Parallel Computing in Julia

Yang Xu

Department of Automatic Control
Lund University

Background

 Most computers
POSSess more than

One CPU [InstructinnUnitl
* Two major factors that \M
Influence aLU | [aLu || ALy ALU
performance: CPU . . . eet
MEM| | MEM | | MEM MEM
speed, speed of

access to memory
» Parallel computing

Parallel computing

Two primitives:

remote reference: an object referring to an object
stored on another process

remote call. a request calling a function on another
process

wait ():walt for a remote call to finish
fetch (): obtain full value of the result

put! ():store a value to a remote reference

Parallel computing

Remotecall (): low-level
Interface providing finer control

@spawnat: evaluates the

expression on a specified
process

remotecall fetch():a

more efficient version of
fetch (remotecall ())

@spawn. EXecute an

expression on an randomly-
chosen process

bash-4.3% julia -p 2

A fresh a
Documenta
Type "hel
Version 0

x86 b4-re

r = remotecall(2, rand, 2,2)

RemoteRef(2,1,4)

fetch(r)
2x2 Array{Float64,2}:
0.752456 0.199044
0.0984671 0.422335

s = {@spawnat 2 1 .+fetch(r)

RemoteRef(2,1,6)

fetch(s)
2x2 Array{Float64,2}:
1.75246 1.19904
1.09847 1.42233

Code availability

function rand2(dims...)
return 2*rand(dims...)
end
rand? (generic function with 1 method)

rand2(2,2)
2x2 Array{Float6d4,b2}:
0.213198 0.113462
0.199976 1.72376

@spawn rand2(2, 2)
RemoteRef(2,1,4)

exception on 2: ERROR: function rand2 not defined on process 2

* Process 1 knew about the function rand2, but process 2 did not.

* How do we solve it?

Solution

e leverywhere

@everywhere id = myid()

remotecall fetch(2, ()->id)

Data movement

method 1

A = rand(1000, 1000)
Bref = @spawn A™Z
Tfetch(Bref)

method 2
Bref = @spawn rand(l000,1000)"2

fetch(Bref)

* Sending messages and moving data constitute
most of the overhead In a parallel program.

e Method 2 sends much less data than method 1,
and hence saves time.

A Monte Carlo simulation

Flip coins on two processes

This computation does not require data
movement

Multiple processes can handle independent
simulation trials simultaneously

Method 1: @spawn

Method 2: Parallel loop

@spawn

function count heads(n)

c::Int =@
for i=l:n

c += randbool ()
end

c
end

reguire("count heads")

a = ({@spawn count heads(1000DOBERE)
b = @spawn count heads(10000OBEME)
@show fetch(a)+fetch(b)

bash-4.3% julia -p 2 179a.jl
yfetch(a) + fetch(b) == 95952606

Parallel for-loop

nheads = @parallel (+) for 1i=1:200000000
int{randbool())
end

@show nheads

bash-4.3% julia -p 2 1789b.j1
nheads == 99998081

Parallel map

M = {Faﬂd{lﬁﬁﬁ,lﬁﬁﬁ} for i=1:1@}
pmap(svd, M)

 Compute the singular values of several large
random matrices in parallel

» Parallel map: each function call does a large
amount of work

» Parallel loop: each iteration is tiny, perhaps
merely summing two numbers

Scheduling

* Dynamic scheduling: a program decides what to
compute or where to compute it based on when other
jobs finish

* An example: computing the singular values of matrices
of different sizes

o o T

pmap(svd, M)

Dynamic scheduling

e @async runs task on
the local processor

e “Feeder” task for
other tasks

* Each task picks the
next index that need
to be computed, then
walts for its job finish

unction pmap(f, 1st)

np = nprocs() # determine the number
n = length({lst)

results =

i=1

function

in this case it's

nextidx() = (idx=i;
@sync begin

for p=l:np
if p I=myid() || np =1
@async begin
while true

idx = nextidx()
if idx = n

break

end

results[idx]

dex.

of processes available

to produce the next work item from the queue
it's just an in
i+=1; idx)

= remotecall_ fetch(p, f, lstl[idx])

Homework

* Generate n processes (n is the number of cores
on your computer) to simulate the answer of the
following question:

There are 9,784,445 people in Sweden.
Everyone is going to roll 2 fair dice. How many
people will get 12 totally?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

