Algorithms |

Pontus Giselsson

Today’s lecture

optimality conditions

subgradient method

gradient method

proximal point method (resolvent method)

forward-backward splitting

Optimality conditions

assume f, g proper closed and convex, L linear operator

we want to solve

minimize f(z) + g(y)
subjectto Lz =y

optimality condition (Fermat's rule)
0€df(x)+0d(go L)(x)
optimality condition of dual
0€a(f*o—L")(n) + 99" (1)

both can be written as sum of maximally monotone operators

Optimality conditions cont’'d

e the condition 0 € 9f(x) + d(g o L)(x) can be written as

0€df(z)+ L

0€dg(y) —u
0=Lx—y

0e€df(z)+L*u
0€dg*(n) — Lz

Optimality conditions cont’'d

let

F(z,p) = (0f(x),09% (), M(z,pu) = (L, —Lx)

F, M maximally monotone (M skew symmetric, i.e. M* = —M)

consider the optimality condition

0€df(x)+ L*u
0€dg*(n) — Lx

it can be written as
0€ F(z,p) + M(z, p)

i.e., sum of two maximal monotone operators

Sums of several functions

assume f1, fo, g proper closed and convex, L, Lo linear operators

we want to solve

minimize fi(z) + fa(y) + g(2)
subject to Lix+ Loy = 2

let f(z,y) = f1(#) + f2(y) and L(z,y) = L1z + Lay
then problem is

minimize f(z,y) + g(L(x,y))

obviously more f; functions can be added

Sums of several functions

assume f, g1, go proper closed and convex, L1, Lo linear operators
we want to solve

minimize f(z) + g1(y) + 92(2)

subjectto Liz =y

Lox =2

let g(y,2) = g1(y) + 92(2) and L(z) = (L1, Ly)
then problem is

minimize f(z) + g(Lx)

obviously more g; functions can be added

Monotone inclusion problems

optimality conditions is sum of maximally monotone operators
0 € Az + Bx
for different A and B

consider the more general formulation
0€ Az + L*B(Lx)
inclusion holds if and only if

0€ Az + L*u o 0€ Az + L*u
0€ B(Lx) — p 0€ B~ 'u—Lx

let F(x,p) = (Az, B~ 'p) and M (2, p) = (L*p, — L)
condition is sum of maximally monotone operators

0€ F(z,p) + M(z,p)

How to develop an algorithm

e write optimality condition as fixed-point to some operator

e show convergence properties when iterating operator

Subgradient method

assume f is closed and convex

optimality condition

x:argminf(x) < 0€df(x) <

x

algorithm:
P =t 0f ()

if we find a fixed-point, we solve the problem

does it converge to a fixed-point?

x€x—~yof(x)

10

Example

consider minimizing the function f(x) = |z|:

let v =c:

iteration if z¥ # nc wheren = ..., —-1,0,1,...:

k+1

oF = 2% — csign(z)

will jJump back and forth over optimal point

S

fixed step-size does not work

Example

consider minimizing the function f(x) = |z|:

let v =c:

iteration if z¥ # nc wheren = ..., —-1,0,1,...:

k+1

oF = 2% — csign(z)

will jJump back and forth over optimal point

N

fixed step-size does not work

Example

consider minimizing the function f(x) = |z|:

let v =c:

iteration if z¥ # nc wheren = ..., —-1,0,1,...:

k+1

oF = 2% — csign(z)

will jJump back and forth over optimal point

N

fixed step-size does not work

Example

consider minimizing the function f(x) = |z|:

let v =c:

iteration if z¥ # nc wheren = ..., —-1,0,1,...:

k+1

oF = 2% — csign(z)

will jJump back and forth over optimal point

N

fixed step-size does not work

Example

consider minimizing the function f(x) = |z|:

let v =c:

iteration if z¥ # nc wheren = ..., —-1,0,1,...:

k+1

oF = 2% — csign(z)

will jJump back and forth over optimal point

S

fixed step-size does not work

Example

consider minimizing the function f(x) = |z|:

let v =c:

iteration if z¥ # nc wheren = ..., —-1,0,1,...:

k+1

oF = 2% — csign(z)

will jJump back and forth over optimal point

S

fixed step-size does not work

Example

consider minimizing the function f(x) = |z|:

let v =c:

iteration if z¥ # nc wheren = ..., —-1,0,1,...:

k+1

oF = 2% — csign(z)

will jJump back and forth over optimal point

S

fixed step-size does not work

11

Not descent method

e a (-) subgradient does not necessarily specify a descent direction

e subgradient is in normal cone to level set:

12

Not descent method

a (-) subgradient does not necessarily specify a descent direction

subgradient is in normal cone to level set:

DN ()

would want to find element in tangent cone to get descent

such elements hard to compute

12

Graphical interpretation of convergence

e assume that v € 9f(z) and df(x) C

Bg(x) for all

e subdifferential definition f* := f(a*) > f(x) + (u,2* — x) implies
>

e x — vyu can end up in gray region:

N

xXx*

e half-circle due to v0f(x) C Byg(z)

v(f () = f7)

o vertical line due to scalar-product inequality

(left of z if f(x) > f(a*)

13

Graphical interpretation of convergence

o if v small enough, = — yu ends up somewhere in gray region:

Y(f () =)

e i.e., the distance to the fixed-point is decreased
e this -y value is not known a priori

e it depends on f(z) — f* = diminishing step-size

14

Convergence

e let u € 9f(2*) and 0f(z) C Bg(0) for all =
o recall used subgradient definition:

fr=ft) = @) + (u, 2" —2b)
e then

lz*+ = 2*[|* = fla* — yeu — 27|
= 2y(u, 2" — o) +72||U||2

< lz* =) = 23 (f(@®) = f*) + 76

= Jlo* — 2|2

15

Convergence

e apply recursively up to k = n to get
n n
(0 Q" —2*|* < [|l2° = 2| =2 w(f(=") = [+ G A
o let f =ming_1,__, f(z%), since f(z*) > f*, we have

(st — ka = ch P =) <Dl f (@) =)

e therefore

2 = a*]* + G* 350 Vi

fbcst 7f* S n
2 oYk

16

Step-size requirements

e under what conditions of 7 do we get convergence?

|2 = a*]* + G 3750 vk

fb 't_f*g n
es 2Zk:07k

e if, for instance,

9] 00
k=0 k=0

then numerator finite but denominator — oo

e example: v, = ¢/k for ¢ € (0, 00)

17

Variations

e stochastic gradient methods

® noisy unbiased subgradients

e similar convergence result in expectation
e dual averaging

e accumulates subgradients

e also includes a prox-step (if desired)

e has improved convergence compared to standard subgradient
method

18

Gradient method

assume f is closed convex and continuously differentiable

optimality condition:
r=argmin f(z) < 0=Vf(z) & x=x—-—7Vf(z)
the gradient method is given by
£ = ok 4V f(ah)

is it guaranteed to converge for some fixed 7

19

Gradient method

assume f is closed convex and continuously differentiable

optimality condition:

r=argmin f(z) < 0=Vf(z) & x=x—-—7Vf(z)

the gradient method is given by
B = ok V()

is it guaranteed to converge for some fixed 7

no, not, e.g., for f(z) = x*

19

Divergent example with fixed step-size

f(x) = z*, then gradient step is
Tpp1 =z — yday = ap(1 — y4a)
let 20 > Q\f’ then (1 — v422) < —1 which implies that
r1 < —Tp

apply iteratively (with sign shift) to show divergence

need also Lipschitz continuity of gradient!

20

Convergence

assume that f is S-smooth

equivalent to that V f is -Lipschitz continuous (= %—cocoercive)
assume that v = 2a/f and a € (0,1) (i.e., v € (0, %))
then (Id — vV f) is a-averaged

B=2a —2a 1

YWf -V f Id —~Vf

iteration of a-averaged operator converges to fixed-point

the convergence is sublinear

21

Stronger convergence

assume that f is o-strongly convex and S-smooth
then vf — 22| - ||? is v(8 — o)-smooth

and v(Vf — old) is y(8 — o)-Lipschitz

then (Id — 4V f) is max(y8 — 1,1 — vo)-contractive

1—98 1—~0
(B—o0) VB } H
() L&
YV f —~old YV f Id —~+Vf

e here, we get linear convergence

22

Computing the step-size

2
> B
e need cocoercivity parameter % to find convergent

e need step-size v € (0, =) to guarantee convergence

23

Minimizing a quadratic approximation

consider:

oM = argmin{ f(«*) + (Vf ("), 2 —a*) + 2 o — 2*|*}
optimality condition is 0 = Vf(z*) + %(x —zk), e,

2 = 2k 4V f(ah)

so the gradient method minimizes a quadratic approximation of f

since f is §-smooth, we have for all x,y:
fy) < f(2) + (Vf(2),y — o) + §llz —y|?

if v < % the quadratic approximation majorizes f
(the gradient method is a majorization minimization algorithm)

24

Descent method

e the gradient method can be interpreted as a descent method

e since f is S-smooth, we have
Fy) < f(@) +(Vf(@),y —2) + Slle —y]®
o let y = 2Ft!l = 2 — 4V f(2*) and 2 = 2*, then

FEM) < f(@¥) = (V ("), AV (")) + Sy V f(2F))?
< fa*) —y(1 =)|V f(ah))?

e that is, it is a descent method if (1 — %) > 0or~ve€ (0, %)
(same condition as before)

25

General Lipschitz operators

suppose that T is -Lipschitz:

~T —~T Id —~T

cannot make Id — yT" nonexpansive independent of ~

iterating forward step of Lipschitz T' not guaranteed to converge
in convex function case Lipschitz = cocoercivity

cocoercivity is important property for convergence!

if T cocoercive, we get convergence as for gradient method!
(forward step method)

26

Accelerated versions

here convergence means convergence in function value

optimal convergence using gradient information is O(1/k?)
standard gradient method has nonoptimal convergence: O(1/k)
accelerated scheme exists that achieves optimal rate O(1/k?)

it adds a very specific varying momentum term to iterates
above holds in general sublinear case

for linearly convergent case, similar acceleration can be made

27

Proximal point algorithm

e suppose that f is proper closed and convex and not differentiable

e optimality condition:

0€df(zx) e xecx+0f(x)
<z e (Id+~9f)x
sr=(Id+~0f) 'z
& x = prox, ¢()

e iterate this to get proximal point algorithm

k+1

4 = prox, y(a*) = min{f () + & |1z — ¥}

28

Prox operator properties

recall prox operator properties (and 0 < o < f3):

e [convex = prox; is 1-cocoercive or %—averaged
e fis o-strongly convex = prox; is (1 + o)-cocoercive
e fis B-smooth = prox; is 2(1iﬁ) averaged (< 3-averaged)

e f is o-strongly convex and B-smooth

e >0 prox; — 1 pldis ————-cocoercive
1+o 1+B
® 3=o0: prox; — Id is 0-Lipschitz
=0 o>0 oc=0 o>0
=0 B =00 B < oo B < oo

e all these are 1-cocoercive, hence %—averaged

29

Convergence

e since always %—averaged = sublinear convergence

e if 0 > 0 then prox, is contractive = linear convergence

(6(9(-9(9

oc>0 oc=0 o>0
B =00 B =00 B < oo B < oo

30

Relaxed iterations

we can relax the proximal point algorithm with 6 € (0, 2):
2"t = ((1 - 0)Id + Oprox., ;) z*

example with § = 1.5:

prox. Oprox. ¢ (1 —0)Id + Oprox., s

0 = 1.5 gives a = 0.75-averaged iteration

6 > 1 is called over-relaxation and 6 < 1 is called under-relaxation

31

Relation to averaged iteration

eleta=24¢(01)

e we can write the relaxed proximal point algorithm as

(1 —)Id + Oprox. ¢)x b
(1 —-2a)ld + 2aprox7f)
((
((

1—a)ld+ og(2prox,yf —Id))z"
1 —a)ld + aRy)z*

where R,y = 2prox, ; — Id is the reflected resolvent

e since R, is nonexpansive, it is o = g—averaged iteration

32

Iteration cost

the problem to be solved is
minimize f(z)
the algorithm solves in each iteration
min{f(z) + &l — ¥}

often as difficult to solve as original problem

(however, has nice convergence guarantees)

33

Resolvent method

suppose A is maximally monotone
we want to find x such that 0 € Az
condition:

0€ Az &z cax+vyAx
s re(ld+~y4)x

sr=Od+~4)"z

<:>.1‘:J,YA:C

construct an algorithm from this

k+1

k
T = Jyaz

if fixed-point found, inclusion problem solved
if A= 0f, we get proximal point algorithm

(the resolvent method is also often called proximal point method)

34

Resolvent properties

recall prox operator properties (and 0 < o < f3)
e A monotone = J4 is 1-cocoercive or %—averaged

e A is o-monotone = J4 is (1 + o)-cocoercive

e Ais p-Lipschitz =
)2 e =yl + (1 = B%)|| Jaz — Jayll?

2(Jax — Jay,x —
£ 0,1)

0>0

e all these are 1-cocoercive, hence %—averaged
35

Convergence

e since always %—averaged = sublinear convergence

e if 0 > 0 = J4 contractive = linear convergence

(9(a(-H(-

oc>0 € (0 i
B =00 B =0 =

36

Relaxed iterations

e as with proximal point algorithm, we can relax with 6 € (0, 2):

2F = (1 - 0)Id + 0J,4)2"

e example with § = 1.5:

J’YA QJWA (1 —G)Id-l-@{]«,f
e equivalent to (as in proximal point case)
2" = (1 — a)Id + aR,4)2"

where a = g and R4 =2J,4 —1d

37

Rewriting the iterates

o the iterations of the resolvent algorithm satisfies

2F T = (Id 4+ yA) " La?

& 2% € (Id + yA)zF+?
& 0 € yAzF T 4 (2P — 2F)
e iterates that satisfy this correspond to iteration of a %—

operator J, 4

averaged

38

Resolvent method with skewed metric

what if we have iterates that satisfy
0 € yAzF T 4 G(aF T — 2F)

for some positive semi-definite G?

assume that zFt!

is unique (holds, e.g., if G is positive definite)
then Gz* € (A + G)xz**! and 2**! = (A + G) " 1GaF

let T = (A+ G)"'G, then T is 1-averaged in G-norm

39

Proof of averagedness

recall T = (A + G)7'G, let 7 = Tz, then
(A+G)rt = ATz + GTz > Gz
then, we can choose Z; € ATz, and Ty € ATz5 such that
T1+ GTxy = Gz, To + GTxy = Gxo
since A is monotone, we have
(1 — &g, Txy — Taz) >0
therefore

| Tz — Taz||% +0 < (G(Txy — Tay), Ty — T)
+ <.’Z’1 — X9, Tx1 — T.”L’2>
= <G(£L’1 — 1’2),T£L'1 — T.’£2>
=

T.Il — TIQ,Il — I2>G

that is 1-cocoercive, 1-averaged, firmly nonexpansive in G-norm

40

Convergence

analyze convergence of 2"*! = (A + G)'Gx* = T2
completion of squares gives

|Txy — Tao||% < (Taxy — Txg, 1 — T2)a
= 3721 — Ta||g + 320 — 2|2
— 31(dd = T)zy + (Id — T)z2||3
that is (compare to i-averaged, then G = 1d)
1(0d = T)z1 + (Id = T2z < [lo1 — w2(|& — 1T — Taa||Z;

k

as in normal %-averaged case, let 1 = 2, x9 = z* where

Tx* = x*:

[(Id — T)z* || < [la* — a*||E — | Ta* — Tz*(|%
or

& — 2* g < fla* — 2|1 — [l2FT — 213

telescope summation gives convergence in G-norm
41

Is resolvent algorithm useful?

many algorithms can be seen as resolvent method for some
maximally monotone operator A

actually T is 1-averaged with domT =R" < T = (Id 4+ A)~!
with A maximally monotone

all algorithm that iterate %—averaged operators are resolvent
algorithms

if iterating averaged operator with other o, can be seen as
resolvent method with under- or over-relaxation

42

Forward-backward splitting

suppose that A is maximally monotone and B is %—cocoercive

we want to find z such that
0€ Az + Bz
for any v € (0,00), such an z satisfies

0 € Ax + Bx < —yBx € vAx
<= (Id —yB)z € Id+~vA)x
— Jyu(ld—yB)z =2z

construct algorithm from this
2" = T a(1d — yB)a”

(first take forward step then backward (resolvent) step)

43

Convergence

let v =2a/B and a € (0,1)
then (Id — yB) is a-averaged since B is %—cocoercive

B=2a -2« 1

vB —vB Id —~B

A is maximally monotone = J, 4 is %—averaged (for any v > 0)
therefore, J, 4(Id — vB) is composition of averaged operators
composition of averaged operators is averaged

= algorithm is iteration of averaged operator!

= sublinear convergence

44

Stronger convergence results

A is o-strongly monotone = J, 4 contractive
B is o-strongly monotone = (Id — vB) contractive (for appr.)

in either of these cases J,4(Id — vyB) is contractive
(composition of nonexp. and contractive operator is contractive)

= algorithm converges linearly

(obviously, the contractions factors can be quantified)

45

Application to optimization

suppose that f is S-smooth and g is proper closed convex

we want to solve
minimize f(x) + g(x)
under suitable constraint qualification, it is equivalent to finding x
0eVf(x)+ dg(x)

can apply FB splitting since V f cocoercive and dg monotone

also called (primal) proximal gradient method

46

Projected gradient method

assume that C' is a nonempty closed and convex set

let ¢ = 1o then FB-splitting or proximal gradient method becomes

2" = 1 (Id — AV f)a”
= prox,,(Id — YV f)zk
= projo(Id — 4V f)a*

since

prox., = argmin{cc(z) + %Haz —z|*} = argrréin |l — z|| =: proj(z)
T TE

that is, it is the projected gradient method
proximal gradient method generalization of this

47

Convergence

e sublinear convergence in general case
e linear convergence under strong convexity assumptions on f or g

e (this follows from general analysis above)

48

Problem with composition

assume f is B-smooth, g proper closed convex, L linear

what if we want to solve
minimize f(z) + (g o L)(z) = f(z) + g(Lx)
apply forward-backward splitting:
il = Prox.,(gor) (Id — YV f)a®
often prox.(,.r)(2) expensive to compute:

Proxy (gor) (2) = argmin(g(La) + 55 [l — 2I|*}

if g(y) =>_7" gi(yi), separability of prox lost due to L

49

Problem with composition

we want again to solve
minimize f(z) 4+ (go L)(z) = f(z) + g(Lx)

now with f being o-strongly convex

formulate dual problem
minimize (f* o (—L"))(u) +¢" (1) = f*(=L"p) + 9" (1)
apply forward-backward splitting on dual:

k= prox . (Id = YV (f* o (L))"
k * * k
= prox’yg* (l’L + 'Yva (_L M))

operator L only gives rise to multiplication with L and L*

50

Convergence

dual problem

minimize (f* o (—L*))(1) + g (1)

f is o-strongly convex =
o f*is ;—smooth
o (ffo(=L%))is ”L*HQ -smooth
o V(f*o(—L"))is HL*Hz—cocoercwe
g* proper closed convex
therefore assumptions to apply FB-splitting on dual are met!
= sublinear convergence if v = 2ac /|| L*||? and a € (0,1)

51

Stronger convergence

e dual proximal gradient method (dual FB splitting)

,Ltk+1 = pI’OX,Yg* (Id — ’)/V(f* o (_L*))):uk

e we get linear convergence if either operator is contractive

® prox,. contractive if g* is strongly convex iff g is smooth
o (Id —yV(f" o (—L"))) contractive if f* o (—L") strongly convex
(holds if f is smooth and L is surjective (has full row rank))

52

Solving the primal

e algorithm solves dual, can we find primal solution?

e rewrite algorithm
= prox, . (Id + YLV f*(—L*) ¥
by letting ¥ = V f*(—L*u*) to get
ot = V(=L)

pktt = proxn/g*(,uk + yLa")

53

Solving the primal cont’d

e we know that u* converges to fixed-point i = 2% — z:
&= VI (L)
i = prox, . (fi + L)

e apply Fermat's rule to prox expression:

0€dg" (i) +~v (i — (n+~Lx) = dg* (1) — LT
e recall that
z € 0f (=L p), Lz € 0g™ (1)
are necessary and sufficient optimality conditions

o therefore, algorithm can output primal and dual optimal points

54

Reformulation

e consider Moreau's identity

prox. g« (v2) = v(z — prox,-1,(2))
e using this, the dual FB algorithm

Jfk _ Vf*(—L*,uk)
P = prox . (U + yLa*)
can be written as
ot = V(=L ")
y" = prox, -1, (v " + La*)
P = pb 4y (La® — ")

(where z in Moreau's identity is v~ !u* + La*)

55

Reformulation cont’d

o state explicitly the gradient of the conjugate f*
YV (~L*) = argmax{ (L,) — f(x)}
— argmin{f(z) + {x, "))
x

e state explicitly prox,—i:
proxflg(vfl,u’C + La*)

= argmin{g(y) + (u¥, La* — y) + Iy — La*|?}
Yy

e then dual proximal gradient method can be written as
ot = argmin{ f(x) + (w, L")}
xr

y* = argmin{g(y) + (1", La* — y) + 2|y — La"|*}
Yy

Pt = b 4y (L2 — o)

56

Several g functions

assume we want to solve

minimize +Zgl (yi)

subject to L;x = yz for alli=1,.

Kk

assume that f is strongly convex and g; are proper closed convex

introduce
Y1 Ly
y=1:1, L=1":1,
Y Ly

then problem is

minimize f(z) +Zg(y)

subjectto Lx =1y

e can apply forward-backward splitting to dual
o will get k parallel prox on the g;:s

k
= Zgi(yz‘)

57

Alternative formulation

e consider solving min,{f(z) + g(x)} and let

2F T = argmin{ f (z*) + (Vf(a¥), z — 2F) + %Hﬂf — 2?4+ g(x)}

e Fermat's rule implies
0 Vf(zh) + 471" — 2%) 4+ ag(a* 1)
= 0g(a*) + 47 (@ = (@ =V f(")))
=70g(@"*1) + 2" — (@* — 4V f(2"))
which is Fermat's rule for
k41 k
gt = prox.,(Id =V f)z

i.e., the proximal gradient method
e can be analyzed as a descent method

58

Generalized metric

assume that L is positive definite
consider solving min, { f(x) + g(x)} and let

2" = argmin{f(«*) + (Vf(2"), & — 2*) + 3llz — 2|7 + g(2)}

algorithm converges if f 1-smooth w.r.t. |- |2, i.e., if for all z,y

) < fl@)+ (Vf(x),y—)+ 3llz —yll]

might give better approximation of f in algorithm
= might improve performance
if L =~~'I, we get standard method

59

Remarks

can use back-tracking if feasible v not known

back-tracking can improve performance

can also use acceleration similarly to in the gradient method
acceleration achieves optimal convergence rate

acceleration methods are sensitive to errors in computations
(reason: the momentum term keeps all old iterates)

60

