

Parallel Computing in Julia

Yang Xu

Department of Automatic Control
Lund University

Background

● Most computers
possess more than
one CPU

● Two major factors that
influence
performance: CPU
speed, speed of
access to memory

● Parallel computing

Parallel computing

● Two primitives:

remote reference: an object referring to an object
stored on another process

remote call: a request calling a function on another
process

● wait(): wait for a remote call to finish

● fetch(): obtain full value of the result

● put!(): store a value to a remote reference

Parallel computing

● Remotecall(): low-level
interface providing finer control

● @spawnat: evaluates the
expression on a specified
process

● remotecall_fetch(): a
more efficient version of
fetch(remotecall())

● @spawn: Execute an
expression on an randomly-
chosen process

Code availability

● Process 1 knew about the function rand2, but process 2 did not.

● How do we solve it?

Solution

● @everywhere

Data movement

● Sending messages and moving data constitute
most of the overhead in a parallel program.

● Method 2 sends much less data than method 1,
and hence saves time.

A Monte Carlo simulation

● Flip coins on two processes
● This computation does not require data

movement
● Multiple processes can handle independent

simulation trials simultaneously
● Method 1: @spawn
● Method 2: Parallel loop

@spawn

Parallel for-loop

Parallel map

● Compute the singular values of several large
random matrices in parallel

● Parallel map: each function call does a large
amount of work

● Parallel loop: each iteration is tiny, perhaps
merely summing two numbers

Scheduling

● Dynamic scheduling: a program decides what to
compute or where to compute it based on when other
jobs finish

● An example: computing the singular values of matrices
of different sizes

Dynamic scheduling

● @async runs task on
the local processor

● “Feeder” task for
other tasks

● Each task picks the
next index that need
to be computed, then
waits for its job finish

Homework

● Generate n processes (n is the number of cores
on your computer) to simulate the answer of the
following question:

There are 9,784,445 people in Sweden.
Everyone is going to roll 2 fair dice. How many
people will get 12 totally?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

