Homework assignment 1

Exercises 2, 7, and 8 are Hand-in exercises.

- **1.** Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator. Show that all points $x \in \mathbb{R}^n$ in the affine set $V = \{x \in \mathbb{R}^n \mid Lx = 0\}$ satisfies $x \in \text{ri } V$. That is, show that V = ri V.
- **2.** Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a nontrivial linear operator, i.e., Lx is not zero for all $x \in \mathbb{R}^n$. Further, let $V = \{x \in \mathbb{R}^n \mid Lx = 0\}$.
 - **a.** Compute the normal cone to the affine set V at x = 0. Involve the adjoint operator L^* in the expression. Note: The adjoint operator to the linear operator L : $\mathbb{R}^n \to \mathbb{R}^m$ is defined as the unique operator L^* : $\mathbb{R}^m \to \mathbb{R}^n$ that satisfies

$$\langle Lx, y \rangle = \langle x, L^*y \rangle$$

for all $x \in \mathbb{R}^n$ and all $y \in \mathbb{R}^m$.

- **b.** Compute the normal cone operator to *V* for any $x \in \mathbb{R}^n$
- **c.** Compute the normal cone operator to $V_b := \{x \in \mathbb{R}^n \mid Lx = b\}$ (assume $V_b \neq \emptyset$) for any $x \in \mathbb{R}^n$.
- **3.** Construct and example of two nonempty closed convex sets, where the set sum is not closed.
- 4. The strictly separating hyperplane theorem assumes that the two sets S and R are closed and convex, and that one of them is compact. Provide an example where S is closed convex and bounded, and R is convex and bounded for which no strictly separating hyperplane exists.
- 5. Show that dom $(g \circ L) = L^{-1}(\operatorname{dom} g)$.
- **6.** Assume that $C = \{x \mid g(x) \le 0\}$ where $g : \mathbb{R}^n \to \mathbb{R}$ is convex. Slater's condition is that there exists \bar{x} such that $g(\bar{x}) < 0$.
 - **a.** Show that this is implies that int $C \neq \emptyset$.
 - **b.** Construct a function g such that no \bar{x} exists such that $g(\bar{x}) < 0$, but where $C = \{x \mid g(x) \le 0\}$ has nonempty interior.
- 7. Suppose that $g_i : \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., k are convex (and finitevalued). Let $g(x) = (g_1(x), ..., g_k(x)) : \mathbb{R}^n \to \mathbb{R}^k$ and consider the set $C = \{x \mid g(x) \leq 0\}$. Further, assume that there exists $\bar{x} \in \mathbb{R}^n$ such that $g(\bar{x}) < 0$, (vector-wise comparison). Show that the normal cone to C for any $x \in \mathbb{R}^n$ can be written as

$$N_C(x) = egin{cases} \sum_{i=1}^k \mu_i \partial g_i(x) & ext{ if } g(x) \leq 0 \ arnothing & arnothing arnothing & arnothing a$$

with the additional constraints that $\mu_i g_i(x) = 0$ and $\mu_i \ge 0$ for all i = 1, ..., k. Hint: The assumption implies that int $C_i = \{x \mid g_i(x) < 0\}$, that bd $C_i = \{x \mid g_i(x) = 0\}$ (which you can use without proving it).

- 8. Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ and suppose that f is proper closed and convex and that ri dom $f \neq \emptyset$. Further suppose, if nothing else is stated, that f is σ -strongly convex with $\sigma \in (0, \infty)$.
 - **a.** Show that the nonempty level-sets of f are bounded. Hint: At any $x \in \text{ri dom } f$ there exists a subgradient to $f - \frac{\sigma}{2} \| \cdot \|^2$. Use this to show that $f(y) \to \infty$ as $\|y\| \to \infty$.
 - **b.** Show that the infimum of $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is attained, i.e., show that $\operatorname{argmin}_x f(x)$ exists.
 - **c.** Show by a counter-example that $\operatorname{argmin}_{x} f(x)$ need not exist if f is merely strictly convex.
- **9.** Assume that $f : \mathbb{R}^n \to \mathbb{R}$ is finite-valued and convex. Show that the directional derivative

$$d \mapsto f'(x,d) := \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t}$$

is convex in d for fixed x.

- **10.** Compute subdifferentials of the following functions.
 - **a.** Assume that *C* is a nonempty set. Show that $\partial \iota_C(x) = N_C(x)$, where

$$\iota_C(x) = egin{cases} 0 & ext{if } x \in C \ \infty & ext{else} \end{cases}$$

- **b.** Compute the subdifferential of $f(x) = \frac{1}{2} ||x||^2$.
- **c.** Compute the subdifferential of $f(x) = ||x|| = \sqrt{\sum_i x_i^2}$.
- **d.** Compute the subdifferential of $f(x) = ||x||_1 = \sum_i |x_i|$.
- **e.** Compute the subdifferential of $f(x) = \langle c, x \rangle$.
- 11. In relation to the result that a closed function is convex if and only if dom f is convex and dom $\partial f \supseteq$ ri dom f, provide counter-examples if some of the assumptions do not hold.
 - **a.** Construct a closed nonconvex function f with dom $\partial f \supseteq$ ri dom f but dom f is not convex.
 - **b.** Construct a closed nonconvex function f with dom $\partial f \subset$ ri dom f with dom f convex.
 - **c.** Construct a nonconvex (not closed) function f with dom $\partial f \supseteq$ ri dom f and dom f convex.