
Homework assignment 1

Exercises 2, 7, and 8 are Hand-in exercises.

1. Let L : Rn → Rm be a linear operator. Show that all points x ∈ Rn
in the affine set V = {x ∈ Rn p Lx = 0} satisfies x ∈ ri V . That is,
show that V = ri V .

2. Let L : Rn → Rm be a nontrivial linear operator, i.e., Lx is not zero
for all x ∈ Rn. Further, let V = {x ∈ Rn p Lx = 0}.

a. Compute the normal cone to the affine set V at x = 0. Involve the
adjoint operator L∗ in the expression. Note: The adjoint operator to
the linear operator L : Rn → Rm is defined as the unique operator
L∗ : Rm → Rn that satisfies

〈Lx, y〉 = 〈x, L∗y〉

for all x ∈ Rn and all y∈ Rm.

b. Compute the normal cone operator to V for any x ∈ Rn

c. Compute the normal cone operator to Vb := {x ∈ Rn p Lx = b} (as-
sume Vb ,= ∅) for any x ∈ Rn.

3. Construct and example of two nonempty closed convex sets, where the
set sum is not closed.

4. The strictly separating hyperplane theorem assumes that the two sets
S and R are closed and convex, and that one of them is compact.
Provide an example where S is closed convex and bounded, and R
is convex and bounded for which no strictly separating hyperplane
exists.

5. Show that dom (� ○ L) = L−1(dom �).

6. Assume that C = {x p �(x) ≤ 0} where � : Rn → R is convex. Slater’s
condition is that there exists x̄ such that �(x̄) < 0.

a. Show that this is implies that int C ,= ∅.

b. Construct a function � such that no x̄ exists such that �(x̄) < 0, but
where C = {x p �(x) ≤ 0} has nonempty interior.

7. Suppose that �i : Rn → R for i = 1, . . . , k are convex (and finite-
valued). Let �(x) = (�1(x), . . . ,�k(x)) : Rn → Rk and consider the set
C = {x p �(x) ≤ 0}. Further, assume that there exists x̄ ∈ Rn such
that �(x̄) < 0, (vector-wise comparison). Show that the normal cone
to C for any x ∈ Rn can be written as

NC(x) =


k∑
i=1

µ i��i(x) if �(x) ≤ 0

∅ else
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with the additional constraints that µ i�i(x) = 0 and µ i ≥ 0 for all
i = 1, . . . , k.
Hint: The assumption implies that int Ci = {x p �i(x) < 0}, that
bd Ci = {x p �i(x) = 0} (which you can use without proving it).

8. Let f : Rn → R and suppose that f is proper closed and convex and
that ri dom f ,= ∅. Further suppose, if nothing else is stated, that f
is σ -strongly convex with σ ∈ (0,∞).

a. Show that the nonempty level-sets of f are bounded.
Hint: At any x ∈ ri dom f there exists a subgradient to f − σ

2 q ⋅ q2.
Use this to show that f (y) → ∞ as qyq → ∞.

b. Show that the infimum of f : Rn → R is attained, i.e., show that
argminx f (x) exists.

c. Show by a counter-example that argminx f (x) need not exist if f is
merely strictly convex.

9. Assume that f : Rn → R is finite-valued and convex. Show that the
directional derivative

d ]→ f ′(x,d) := lim
t↓0

f (x + td) − f (x)
t

is convex in d for fixed x.

10. Compute subdifferentials of the following functions.

a. Assume that C is a nonempty set. Show that �ιC(x) = NC(x), where

ιC(x) =
{

0 if x ∈ C

∞ else

b. Compute the subdifferential of f (x) = 1
2qxq2.

c. Compute the subdifferential of f (x) = qxq =
√∑

i x2
i .

d. Compute the subdifferential of f (x) = qxq1 =
∑
i pxip.

e. Compute the subdifferential of f (x) = 〈c, x〉.

11. In relation to the result that a closed function is convex if and only if
dom f is convex and dom � f ⊇ ri dom f , provide counter-examples if
some of the assumptions do not hold.

a. Construct a closed nonconvex function f with dom � f ⊇ ri dom f but
dom f is not convex.

b. Construct a closed nonconvex function f with dom � f ⊂ ri dom f
with dom f convex.

c. Construct a nonconvex (not closed) function f with dom � f ⊇ ri dom f
and dom f convex.
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