_{k}^{2}
$$

- let $f_{\text {best }}^{n}=\min _{k=1, \ldots, n} f\left(x^{k}\right)$, since $f\left(x^{k}\right) \geq f^{\star}$, we have

$$
\left(f_{\text {best }}^{n}-f^{\star}\right) \sum_{i=0}^{n} \gamma_{k}=\sum_{i=0}^{n} \gamma_{k}\left(f_{\text {best }}^{n}-f^{\star}\right) \leq \sum_{k=0}^{n} \gamma_{k}\left(f\left(x^{k}\right)-f^{\star}\right)
$$

- therefore

$$
f_{\text {best }}-f^{\star} \leq \frac{\left\|x^{0}-x^{\star}\right\|^{2}+G^{2} \sum_{k=0}^{n} \gamma_{k}^{2}}{2 \sum_{k=0}^{n} \gamma_{k}}
$$

Step-size requirements

- under what conditions of γ_{k} do we get convergence?

$$
f_{\text {best }}-f^{\star} \leq \frac{\left\|x^{0}-x^{\star}\right\|^{2}+G^{2} \sum_{k=0}^{n} \gamma_{k}^{2}}{2 \sum_{k=0}^{n} \gamma_{k}}
$$

- if, for instance,

$$
\sum_{k=0}^{\infty} \gamma_{k}=\infty, \quad \sum_{k=0}^{\infty} \gamma_{k}^{2}<\infty
$$

then numerator finite but denominator $\rightarrow \infty$

- example: $\gamma_{k}=c / k$ for $c \in(0, \infty)$

Variations

- stochastic gradient methods
- noisy unbiased subgradients
- similar convergence result in expectation
- dual averaging
- accumulates subgradients
- also includes a prox-step (if desired)
- has improved convergence compared to standard subgradient method

Gradient method

- assume f is closed convex and continuously differentiable
- optimality condition:

$$
x=\underset{x}{\operatorname{argmin}} f(x) \quad \Leftrightarrow \quad 0=\nabla f(x) \quad \Leftrightarrow \quad x=x-\gamma \nabla f(x)
$$

- the gradient method is given by

$$
x^{k+1}=x^{k}-\gamma \nabla f\left(x^{k}\right)
$$

- is it guaranteed to converge for some fixed γ ?

Gradient method

- assume f is closed convex and continuously differentiable
- optimality condition:

$$
x=\underset{x}{\operatorname{argmin}} f(x) \quad \Leftrightarrow \quad 0=\nabla f(x) \quad \Leftrightarrow \quad x=x-\gamma \nabla f(x)
$$

- the gradient method is given by

$$
x^{k+1}=x^{k}-\gamma \nabla f\left(x^{k}\right)
$$

- is it guaranteed to converge for some fixed γ ?
- no, not, e.g., for $f(x)=x^{4}$

Divergent example with fixed step-size

- $f(x)=x^{4}$, then gradient step is

$$
x_{k+1}=x_{k}-\gamma 4 x_{k}^{3}=x_{k}\left(1-\gamma 4 x_{k}^{2}\right)
$$

- let $x^{0}>\frac{1}{2 \sqrt{\gamma}}$, then $\left(1-\gamma 4 x_{0}^{2}\right)<-1$ which implies that

$$
x_{1}<-x_{0}
$$

- apply iteratively (with sign shift) to show divergence
- need also Lipschitz continuity of gradient!

Convergence

- assume that f is β-smooth
- equivalent to that ∇f is β-Lipschitz continuous ($\Rightarrow \frac{1}{\beta}$-cocoercive)
- assume that $\gamma=2 \alpha / \beta$ and $\alpha \in(0,1)$ (i.e., $\left.\gamma \in\left(0, \frac{2}{\beta}\right)\right)$
- then $(\operatorname{Id}-\gamma \nabla f)$ is α-averaged

- iteration of α-averaged operator converges to fixed-point
- the convergence is sublinear

Stronger convergence

- assume that f is σ-strongly convex and β-smooth
- then $\gamma f-\frac{\gamma \sigma}{2}\|\cdot\|^{2}$ is $\gamma(\beta-\sigma)$-smooth
- and $\gamma(\nabla f-\sigma \mathrm{Id})$ is $\gamma(\beta-\sigma)$-Lipschitz
- then $(\operatorname{Id}-\gamma \nabla f)$ is $\max (\gamma \beta-1,1-\gamma \sigma)$-contractive

- here, we get linear convergence

Computing the step-size

- need step-size $\gamma \in\left(0, \frac{2}{\beta}\right)$ to guarantee convergence
- need cocoercivity parameter $\frac{1}{\beta}$ to find convergent γ

Minimizing a quadratic approximation

- consider:

$$
x^{k+1}=\underset{x}{\operatorname{argmin}}\left\{f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle+\frac{1}{2 \gamma}\left\|x-x^{k}\right\|^{2}\right\}
$$

- optimality condition is $0=\nabla f\left(x^{k}\right)+\frac{1}{\gamma}\left(x-x^{k}\right)$, i.e.,

$$
x^{k+1}=x^{k}-\gamma \nabla f\left(x^{k}\right)
$$

- so the gradient method minimizes a quadratic approximation of f
- since f is β-smooth, we have for all x, y :

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\beta}{2}\|x-y\|^{2}
$$

- if $\gamma \leq \frac{1}{\beta}$, the quadratic approximation majorizes f (the gradient method is a majorization minimization algorithm)

Descent method

- the gradient method can be interpreted as a descent method
- since f is β-smooth, we have

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\beta}{2}\|x-y\|^{2}
$$

- let $y=x^{k+1}=x^{k}-\gamma \nabla f\left(x^{k}\right)$ and $x=x^{k}$, then

$$
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)-\left\langle\nabla f\left(x^{k}\right), \gamma \nabla f\left(x^{k}\right)\right\rangle+\frac{\beta}{2}\left\|\gamma \nabla f\left(x^{k}\right)\right\|^{2} \\
& \leq f\left(x^{k}\right)-\gamma\left(1-\frac{\gamma \beta}{2}\right)\left\|\nabla f\left(x^{k}\right)\right\|^{2}
\end{aligned}
$$

- that is, it is a descent method if $\gamma\left(1-\frac{\gamma \beta}{2}\right)>0$ or $\gamma \in\left(0, \frac{2}{\beta}\right)$ (same condition as before)

General Lipschitz operators

- suppose that T is β-Lipschitz:

- cannot make Id $-\gamma T$ nonexpansive independent of γ
- iterating forward step of Lipschitz T not guaranteed to converge
- in convex function case Lipschitz \Rightarrow cocoercivity
- cocoercivity is important property for convergence!
- if T cocoercive, we get convergence as for gradient method! (forward step method)

Accelerated versions

- here convergence means convergence in function value
- optimal convergence using gradient information is $O\left(1 / k^{2}\right)$
- standard gradient method has nonoptimal convergence: $O(1 / k)$
- accelerated scheme exists that achieves optimal rate $O\left(1 / k^{2}\right)$
- it adds a very specific varying momentum term to iterates
- above holds in general sublinear case
- for linearly convergent case, similar acceleration can be made

Proximal point algorithm

- suppose that f is proper closed and convex and not differentiable
- optimality condition:

$$
\begin{aligned}
0 \in \partial f(x) & \Leftrightarrow x \in x+\gamma \partial f(x) \\
& \Leftrightarrow x \in(\operatorname{Id}+\gamma \partial f) x \\
& \Leftrightarrow x=(\operatorname{Id}+\gamma \partial f)^{-1} x \\
& \Leftrightarrow x=\operatorname{prox}_{\gamma f}(x)
\end{aligned}
$$

- iterate this to get proximal point algorithm

$$
x^{k+1}=\operatorname{prox}_{\gamma f}\left(x^{k}\right):=\min _{x}\left\{f(x)+\frac{1}{2 \gamma}\left\|x-x^{k}\right\|^{2}\right\}
$$

Prox operator properties

recall prox operator properties (and $0 \leq \sigma \leq \beta$):

- f convex \Rightarrow prox $_{f}$ is 1 -cocoercive or $\frac{1}{2}$-averaged
- f is σ-strongly convex $\Rightarrow \operatorname{prox}_{f}$ is $(1+\sigma)$-cocoercive
- f is β-smooth $\Rightarrow \operatorname{prox}_{f}$ is $\frac{\beta}{2(1+\beta)}$-averaged ($<\frac{1}{2}$-averaged)
- f is σ-strongly convex and β-smooth
- $\beta>\sigma: \operatorname{prox}_{f}-\frac{1}{1+\beta} \operatorname{Id}$ is $\frac{1}{\frac{1}{1+\sigma}-\frac{1}{1+\beta}}$-cocoercive
- $\beta=\sigma: \operatorname{prox}_{f}-\frac{1}{1+\beta}$ Id is 0 -Lipschitz

- all these are 1 -cocoercive, hence $\frac{1}{2}$-averaged

Convergence

- since always $\frac{1}{2}$-averaged \Rightarrow sublinear convergence
- if $\sigma>0$ then prox $_{f}$ is contractive \Rightarrow linear convergence

Relaxed iterations

- we can relax the proximal point algorithm with $\theta \in(0,2)$:

$$
x^{k+1}=\left((1-\theta) \operatorname{Id}+\theta \operatorname{prox}_{\gamma f}\right) x^{k}
$$

- example with $\theta=1.5$:

- $\theta=1.5$ gives $\alpha=0.75$-averaged iteration
- $\theta>1$ is called over-relaxation and $\theta<1$ is called under-relaxation

Relation to averaged iteration

- let $\alpha=\frac{\theta}{2} \in(0,1)$
- we can write the relaxed proximal point algorithm as

$$
\begin{aligned}
x^{k+1} & =\left((1-\theta) \mathrm{Id}+\theta \operatorname{prox}_{\gamma f}\right) x^{k} \\
& =\left((1-2 \alpha) \operatorname{Id}+2 \alpha \text { prox }_{\gamma f}\right) x^{k} \\
& =\left((1-\alpha) \operatorname{Id}+\alpha\left(2 \text { prox }_{\gamma f}-\mathrm{Id}\right)\right) x^{k} \\
& =\left((1-\alpha) \operatorname{Id}+\alpha R_{\gamma f}\right) x^{k}
\end{aligned}
$$

where $R_{\gamma f}=2 \operatorname{prox}_{\gamma f}-$ Id is the reflected resolvent

- since $R_{\gamma f}$ is nonexpansive, it is $\alpha=\frac{\theta}{2}$-averaged iteration

Iteration cost

- the problem to be solved is

$$
\operatorname{minimize} \quad f(x)
$$

- the algorithm solves in each iteration

$$
\min _{x}\left\{f(x)+\frac{1}{2 \gamma}\left\|x-x^{k}\right\|^{2}\right\}
$$

- often as difficult to solve as original problem
- (however, has nice convergence guarantees)

Resolvent method

- suppose A is maximally monotone
- we want to find x such that $0 \in A x$
- condition:

$$
\begin{aligned}
0 \in A x & \Leftrightarrow x \in x+\gamma A x \\
& \Leftrightarrow x \in(\operatorname{Id}+\gamma A) x \\
& \Leftrightarrow x=(\operatorname{Id}+\gamma A)^{-1} x \\
& \Leftrightarrow x=J_{\gamma A} x
\end{aligned}
$$

- construct an algorithm from this

$$
x^{k+1}=J_{\gamma A} x^{k}
$$

- if fixed-point found, inclusion problem solved
- if $A=\partial f$, we get proximal point algorithm
- (the resolvent method is also often called proximal point method)

Resolvent properties

recall prox operator properties (and $0 \leq \sigma \leq \beta$):

- A monotone $\Rightarrow J_{A}$ is 1 -cocoercive or $\frac{1}{2}$-averaged
- A is σ-monotone $\Rightarrow J_{A}$ is $(1+\sigma)$-cocoercive
- A is β-Lipschitz \Rightarrow

$$
2\left\langle J_{A} x-J_{A} y, x-y\right\rangle \geq\|x-y\|^{2}+\left(1-\beta^{2}\right)\left\|J_{A} x-J_{A} y\right\|^{2}
$$

- all these are 1 -cocoercive, hence $\frac{1}{2}$-averaged

Convergence

- since always $\frac{1}{2}$-averaged \Rightarrow sublinear convergence
- if $\sigma>0 \Rightarrow J_{A}$ contractive \Rightarrow linear convergence

Relaxed iterations

- as with proximal point algorithm, we can relax with $\theta \in(0,2)$:

$$
x^{k+1}=\left((1-\theta) \operatorname{Id}+\theta J_{\gamma A}\right) x^{k}
$$

- example with $\theta=1.5$:

- equivalent to (as in proximal point case)

$$
x^{k+1}=\left((1-\alpha) \operatorname{Id}+\alpha R_{\gamma A}\right) x^{k}
$$

where $\alpha=\frac{\theta}{2}$ and $R_{\gamma A}=2 J_{\gamma A}-\mathrm{Id}$

Rewriting the iterates

- the iterations of the resolvent algorithm satisfies

$$
\begin{array}{ll}
& x^{k+1}=(\operatorname{Id}+\gamma A)^{-1} x^{k} \\
\Leftrightarrow & x^{k} \in(\operatorname{Id}+\gamma A) x^{k+1} \\
\Leftrightarrow & 0 \in \gamma A x^{k+1}+\left(x^{k+1}-x^{k}\right)
\end{array}
$$

- iterates that satisfy this correspond to iteration of a $\frac{1}{2}$-averaged operator $J_{\gamma A}$

Resolvent method with skewed metric

- what if we have iterates that satisfy

$$
0 \in \gamma A x^{k+1}+G\left(x^{k+1}-x^{k}\right)
$$

for some positive semi-definite G ?

- assume that x^{k+1} is unique (holds, e.g., if G is positive definite)
- then $G x^{k} \in(A+G) x^{k+1}$ and $x^{k+1}=(A+G)^{-1} G x^{k}$
- let $T=(A+G)^{-1} G$, then T is $\frac{1}{2}$-averaged in G-norm

Proof of averagedness

- recall $T=(A+G)^{-1} G$, let $x^{+}=T x$, then

$$
(A+G) x^{+}=A T x+G T x \ni G x
$$

- then, we can choose $\bar{x}_{1} \in A T x_{1}$ and $\bar{x}_{2} \in A T x_{2}$ such that

$$
\bar{x}_{1}+G T x_{1}=G x_{1}, \quad \bar{x}_{2}+G T x_{2}=G x_{2}
$$

- since A is monotone, we have

$$
\left\langle\bar{x}_{1}-\bar{x}_{2}, T x_{1}-T x_{2}\right\rangle \geq 0
$$

- therefore

$$
\begin{aligned}
\left\|T x_{1}-T x_{2}\right\|_{G}^{2}+0 \leq & \left\langle G\left(T x_{1}-T x_{2}\right), T x_{1}-T x_{2}\right\rangle \\
& +\left\langle\bar{x}_{1}-\bar{x}_{2}, T x_{1}-T x_{2}\right\rangle \\
= & \left\langle G\left(x_{1}-x_{2}\right), T x_{1}-T x_{2}\right\rangle \\
= & \left\langle T x_{1}-T x_{2}, x_{1}-x_{2}\right\rangle_{G}
\end{aligned}
$$

- that is 1 -cocoercive, $\frac{1}{2}$-averaged, firmly nonexpansive in G-norm

Convergence

- analyze convergence of $x^{k+1}=(A+G)^{1} G x^{k}=T x^{k}$
- completion of squares gives

$$
\begin{aligned}
\left\|T x_{1}-T x_{2}\right\|_{G}^{2} \leq & \left\langle T x_{1}-T x_{2}, x_{1}-x_{2}\right\rangle_{G} \\
= & \frac{1}{2}\left\|T x_{1}-T x_{2}\right\|_{G}^{2}+\frac{1}{2}\left\|x_{1}-x_{2}\right\|_{G}^{2} \\
& -\frac{1}{2}\left\|(\operatorname{Id}-T) x_{1}+(\operatorname{Id}-T) x_{2}\right\|_{G}^{2}
\end{aligned}
$$

- that is (compare to $\frac{1}{2}$-averaged, then $G=\mathrm{Id}$)

$$
\left\|(\operatorname{Id}-T) x_{1}+(\operatorname{Id}-T) x_{2}\right\|_{G}^{2} \leq\left\|x_{1}-x_{2}\right\|_{G}^{2}-\left\|T x_{1}-T x_{2}\right\|_{G}^{2}
$$

- as in normal $\frac{1}{2}$-averaged case, let $x_{1}=x^{k}, x_{2}=x^{*}$ where $T x^{*}=x^{*}$:

$$
\left\|(\operatorname{Id}-T) x^{k}\right\|_{G}^{2} \leq\left\|x^{k}-x^{*}\right\|_{G}^{2}-\left\|T x^{k}-T x^{*}\right\|_{G}^{2}
$$

or

$$
\left\|x^{k}-x^{k+1}\right\|_{G}^{2} \leq\left\|x^{k}-x^{*}\right\|_{G}^{2}-\left\|x^{k+1}-x^{*}\right\|_{G}^{2}
$$

- telescope summation gives convergence in G-norm

Is resolvent algorithm useful?

- many algorithms can be seen as resolvent method for some maximally monotone operator A
- actually T is $\frac{1}{2}$-averaged with $\operatorname{dom} T=\mathbb{R}^{n} \Leftrightarrow T=(\operatorname{Id}+A)^{-1}$ with A maximally monotone
- all algorithm that iterate $\frac{1}{2}$-averaged operators are resolvent algorithms
- if iterating averaged operator with other α, can be seen as resolvent method with under- or over-relaxation

Forward-backward splitting

- suppose that A is maximally monotone and B is $\frac{1}{\beta}$-cocoercive
- we want to find x such that

$$
0 \in A x+B x
$$

- for any $\gamma \in(0, \infty)$, such an x satisfies

$$
\begin{aligned}
0 \in A x+B x & \Longleftrightarrow-\gamma B x \in \gamma A x \\
& \Longleftrightarrow(\operatorname{Id}-\gamma B) x \in(\operatorname{Id}+\gamma A) x \\
& \Longleftrightarrow J_{\gamma A}(\operatorname{Id}-\gamma B) x=x
\end{aligned}
$$

- construct algorithm from this

$$
x^{k+1}=J_{\gamma A}(\operatorname{Id}-\gamma B) x^{k}
$$

(first take forward step then backward (resolvent) step)

Convergence

- let $\gamma=2 \alpha / \beta$ and $\alpha \in(0,1)$
- then $(\operatorname{Id}-\gamma B)$ is α-averaged since B is $\frac{1}{\beta}$-cocoercive

- A is maximally monotone $\Rightarrow J_{\gamma A}$ is $\frac{1}{2}$-averaged (for any $\gamma>0$)
- therefore, $J_{\gamma A}(\mathrm{Id}-\gamma B)$ is composition of averaged operators
- composition of averaged operators is averaged
\Rightarrow algorithm is iteration of averaged operator!
\Rightarrow sublinear convergence

Stronger convergence results

- A is σ-strongly monotone $\Rightarrow J_{\gamma A}$ contractive
- B is σ-strongly monotone $\Rightarrow(\operatorname{Id}-\gamma B)$ contractive (for appr. γ)
- in either of these cases $J_{\gamma A}(\operatorname{Id}-\gamma B)$ is contractive (composition of nonexp. and contractive operator is contractive) \Rightarrow algorithm converges linearly
- (obviously, the contractions factors can be quantified)

Application to optimization

- suppose that f is β-smooth and g is proper closed convex
- we want to solve

$$
\operatorname{minimize} \quad f(x)+g(x)
$$

- under suitable constraint qualification, it is equivalent to finding x

$$
0 \in \nabla f(x)+\partial g(x)
$$

- can apply FB splitting since ∇f cocoercive and ∂g monotone
- also called (primal) proximal gradient method

Projected gradient method

- assume that C is a nonempty closed and convex set
- let $g=\iota_{C}$ then FB-splitting or proximal gradient method becomes

$$
\begin{aligned}
x^{k+1} & =J_{\gamma g}(\operatorname{Id}-\gamma \nabla f) x^{k} \\
& =\operatorname{prox}_{\gamma g}(\operatorname{Id}-\gamma \nabla f) x^{k} \\
& =\operatorname{proj}_{C}(\operatorname{Id}-\gamma \nabla f) x^{k}
\end{aligned}
$$

since
$\operatorname{prox}_{\gamma g}=\underset{x}{\operatorname{argmin}}\left\{\iota_{C}(x)+\frac{1}{2 \gamma}\|x-z\|^{2}\right\}=\underset{x \in C}{\operatorname{argmin}}\|x-z\|=: \operatorname{proj}_{C}(z)$

- that is, it is the projected gradient method
- proximal gradient method generalization of this

Convergence

- sublinear convergence in general case
- linear convergence under strong convexity assumptions on f or g
- (this follows from general analysis above)

Problem with composition

- assume f is β-smooth, g proper closed convex, L linear
- what if we want to solve

$$
\operatorname{minimize} f(x)+(g \circ L)(x)=f(x)+g(L x)
$$

- apply forward-backward splitting:

$$
x^{k+1}=\operatorname{prox}_{\gamma(g \circ L)}(\operatorname{Id}-\gamma \nabla f) x^{k}
$$

- often $\operatorname{prox}_{\gamma(g \circ L)}(z)$ expensive to compute:

$$
\operatorname{prox}_{\gamma(g \circ L)}(z)=\underset{x}{\operatorname{argmin}}\left(g(L x)+\frac{1}{2 \gamma}\|x-z\|^{2}\right\}
$$

if $g(y)=\sum_{i}^{m} g_{i}\left(y_{i}\right)$, separability of prox lost due to L

Problem with composition

- we want again to solve

$$
\operatorname{minimize} f(x)+(g \circ L)(x)=f(x)+g(L x)
$$

- now with f being σ-strongly convex
- formulate dual problem

$$
\operatorname{minimize}\left(f^{*} \circ\left(-L^{*}\right)\right)(\mu)+g^{*}(\mu)=f^{*}\left(-L^{*} \mu\right)+g^{*}(\mu)
$$

- apply forward-backward splitting on dual:

$$
\begin{aligned}
\mu^{k+1} & =\operatorname{prox}_{\gamma g^{*}}\left(\operatorname{Id}-\gamma \nabla\left(f^{*} \circ\left(-L^{*}\right)\right)\right) \mu^{k} \\
& =\operatorname{prox}_{\gamma g^{*}}\left(\mu^{k}+\gamma L \nabla f^{*}\left(-L^{*} \mu^{k}\right)\right)
\end{aligned}
$$

- operator L only gives rise to multiplication with L and L^{*}

Convergence

- dual problem

$$
\operatorname{minimize}\left(f^{*} \circ\left(-L^{*}\right)\right)(\mu)+g^{*}(\mu)
$$

- f is σ-strongly convex \Rightarrow
- f^{*} is $\frac{1}{\sigma}$-smooth
- $\left(f^{*} \circ\left(-L^{*}\right)\right)$ is $\frac{\left\|L^{*}\right\|^{2}}{\sigma}$-smooth
- $\nabla\left(f^{*} \circ\left(-L^{*}\right)\right)$ is $\frac{\sigma}{\left\|L^{*}\right\|^{2}}$-cocoercive
- g^{*} proper closed convex
- therefore assumptions to apply FB-splitting on dual are met!
\Rightarrow sublinear convergence if $\gamma=2 \alpha \sigma /\left\|L^{*}\right\|^{2}$ and $\alpha \in(0,1)$

Stronger convergence

- dual proximal gradient method (dual FB splitting)

$$
\mu^{k+1}=\operatorname{prox}_{\gamma g^{*}}\left(\operatorname{Id}-\gamma \nabla\left(f^{*} \circ\left(-L^{*}\right)\right)\right) \mu^{k}
$$

- we get linear convergence if either operator is contractive
- prox $_{\gamma g^{*}}$ contractive if g^{*} is strongly convex iff g is smooth
- $\left(\operatorname{Id}-\gamma \nabla\left(f^{*} \circ\left(-L^{*}\right)\right)\right)$ contractive if $f^{*} \circ\left(-L^{*}\right)$ strongly convex (holds if f is smooth and L is surjective (has full row rank))

Solving the primal

- algorithm solves dual, can we find primal solution?
- rewrite algorithm

$$
\mu^{k+1}=\operatorname{prox}_{\gamma g^{*}}\left(\operatorname{Id}+\gamma L \nabla f^{*}\left(-L^{*} \mu\right)\right) \mu^{k}
$$

by letting $x^{k}=\nabla f^{*}\left(-L^{*} \mu^{k}\right)$ to get

$$
\begin{aligned}
x^{k} & =\nabla f^{*}\left(-L^{*} \mu^{k}\right) \\
\mu^{k+1} & =\operatorname{prox}_{\gamma g^{*}}\left(\mu^{k}+\gamma L x^{k}\right)
\end{aligned}
$$

Solving the primal cont'd

- we know that μ^{k} converges to fixed-point $\bar{\mu} \Rightarrow x^{k} \rightarrow \bar{x}$:

$$
\begin{aligned}
& \bar{x}=\nabla f^{*}\left(-L^{*} \bar{\mu}\right) \\
& \bar{\mu}=\operatorname{prox}_{\gamma g^{*}}(\bar{\mu}+\gamma L \bar{x})
\end{aligned}
$$

- apply Fermat's rule to prox expression:

$$
0 \in \partial g^{*}(\bar{\mu})+\gamma^{-1}\left(\bar{\mu}-(\bar{\mu}+\gamma L \bar{x})=\partial g^{*}(\bar{\mu})-L \bar{x}\right.
$$

- recall that

$$
x \in \partial f^{*}\left(-L^{*} \mu\right), \quad L x \in \partial g^{*}(\mu)
$$

are necessary and sufficient optimality conditions

- therefore, algorithm can output primal and dual optimal points

Reformulation

- consider Moreau's identity

$$
\operatorname{prox}_{\gamma g^{*}}(\gamma z)=\gamma\left(z-\operatorname{prox}_{\gamma^{-1} g}(z)\right)
$$

- using this, the dual FB algorithm

$$
\begin{aligned}
x^{k} & =\nabla f^{*}\left(-L^{*} \mu^{k}\right) \\
\mu^{k+1} & =\operatorname{prox}_{\gamma g^{*}}\left(\mu^{k}+\gamma L x^{k}\right)
\end{aligned}
$$

can be written as

$$
\begin{aligned}
x^{k} & =\nabla f^{*}\left(-L^{*} \mu^{k}\right) \\
y^{k} & =\operatorname{prox}_{\gamma^{-1} g}\left(\gamma^{-1} \mu^{k}+L x^{k}\right) \\
\mu^{k+1} & =\mu^{k}+\gamma\left(L x^{k}-y^{k}\right)
\end{aligned}
$$

(where z in Moreau's identity is $\gamma^{-1} \mu^{k}+L x^{k}$)

Reformulation cont'd

- state explicitly the gradient of the conjugate f^{*}

$$
\begin{aligned}
\nabla f^{*}\left(-L^{*} \mu\right) & =\underset{x}{\operatorname{argmax}}\left\{\left\langle-L^{*} \mu, x\right\rangle-f(x)\right\} \\
& =\underset{x}{\operatorname{argmin}}\left\{f(x)+\left\langle x, L^{*} \mu\right\rangle\right\}
\end{aligned}
$$

- state explicitly $\operatorname{prox}_{\gamma^{-1} g}$:

$$
\begin{aligned}
& \operatorname{prox}_{\gamma^{-1} g}\left(\gamma^{-1} \mu^{k}+L x^{k}\right) \\
& \quad=\underset{y}{\operatorname{argmin}}\left\{g(y)+\left\langle\mu^{k}, L x^{k}-y\right\rangle+\frac{\gamma}{2}\left\|y-L x^{k}\right\|^{2}\right\}
\end{aligned}
$$

- then dual proximal gradient method can be written as

$$
\begin{aligned}
x^{k} & =\underset{x}{\operatorname{argmin}}\left\{f(x)+\left\langle x, L^{*} \mu\right\rangle\right\} \\
y^{k} & =\underset{y}{\operatorname{argmin}}\left\{g(y)+\left\langle\mu^{k}, L x^{k}-y\right\rangle+\frac{\gamma}{2}\left\|y-L x^{k}\right\|^{2}\right\} \\
\mu^{k+1} & =\mu^{k}+\gamma\left(L x^{k}-y^{k}\right)
\end{aligned}
$$

Several g functions

- assume we want to solve

$$
\begin{array}{ll}
\text { minimize } & f(x)+\sum_{i=1}^{k} g_{i}\left(y_{i}\right) \\
\text { subject to } & L_{i} x=y_{i} \text { for all } i=1, \ldots, k
\end{array}
$$

- assume that f is strongly convex and g_{i} are proper closed convex
- introduce

$$
y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{k}
\end{array}\right], \quad L=\left[\begin{array}{c}
L_{1} \\
\vdots \\
L_{k}
\end{array}\right], \quad g(y)=\sum_{i=1}^{k} g_{i}\left(y_{i}\right)
$$

- then problem is

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+\sum_{i=1}^{k} g(y) \\
\text { subject to } & L x=y
\end{array}
$$

- can apply forward-backward splitting to dual
- will get k parallel prox on the $g_{i}^{*}:$ s

Alternative formulation

- consider solving $\min _{x}\{f(x)+g(x)\}$ and let

$$
x^{k+1}=\underset{x}{\operatorname{argmin}}\left\{f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle+\frac{1}{2 \gamma}\left\|x-x^{k}\right\|^{2}+g(x)\right\}
$$

- Fermat's rule implies

$$
\begin{aligned}
0 & \in \nabla f\left(x^{k}\right)+\gamma^{-1}\left(x^{k+1}-x^{k}\right)+\partial g\left(x^{k+1}\right) \\
& =\partial g\left(x^{k+1}\right)+\gamma^{-1}\left(x^{k+1}-\left(x^{k}-\gamma \nabla f\left(x^{k}\right)\right)\right) \\
& =\gamma \partial g\left(x^{k+1}\right)+x^{k+1}-\left(x^{k}-\gamma \nabla f\left(x^{k}\right)\right)
\end{aligned}
$$

which is Fermat's rule for

$$
x^{k+1}=\operatorname{prox}_{\gamma g}(\operatorname{Id}-\gamma \nabla f) x^{k}
$$

i.e., the proximal gradient method

- can be analyzed as a descent method

Generalized metric

- assume that L is positive definite
- consider solving $\min _{x}\{f(x)+g(x)\}$ and let

$$
x^{k+1}=\underset{x}{\operatorname{argmin}}\left\{f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle+\frac{1}{2}\left\|x-x^{k}\right\|_{L}^{2}+g(x)\right\}
$$

- algorithm converges if f 1-smooth w.r.t. $\|\cdot\|_{L}^{2}$, i.e., if for all x, y

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2}\|x-y\|_{L}^{2}
$$

- might give better approximation of f in algorithm
\Rightarrow might improve performance
- if $L=\gamma^{-1} I$, we get standard method

Remarks

- can use back-tracking if feasible γ not known
- back-tracking can improve performance
- can also use acceleration similarly to in the gradient method
- acceleration achieves optimal convergence rate
- acceleration methods are sensitive to errors in computations (reason: the momentum term keeps all old iterates)

