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Today’s lecture

• operators and their properties

• monotone operators
• Lipschitz continuous operators
• averaged operators
• cocoercive operators

• relation between properties

• monotone inclusion problems

• special case: composite convex optimization

• resolvents and reflected resolvents

• Douglas-Rachford splitting

• convergence
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Power set

• the power set of the set X is the set of all subsets of X .

• notation: 2X (since if number of elements in X is finite (n), then
number of elements in the power set is 2n).

3



Operators

• an operator A : H → 2H maps each point in H to a set in H

• called set-valued operator

• Ax (or A(x)) means A operates on x (and gives a set back)

• if Ax is a singleton for all x ∈ H, then A single-valued

• can construct operator B : H → H with {Bx} = Ax for all x ∈ H
• with slight abuse of notation, we treat these to be the same

• example:
• the subdifferential operator ∂f is a set-valued operator
• the gradient operator ∇f is a single-valued operator

• the graph of an operator A : H → 2H is defined as

gphA = {(x, y) | y ∈ Ax}

(gphA is a subset of H×H)
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Graphical representation

• a set-valued operator A : H → 2H

Ax

0 x

• depending on where the set Ax is, A has different properties
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Special operators

• the identity operator is denoted Id and is defined as

x = Id(x)

• inverse of an operator

gphA−1 = {(y, x) | (x, y) ∈ gphA}

(therefore y ∈ Ax if and only if x ∈ A−1y)
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Fixed points

• a fixed-point y to the operator A : H → H satisfies y = Ay

• the set of fixed-points to A : H → H is denoted fixA
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Monotone operators

• an operator A : H → 2H is monotone if

〈x− y, u− v〉 ≥ 0

for all (x, u) ∈ gphA and (y, v) ∈ gphA
• graphical representation

0 x− y

then u− v in gray area (since scalar product positive)
(or set Ax ⊖Ay in gray area)
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Monotonicity 1D

• which of the following operators A : R → 2R are monotone?

(a) (b)

(c) (d)
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Monotonicity 1D

• which of the following operators A : R → 2R are monotone?

(a) (b)

(c) (d)

monotone: (a) and (c)
(y − x > 0 implies v − u ≥ 0 where (x, u), (y, v) ∈ gph(A))
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Examples of monotone mappings

• the subdifferential ∂f of a proper, closed, convex function f

• proof: by convexity we have

f(x) ≥ f(y) + 〈v, x− y〉

f(y) ≥ f(x) + 〈u, y − x〉

for any v ∈ ∂f(y) and u ∈ ∂f(x), add these to get

〈u− v, x− y〉 ≥ 0
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Example of monotone mappings

• the subdifferential of the conjugate to a proper, closed, and
convex function f , i.e., ∂f∗ where

f∗(y) , sup
x

{〈y, x〉 − f(x)}

• we have (∂f)−1 = ∂f∗
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Examples of monotone mappings

• a (linear) skew-symmetric mapping (i.e., A = −A∗)
• proof:

〈Ax−Ay, x− y〉 = 〈x− y,A∗(x− y)〉 = −〈x− y,A(x− y)〉

= −〈A(x− y), x− y〉 = 0

• graphical representation

0 x− y

then Ax−Ay on thick black line
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Examples of monotone mappings

• rotation Rθ : R2 → R2 with |θ| ≤ π
2

• proof: let v = x− y

〈Rθx−Rθy, x− y〉 = 〈Rθv, v〉 =

〈[

cos θ − sin θ
sin θ cos θ

]

v, v

〉

=

〈[

v1 cos θ − v2 sin θ
v1 sin θ + v2 cos θ

]

, v

〉

= v21 cos θ + v22 cos θ ≥ 0

• graphical representation

x− y0

then Rθ(x − y) on thick semi-circle 13



Maximal monotonicity

• a monotone operator A : H → 2H is maximal monotone if no
monotone operator B : H → 2H exists such that gphA ⊂ gphB

• which of the following operators are maximal monotone

(a) (b)
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Maximal monotonicity

• a monotone operator A : H → 2H is maximal monotone if no
monotone operator B : H → 2H exists such that gphA ⊂ gphB

• which of the following operators are maximal monotone

(a) (b)

• maximally monotone: (b)
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Maximal monotonicity

• a monotone operator A : H → 2H is maximal monotone if no
monotone operator B : H → 2H exists such that gphA ⊂ gphB

• which of the following operators are maximal monotone

(a) (b)

• maximally monotone: (b)

• subdifferentials of proper, closed, and convex functions are
maximally monotone (not shown here)
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Strongly monotone operators

• an operator A is σ-strongly monotone if

〈x− y, u− v〉 ≥ σ‖x− y‖2

for all (x, u) ∈ gphA and (y, v) ∈ gphA
• graphical representation

0 x− y

σ

then u− v in gray area (or set Ax⊖Ay)
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Strong convexity and strong monotonicity

• the subdifferential of a σ-strongly convex function is σ-strongly
monotone

• proof:

• by σ-strong convexity we have

f(x) ≥ f(y) + 〈v, x− y〉+ σ
2
‖x− y‖2

f(y) ≥ f(x) + 〈u, y − x〉+ σ
2
‖x− y‖2

for any v ∈ ∂f(y) and u ∈ ∂f(x), add to get

〈u− v, x− y〉 ≥ σ‖x− y‖2

• (σ = 0 shows that convexity of f implies monotonicity of ∂f)
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Skew symmetric operator

• skew symmetric operator A = −A∗ (from before)

〈Ax −Ay, x− y〉 = 0

• not strongly monotone

• graphical representation

0 x− y
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Rotation operator

• rotation operator Rθ with |θ| < π
2 (from before)

〈Rθx−Rθy, x− y〉 ≥ cos θ‖x− y‖2

• Rθ is cos θ-strongly monotone

• graphical representation (θ = π
4 )

x− y0

Rπ/4(x − y)
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Lipschitz continuous operator

• an operator A is β-Lipschitz continuous if

‖Ax−Ay‖ ≤ β‖x− y‖

• A is single-valued (show by letting y = x and use contradiction)

• graphical representation

0 x− y

β

then Ax−Ay is in gray area
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Alternative graphical representation

• assume A has a fixed point x̄ = Ax̄ then

‖Ax− x̄‖ = ‖Ax−Ax̄‖ ≤ β‖x− x̄‖

x̄ x

β

then Ax in gray area
• interpretation: β relates to distance to fixed-point
• β < 1 : contractive
• β = 1 : nonexpansive

20



Examples

• a rotation is 1-Lipschitz continuous (nonexpansive)

• a linear mapping Mx is ‖M‖-Lipschitz continuous
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Convergence of contractive operator

• a contractive (β < 1) operator A has a unique fixed-point x̄
(Banach-Picard fixed-point theorem)

• the iteration xk+1 = Axk converges linearly to the fixed-point (x̄)
if A is β-contractive:

‖xk+1 − x̄‖ = ‖Axk −Ax̄‖ ≤ β‖xk − x̄‖ ≤ βk+1‖x0 − x̄‖
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Convergence of contractive operator

• a contractive (β < 1) operator A has a unique fixed-point x̄
(Banach-Picard fixed-point theorem)

• the iteration xk+1 = Axk converges linearly to the fixed-point (x̄)
if A is β-contractive:

‖xk+1 − x̄‖ = ‖Axk −Ax̄‖ ≤ β‖xk − x̄‖ ≤ βk+1‖x0 − x̄‖

x0x̄

x1

x2x3
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Fixed-points of nonexpansive operator

• nonexpansive operator need not have a fixed-point

• example:
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Fixed-points of nonexpansive operator

• nonexpansive operator need not have a fixed-point

• example: Ax = x+ 2

Ax = x+ 2 6= x

for all x ∈ R

• it is nonexpansive (1-Lipschitz continuous)

‖Ax−Ay‖ = ‖x+ 2− y − 2‖ = ‖x− y‖

• iteration xk+1 = Axk:

x0



Fixed-points of nonexpansive operator

• nonexpansive operator need not have a fixed-point

• example: Ax = x+ 2

Ax = x+ 2 6= x

for all x ∈ R

• it is nonexpansive (1-Lipschitz continuous)

‖Ax−Ay‖ = ‖x+ 2− y − 2‖ = ‖x− y‖

• iteration xk+1 = Axk:

x0 x1



Fixed-points of nonexpansive operator

• nonexpansive operator need not have a fixed-point

• example: Ax = x+ 2

Ax = x+ 2 6= x

for all x ∈ R

• it is nonexpansive (1-Lipschitz continuous)

‖Ax−Ay‖ = ‖x+ 2− y − 2‖ = ‖x− y‖

• iteration xk+1 = Axk:

x0 x1 x2



Fixed-points of nonexpansive operator

• nonexpansive operator need not have a fixed-point

• example: Ax = x+ 2

Ax = x+ 2 6= x

for all x ∈ R

• it is nonexpansive (1-Lipschitz continuous)

‖Ax−Ay‖ = ‖x+ 2− y − 2‖ = ‖x− y‖

• iteration xk+1 = Axk:

x0 x1 x2 x3



Fixed-points of nonexpansive operator

• nonexpansive operator need not have a fixed-point

• example: Ax = x+ 2

Ax = x+ 2 6= x

for all x ∈ R

• it is nonexpansive (1-Lipschitz continuous)

‖Ax−Ay‖ = ‖x+ 2− y − 2‖ = ‖x− y‖

• iteration xk+1 = Axk:

x0 x1 x2 x3 x4



Fixed-points of nonexpansive operator

• nonexpansive operator need not have a fixed-point

• example: Ax = x+ 2

Ax = x+ 2 6= x

for all x ∈ R

• it is nonexpansive (1-Lipschitz continuous)

‖Ax−Ay‖ = ‖x+ 2− y − 2‖ = ‖x− y‖

• iteration xk+1 = Axk:

x0 x1 x2 x3 x4 x5



Fixed-points of nonexpansive operator

• nonexpansive operator need not have a fixed-point

• example: Ax = x+ 2

Ax = x+ 2 6= x

for all x ∈ R

• it is nonexpansive (1-Lipschitz continuous)

‖Ax−Ay‖ = ‖x+ 2− y − 2‖ = ‖x− y‖

• iteration xk+1 = Axk:

x0 x1 x2 x3 x4 x5
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Convergence of nonexpansive operator

• if fixed-point x̄ exists, iteration xk+1 = Axk must not converge

• example: rotation by 25◦

x̄ x0

• however, the iterates are bounded
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Convergence of nonexpansive operator

• if fixed-point x̄ exists, iteration xk+1 = Axk must not converge

• example: rotation by 25◦

x̄ x0

x1

x2
x3

• however, the iterates are bounded
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Averaged operators

• an operator A is α-averaged if and only if for some nonexpansive
B and α ∈ (0, 1):

A = (1− α)Id + αB

• graphical representation for α = 0.5:

x− y0

Bx−By

x− y0

αBx − αBy

x− y0

Ax −Ay

• for α = 1
2 we get B = 2A− Id: A 0.5-averaged if and only if

2A− Id nonexpansive

• 1
2 -averaged is called firmly nonexpansive
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Additional graphical representation

• assume that x̄ is a fixed-point to Aα which is α-averaged, then
Aα can be represented as:

x̄ x

– 0.75-averaged – 0.5-averaged – 0.25-averaged

where Aαx in respective gray areas
• why?

• let x̄ = y

• shift by x̄: (0 → x̄, x− x̄ → x, Ax−Ax̄ → Ax− Ax̄+ x̄ = Ax)

• distance to fixed-point strictly decreased (except for if already at
fixed-point) 26



Fixed-points

• the fixed-points of A = (1− α)Id + αB and B coincide
(if they exist)

• proof

• a fixed point x̄ to B is a fixed-point to A:

Ax̄ = (1− α)x̄+ αBx̄ = (1− α+ α)x̄ = x̄

• a fixed-point x̄ to A is a fixed-point to B:

Bx̄ = 1

α
(A+ (α− 1)Id)x̄ = 1

α
(1 + α− 1)x̄ = x̄
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Averaged operator formula

• α-averaged operator satisfies

1−α
α ‖(I −A)x − (I −A)y‖2 + ‖Ax−Ay‖2 ≤ ‖x− y‖2

• graphical representation for α = 1
2 :

0 x− y

• can be used to show sub-linear convergence
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Convergence

• the iterates for xk+1 = Axk converge
• proof:

1−α
α ‖xk − xk+1‖2 = 1−α

α ‖(I −A)xk − (I −A)x⋆‖2

≤ ‖xk − x⋆‖2 − ‖xk+1 − x⋆‖2

• summing over k:

(n+ 1)‖xn+1 − xn‖2 ≤
n
∑

k=0

‖xk+1 − xk‖2

≤
α
∑n

k=1

(

‖xk − x⋆‖2 − ‖xk+1 − x⋆‖2
)

1− α

=
α‖x0 − x⋆‖2

1− α

• that is

‖xn+1 − xn‖2 ≤
α‖x0 − x⋆‖2

(n+ 1)(1− α)

• optimize w.r.t. α gives α → 0 (not very informative since
consecutive iterates close if short steps)
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Convergence

• convergence towards fixed-point:

• proof:

1−α
α ‖xn+1 − xn‖2 = 1−α

α ‖(1− α)xn + αB(xn)− xn‖2

= α(1 − α)‖B(xn)− xn‖2

• therefore

‖B(xn)− xn‖2 = 1
α2 ‖x

n+1 − xn‖2 ≤
‖x0 − x⋆‖2

(n+ 1)(1− α)α

• optimize constant by letting α = 1
2 :

‖B(xn)− xn‖2 ≤
4‖x0 − x⋆‖2

(n+ 1)
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Convergence example - α = 0.5

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.5-averaged operator

x̄
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Convergence example - α = 0.5

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.5-averaged operator
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Convergence example - α = 0.5

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.5-averaged operator

x̄
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Example - α = 0.25

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.25-averaged operator

x̄



Example - α = 0.25

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.25-averaged operator

x̄



Example - α = 0.25

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.25-averaged operator

x̄



Example - α = 0.25

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.25-averaged operator

x̄
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Example - α = 0.75

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.75-averaged operator

x̄



Example - α = 0.75

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.75-averaged operator

x̄



Example - α = 0.75

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.75-averaged operator

x̄



Example - α = 0.75

• rotation operator Rθ with θ = 50◦

• fixed-point x̄ at origin

• iterate 0.75-averaged operator

x̄
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Cocoercive operators

• an operator A is β-cocoercive if βA is 1
2 -averaged

0 x− y

1
β

• Ax−Ay in gray area (dotted area shows that βAx− βAx is
1
2 -averaged)
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Cocoercive operator properties

• an operator A is β-cocoercive if βA is 1
2 -averaged, i.e.

‖(I − βA)x − (I − βA)y‖2 + ‖βAx− βAy‖2 ≤ ‖x− y‖2

• equivalently (by expanding the first square and div. by β)

〈Ax−Ay, x− y〉 ≥ β‖Ax−Ay‖2

0 x− y

1
β

35



Properties

• β-cocoercivity implies γ-Lipschitz continuity:

• estimate γ?

36



Properties

• β-cocoercivity implies γ-Lipschitz continuity:

• estimate γ?

• γ = 1
β

β‖Ax−Ay‖2 ≤ 〈Ax−Ay, x− y〉 ≤ ‖x− y‖‖Ax−Ay‖

0 x− y

1
β
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Summary properties

• we have discussed operators A with the following properties

0 x− y

Strong mono.

0 x− y

Lipschitz

x− y0

Averaged op.

x− y0

Cocoercive

• the set (or point) Ax⊖Ay is in the respective gray areas
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Exercise I

• assume that A is β-cocoercive

• estimate a small Lipschitz constant to 2A− 1
β Id
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Exercise I

• assume that A is β-cocoercive

• estimate a small Lipschitz constant to 2A− 1
β Id

• a Lipschitz constant is 1
β

“proof”:
1. due to cocoercivity of A we have Ax− Ay in dotted circle
2. multiply by 2 (2Ax− 2Ay in dashed)
3. shift by − 1

β
Id ((2A− 1

β
Id)x− (2A− 1

β
Id)y in gray)

1
β

0 x− y
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Exercise II

• assume that A is 2-cocoercive

• Id−A is α-averaged, compute α

39



Exercise II

• assume that A is 2-cocoercive

• Id−A is α-averaged, compute α

• Id−A is 0.25-averaged
“proof”:
1. due to 2-cocoercivity of A, we have Ax− Ay in dotted circle
2. multiply by -1 (−Ax+Ay in dashed)
3. shift by Id ((Id− A)x− (Id− A)y in gray)

1

2

0 x− y

39



Relation to (strong) monotonicity?

• can relate Lipschitz continuity, cocoercivity, and averagedness by
scaling and shifting (they are all circles)

• cannot relate to (strong) monotonicity
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Dual properties I

• consider the following list of properties

(i) A is β-strongly monotone
(ii) A−1 is β-cocoercive
(iii) A−1 is 1

β
-Lipschitz continuous

we have (i)⇔(ii) and (ii)⇒(iii)

• the result also holds with A and A−1 interchanged
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Dual properties II

• for proper, closed, and convex f , the following are equivalent:

(i) f is β-strongly convex

f(x) ≥ f(y) + 〈u, x− y〉+ β

2
‖x− y‖2

for all u ∈ ∂f(y)
(ii) ∂f is β-strongly monotone
(iii) ∂f∗ is β-cocoercive
(iv) ∂f∗ is 1

β
-Lipschitz continuous

(v) f∗ is 1

β
-smooth

f
∗(x) ≤ f

∗(y) + 〈∇f
∗(x), x− y〉+ 1

2β
‖x− y‖2

• the result also holds with f and f∗ interchanged

• we have implication (iv)⇒(iii) as opposed to general case

• (recall ∂f∗ = (∂f)−1)
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Exercise I revisited

• A−1 is σ-strongly monotone

• estimate a small Lipschitz constant to 2A− 1
σ Id
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Exercise I revisited

• A−1 is σ-strongly monotone

• estimate a small Lipschitz constant to 2A− 1
σ Id

• a Lipschitz constant is 1
σ

“proof”:
1. (i)⇒(ii) implies A is σ-cocoercive (Ax− Ay in dotted)
2. multiply by 2 (2Ax− 2Ay in dashed)
3. shift by − 1

σ
Id ((2A− 1

σ
Id)x− (2A− 1

σ
Id)y in gray)

1
σ

0 x− y

43



Exercise III

• A is 1-strongly convex

• A−1 is α-averaged, compute α
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Exercise III

• A is 1-strongly convex

• A−1 is α-averaged, compute α

• A−1 is 1
2 -averaged

“proof”:

1. (i)⇒(ii) gives that A−1 is 1-cocoercive (A−1x− A−1y in gray)
2. 1-cocoercivity defined as 1

2
-averagedness

0 x− y

44



Summary

• we have discussed the following operator properties

1. (strong) monotonicity
2. Lipschitz continuity (nonexpansiveness, contractiveness)
3. averaged operators
4. cocoercive operators

• 2., 3., and 4. are related to each other by scaling and translating

• 2., 3., and 4. are related to 1. through the inverse operator

• iteration of averaged operators converge (sublinearly)

• iteration of contractive operators converge linearly
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Monotone inclusion problems

• we want to solve monotone inclusion problems of the form

0 ∈ A(x) +B(x)

where A and B are maximal monotone operators

• special case:

0 ∈ ∂f(x) + ∂g(x)

is equivalent to

minimize f(x) + g(x)

• how to use the presented framework?
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Creating algorithms

• state optimal point x as a fixed-point equation of some operator

• show that operator is either
• α-averaged (sublinear convergence)
• β-contractive (linear convergence)
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Resolvent

• resolvent JA : D → H to monotone operator is defined as

JA = (Id +A)−1

• if A maximally monotone, then D = H
(important for algorithms involving the resolvent)

48



Resolvent

• resolvent JA : D → H to monotone operator is defined as

JA = (Id +A)−1

• if A maximally monotone, then D = H
(important for algorithms involving the resolvent)

• subdifferential case A = ∂f :

J∂f (z) = argmin
x

{

f(x) + 1
2‖x− z‖2

}

=: proxf (z)

then resolvent called prox operator

• proof: x = proxf (z) if and only if

0 ∈ ∂f(x) + x− z

⇔ z ∈ ∂f(x) + x

⇔ z ∈ (Id + ∂f)x

⇔ x = (Id + ∂f)−1z

48



Properties of resolvent

• assume A σ-strongly monotone (σ = 0 implies monotone)
• Id +A is (1 + σ)-strongly monotone

〈Ax−Ay + (x − y), x− y〉 ≥ σ‖x− y‖2 + ‖x− y‖2 = (1 + σ)‖x− y‖2

• properties of JA = (Id +A)−1?

49



Properties of resolvent

• assume A σ-strongly monotone (σ = 0 implies monotone)
• Id +A is (1 + σ)-strongly monotone

〈Ax−Ay + (x − y), x− y〉 ≥ σ‖x− y‖2 + ‖x− y‖2 = (1 + σ)‖x− y‖2

• properties of JA = (Id +A)−1?
• JA = (Id +A)−1 is (1 + σ)-cocoercive

0 x− y

1
1+σ

• σ = 0:
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Properties of resolvent

• assume A σ-strongly monotone (σ = 0 implies monotone)
• Id +A is (1 + σ)-strongly monotone

〈Ax−Ay + (x − y), x− y〉 ≥ σ‖x− y‖2 + ‖x− y‖2 = (1 + σ)‖x− y‖2

• properties of JA = (Id +A)−1?
• JA = (Id +A)−1 is (1 + σ)-cocoercive

0 x− y

1
1+σ

• σ = 0: JA is 1
2 -averaged (or 1-cocoercive)

• σ > 0:
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Properties of resolvent

• assume A σ-strongly monotone (σ = 0 implies monotone)
• Id +A is (1 + σ)-strongly monotone

〈Ax−Ay + (x − y), x− y〉 ≥ σ‖x− y‖2 + ‖x− y‖2 = (1 + σ)‖x− y‖2

• properties of JA = (Id +A)−1?
• JA = (Id +A)−1 is (1 + σ)-cocoercive

0 x− y

1
1+σ

• σ = 0: JA is 1
2 -averaged (or 1-cocoercive)

• σ > 0: JA is 1
1+σ -contractive

• (iteration of the resolvent converges to a fixed-point)

49



Further properties

• assume A is β-Lipschitz continuous

• Id +A is (1 + β)-Lipschitz continuous

‖Ax−Ay + x− y‖ ≤ ‖Ax−Ay‖+ ‖x− y‖ ≤ (1 + β)‖x− y‖

• JA = (Id +A)−1 satisfies (by definition of inverse operator)

‖x− y‖ ≤ (1 + β)‖JAx− JAy‖

0 x− y

where JAx− JAy outside dashed region (with radius 1
1+β )
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Suboptimal characterization

• still assume A is β-Lipschitz continuous

• previous characterization (1 + β-Lipschitz) of Id +A not tight!

0 x− y

• dotted: Ax−Ay

• gray: (Id + A)x− (Id + A)y
• dashed: (1 + β)-Lipschitz continuity circle
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Improved property

• still assume A is β-Lipschitz continuous

• property of A+ βId?
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Improved property

• still assume A is β-Lipschitz continuous

• property of A+ βId?

• it is 1
2β -cocoercive

0 x− y

• dotted: Ax−Ay

• gray: (βId + A)x− (βId + A)y
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Improved property

• still assume A is β-Lipschitz continuous

• property of A+ βId?

• it is 1
2β -cocoercive

0 x− y

• dotted: Ax−Ay

• gray: (βId + A)x− (βId + A)y

• using βId = Id + (β − 1)Id, the definition of a cocoercive
operator, and the definition of the inverse, we get:

2〈JAx− JAy, x− y〉 ≥ ‖x− y‖2 + (1− β2)‖JAx− JAy‖
2
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Comparison of properties

• assume A is β-Lipschitz continuous

• compare the two properties for JA for β = 1

0 x− y

• first property: JAx− JAy outside dotted region
• improved property: JAx− JAy to the right of dashed line

(JA is 1

2
-monotone)
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Combining properties

• let A be 1-Lipschitz and σ-strongly monotone (with 0 ≤ σ < 1)
• strong monotonity of A implies cocoerciveness of JA

• Lischitz continuity of A implies “improved property” of JA

• intersect regions to find region when both properties are present

0 x− y

• JAx− JAy ends up in gray region

• (σ = 1
9 and β = 1 in figure)
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Proximal operator

• can properties be tighter when the resolvent is a prox operator?

• recall

J∂f (z) = proxf (z) = argmin
x

{

f(x) + 1
2‖x− z‖2

}

• define h = 1
2‖ · ‖

2 + f , properties:

• f is σ-strongly convex implies h is (1 + σ)-strongly convex
• f is β-smooth implies h is (1 + β)-smooth
• we have ∂h = (Id + ∂f)

• the prox operator satisfies

proxf (z) = (Id + ∂f)−1z = (∂h)−1z = ∇h∗(z)
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Proximal opertor properties

• we have proxf (z) = ∇h∗(z) where h = 1
2‖ · ‖

2 + f

• recall equivalent dual properties

(i) f is β-strongly convex
(ii) ∂f is β-strongly monotone
(iii) ∂f∗ is β-cocoercive
(iv) ∂f∗ is 1

β
-Lipschitz continuous

(v) f∗ is 1

β
-smooth

• this gives

f h ∇h∗ = proxf
σ-str. cvx (1 + σ)-str. cvx. 1

1+σ -cocoercive

β-smooth (1 + β)-Lipschitz 1
1+β -str. mono.

• first property same and in general case, second property different
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Graphical representation

• consider the case β = 1

0 x− y

the same as in the general case

• can be improved
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Improved property

• assume that f is β-smooth (and σ-strongly convex 0 ≤ σ ≤ β)
• then ∇h∗ = proxf is 1

1+β -strongly monotone and 1
1+σ -Lipschitz

• further h∗ is 1
1+β -strongly convex and 1

1+σ -smooth

• and h∗ − 1
2(1+β)‖ · ‖

2 is ( 1
1+σ − 1

1+β )-smooth

• finally ∇h∗ − 1
1+β Id is 1

1
1+σ−

1
1+β

-cocoercive

0 x− y

• ∇h∗ − 1

1+β
Id = proxf − 1

1+β
Id inside dashed circle

• ∇h∗ = proxf in gray area (shift by 1

1+β
Id)

• (figure has β = 17

3
and σ = 3

17
)
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Comparison

• assume A is a general operator and that B = ∂f
• assume that A and ∂f are 1-Lipschitz and σ-strongly monotone
• the prox operator ends up in:

0 x− y

where JAx− JAy in light area and J∂fx− J∂fy in darker area
• (σ = 0 in figure, i.e., only monotonicity is assumed)
• conclussion: under Lipschitz assumptions, the resolvent of
subdifferentials are confined to smaller regions
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Reflected resolvent

• the reflected resolvent RA to a monotone operator A is defined as

RA := 2JA − I

• it gives the reflection point (therefore its name)

x

JAx

RAx
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Properties of reflected resolvent

• in the general case, A monotone
• reflected resolvent RA is β-Lipschitz, what is β?
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Properties of reflected resolvent

• in the general case, A monotone
• reflected resolvent RA is β-Lipschitz, what is β?
• β = 1, i.e., RA is nonexpansive
proof:
1. JAx− JAy within dashed region (since JA 1-cocoercive in general

case)
2. 2JAx− JAy within dotted region (multiply by 2)
3. (2JA − Id)x− (2JA − Id)y = (2JAx− 2JAy)− (x− y) in gray

area (shift by −Id)

0 x− y
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Further properties of reflected resolvent

• properties under different assumptions obtained by multiplying
resolvent area by 2 (radially) and shifting by −Id (−(x− y))

• examples: subdifferential operator A is β-smooth and σ-strongly
monotone

x− y0

β = ∞, σ = 1
4

x− y0

β = 4, σ = 0

x− y0

β = 4, σ = 1
4

• contractive if β < ∞ and σ > 0
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How to use these operators?

• how to use these operators to solve monotone inclusion problems

0 ∈ A(x) +B(x)
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Optimality conditions

• inclusion problem with A and B maximally monotone

0 ∈ A(x) +B(x)

• x solves inclusion problem iff

z = RγARγBz x = JγA(z)

with γ > 0, i.e., z is a fixed-point to composition RγARγB

• algorithm: find fixed-point to RγARγB to solve problem
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(Generalized) Douglas-Rachford splitting

• iterate RγARγB to find fixed-point (Peaceman-Rachford splitting)

zk+1 = RγARγBz
k

• RγA and RγB are nonexpansive in general case, so is composition

⇒ algorithm not guaranteed to converge in general case

• need an averaged or contractive operator to converge

• introduce averaging with α ∈ (0, 1):

zk+1 = ((1− α)Id + αRγARγB)z
k

• α = 1
2 usually called Douglas-Rachford splitting (here for all α)
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Convergence to fixed-point

• the Douglas-Rachford algorithm converges to fixed point of

(1− α)Id + αRγARγB

• fixed points coincide with fixed points of RγARγB (shown earlier)

• convergence is sublinear (shown earlier)
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Linear convergence

• we get linear convergence if either of the following hold

• A is σ-strongly monotone and β-Lipschitz
• A is σ-strongly monotone and B is β-Lipschitz continuous

• reason: (1− α)Id + αRγARγB contractive

• can choose γ and α to optimize rates

• different rates in general case and subdifferential case
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ADMM

• ADMM = the alternating direction method of multipliers

• consider the problem

minimize f(x) + g(y)
subject to Ax = y

• dual problem

maximize inf
x,y

(

f(x) + g(y) + µT (Ax− y)
)

• rewrite by identifying conjugates (f∗(z) = sup
x

{〈z, x〉 − f(x)})

minimize d(µ) + g∗(µ)

where d(µ) = f∗(−ATµ)

• apply DR to dual to get ADMM

• all convergence properties from DR translate to ADMM (use
“Dual properties II” to infer properties of d and g∗ from f and g)
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Project

• provide linear convergence rates for Douglas-Rachford splitting in
general case under assumptions

• A is σ-strongly monotone and β-Lipschitz
• A is σ-strongly monotone and B is β-Lipschitz

• optimize Douglas-Rachford algorithm parameters γ and α

• provide examples that achieve the rate exactly (if possible)
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Summary

• introduced operators with different properties
• (strong) monotonicity
• Lipschitz continuity, nonexpansiveness, contractiveness
• averaged operators
• cocoercive operators

• dual properties

• stated monotone inclusion problems

• introduced resolvent and reflected resolvent

• described Douglas-Rachford splitting and “showed” convergence
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