Monotone Operators and Fixed-Point Iterations

Pontus Giselsson

Today's lecture

- operators and their properties
 - monotone operators
 - Lipschitz continuous operators
 - averaged operators
 - cocoercive operators
- relation between properties
- monotone inclusion problems
 - special case: composite convex optimization
- resolvents and reflected resolvents
- Douglas-Rachford splitting
 - convergence

Power set

- the *power set* of the set \mathcal{X} is the set of all subsets of \mathcal{X} .
- notation: 2^X (since if number of elements in X is finite (n), then number of elements in the power set is 2ⁿ).

Operators

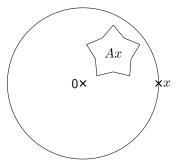
- an operator $A:\mathcal{H}\to 2^{\mathcal{H}}$ maps each point in \mathcal{H} to a set in \mathcal{H}
- called set-valued operator
- Ax (or A(x)) means A operates on x (and gives a set back)
- if Ax is a singleton for all $x \in \mathcal{H}$, then A single-valued
 - can construct operator $B : \mathcal{H} \to \mathcal{H}$ with $\{Bx\} = Ax$ for all $x \in \mathcal{H}$
 - with slight abuse of notation, we treat these to be the same
- example:
 - the subdifferential operator ∂f is a set-valued operator
 - the gradient operator ∇f is a single-valued operator
- the graph of an operator $A:\mathcal{H}\to 2^{\mathcal{H}}$ is defined as

$$gphA = \{(x, y) \mid y \in Ax\}$$

 $(gphA \text{ is a subset of } \mathcal{H} \times \mathcal{H})$

Graphical representation

• a set-valued operator $A : \mathcal{H} \to 2^{\mathcal{H}}$



- depending on where the set $\boldsymbol{A}\boldsymbol{x}$ is, \boldsymbol{A} has different properties

Special operators

 $\bullet\,$ the identity operator is denoted $\mathrm{Id}\,$ and is defined as

 $x = \mathrm{Id}(x)$

• inverse of an operator

$$gphA^{-1} = \{(y, x) \mid (x, y) \in gphA\}$$

(therefore $y \in Ax$ if and only if $x \in A^{-1}y$)

Fixed points

- a fixed-point y to the operator $A: \mathcal{H} \to \mathcal{H}$ satisfies y = Ay
- the set of fixed-points to $A: \mathcal{H} \to \mathcal{H}$ is denoted fixA

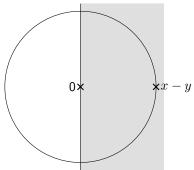
Monotone operators

• an operator $A~:~\mathcal{H}\to 2^{\mathcal{H}}$ is monotone if

 $\langle x-y, u-v\rangle \ge 0$

for all $(x,u)\in {\rm gph} A$ and $(y,v)\in {\rm gph} A$

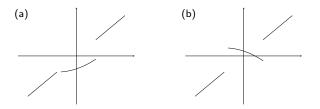
• graphical representation

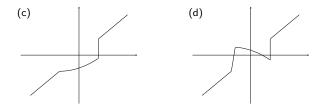


then u - v in gray area (since scalar product positive) (or set $Ax \ominus Ay$ in gray area)

Monotonicity 1D

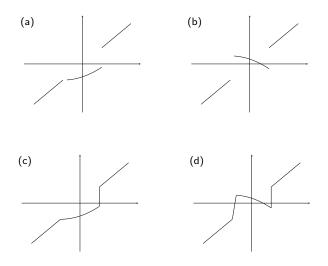
• which of the following operators $A : \mathbf{R} \rightarrow 2^{\mathbf{R}}$ are monotone?





Monotonicity 1D

• which of the following operators $A : \mathbf{R} \to 2^{\mathbf{R}}$ are monotone?



monotone: (a) and (c) $(y - x > 0 \text{ implies } v - u \ge 0 \text{ where } (x, u), (y, v) \in gph(A))$

Examples of monotone mappings

- the subdifferential ∂f of a proper, closed, convex function f
- proof: by convexity we have

$$f(x) \ge f(y) + \langle v, x - y \rangle$$

$$f(y) \ge f(x) + \langle u, y - x \rangle$$

for any $v\in\partial f(y)$ and $u\in\partial f(x),$ add these to get

$$\langle u - v, x - y \rangle \ge 0$$

Example of monotone mappings

• the subdifferential of the conjugate to a proper, closed, and convex function f, i.e., ∂f^* where

$$f^*(y) \triangleq \sup_x \{\langle y, x \rangle - f(x)\}$$

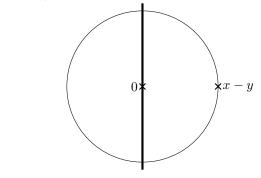
- we have $(\partial f)^{-1}=\partial f^*$

Examples of monotone mappings

- a (linear) skew-symmetric mapping (i.e., $A = -A^*$)
- proof:

$$\begin{split} \langle Ax - Ay, x - y \rangle &= \langle x - y, A^*(x - y) \rangle = - \langle x - y, A(x - y) \rangle \\ &= - \langle A(x - y), x - y \rangle = 0 \end{split}$$

• graphical representation



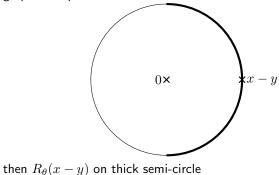
then Ax - Ay on thick black line

Examples of monotone mappings

- rotation $R_{ heta}$: $\mathbf{R}^2
 ightarrow \mathbf{R}^2$ with $|\theta| \leq \frac{\pi}{2}$
- proof: let v = x y

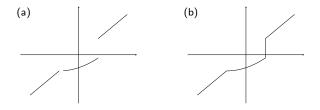
$$\langle R_{\theta}x - R_{\theta}y, x - y \rangle = \langle R_{\theta}v, v \rangle = \left\langle \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} v, v \right\rangle$$
$$= \left\langle \begin{bmatrix} v_1 \cos\theta - v_2 \sin\theta \\ v_1 \sin\theta + v_2 \cos\theta \end{bmatrix}, v \right\rangle = v_1^2 \cos\theta + v_2^2 \cos\theta \ge 0$$

• graphical representation



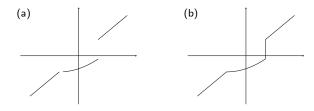
Maximal monotonicity

- a monotone operator $A: \mathcal{H} \to 2^{\mathcal{H}}$ is maximal monotone if no monotone operator $B: \mathcal{H} \to 2^{\mathcal{H}}$ exists such that $gphA \subset gphB$
- which of the following operators are maximal monotone



Maximal monotonicity

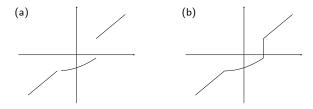
- a monotone operator $A: \mathcal{H} \to 2^{\mathcal{H}}$ is maximal monotone if no monotone operator $B: \mathcal{H} \to 2^{\mathcal{H}}$ exists such that $gphA \subset gphB$
- which of the following operators are maximal monotone



• maximally monotone: (b)

Maximal monotonicity

- a monotone operator $A: \mathcal{H} \to 2^{\mathcal{H}}$ is maximal monotone if no monotone operator $B: \mathcal{H} \to 2^{\mathcal{H}}$ exists such that $gphA \subset gphB$
- which of the following operators are maximal monotone



- maximally monotone: (b)
- subdifferentials of proper, closed, and convex functions are maximally monotone (not shown here)

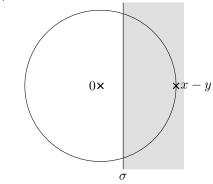
Strongly monotone operators

• an operator A is $\sigma\text{-strongly monotone}$ if

$$\langle x-y,u-v\rangle\geq \sigma\|x-y\|^2$$

for all $(x,u)\in {\rm gph} A$ and $(y,v)\in {\rm gph} A$

• graphical representation



then u - v in gray area (or set $Ax \ominus Ay$)

Strong convexity and strong monotonicity

- the subdifferential of a $\sigma\text{-strongly convex function is }\sigma\text{-strongly monotone}$
- proof:
 - by $\sigma\text{-strong convexity we have}$

$$f(x) \ge f(y) + \langle v, x - y \rangle + \frac{\sigma}{2} ||x - y||^2$$

$$f(y) \ge f(x) + \langle u, y - x \rangle + \frac{\sigma}{2} ||x - y||^2$$

for any $v \in \partial f(y)$ and $u \in \partial f(x)$, add to get

$$\langle u - v, x - y \rangle \ge \sigma \|x - y\|^2$$

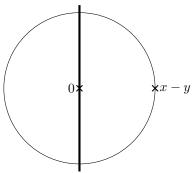
• ($\sigma = 0$ shows that convexity of f implies monotonicity of ∂f)

Skew symmetric operator

• skew symmetric operator $A = -A^*$ (from before)

$$\langle Ax - Ay, x - y \rangle = 0$$

- not strongly monotone
- graphical representation



Rotation operator

• rotation operator R_{θ} with $|\theta| < \frac{\pi}{2}$ (from before)

$$\langle R_{\theta}x - R_{\theta}y, x - y \rangle \ge \cos \theta \|x - y\|^2$$

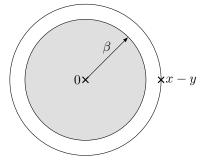
- R_{θ} is $\cos \theta$ -strongly monotone
- graphical representation $(\theta = \frac{\pi}{4})$ $0 \times x - y$

Lipschitz continuous operator

- an operator A is $\beta\text{-Lipschitz}$ continuous if

$$|Ax - Ay|| \le \beta ||x - y||$$

- A is single-valued (show by letting y = x and use contradiction)
- graphical representation

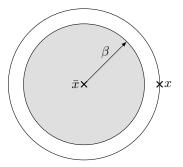


then Ax - Ay is in gray area

Alternative graphical representation

- assume A has a fixed point $\bar{x}=A\bar{x}$ then

$$||Ax - \bar{x}|| = ||Ax - A\bar{x}|| \le \beta ||x - \bar{x}||$$



then Ax in gray area

- interpretation: β relates to distance to fixed-point
- $\beta < 1$: contractive
- $\beta = 1$: nonexpansive

Examples

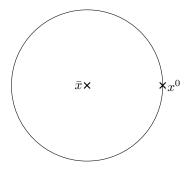
- a rotation is 1-Lipschitz continuous (nonexpansive)
- a linear mapping Mx is $\|M\|\text{-Lipschitz continuous}$

- a contractive ($\beta < 1$) operator A has a unique fixed-point \bar{x} (Banach-Picard fixed-point theorem)
- the iteration $x^{k+1} = Ax^k$ converges linearly to the fixed-point (\bar{x}) if A is β -contractive:

$$\|x^{k+1} - \bar{x}\| = \|Ax^k - A\bar{x}\| \le \beta \|x^k - \bar{x}\| \le \beta^{k+1} \|x^0 - \bar{x}\|$$

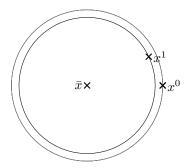
- a contractive ($\beta < 1$) operator A has a unique fixed-point \bar{x} (Banach-Picard fixed-point theorem)
- the iteration $x^{k+1} = Ax^k$ converges linearly to the fixed-point (\bar{x}) if A is β -contractive:

$$\|x^{k+1} - \bar{x}\| = \|Ax^k - A\bar{x}\| \le \beta \|x^k - \bar{x}\| \le \beta^{k+1} \|x^0 - \bar{x}\|$$



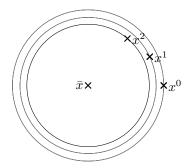
- a contractive ($\beta < 1$) operator A has a unique fixed-point \bar{x} (Banach-Picard fixed-point theorem)
- the iteration $x^{k+1} = Ax^k$ converges linearly to the fixed-point (\bar{x}) if A is β -contractive:

$$\|x^{k+1} - \bar{x}\| = \|Ax^k - A\bar{x}\| \le \beta \|x^k - \bar{x}\| \le \beta^{k+1} \|x^0 - \bar{x}\|$$



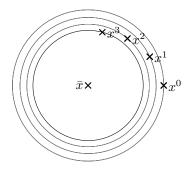
- a contractive ($\beta < 1$) operator A has a unique fixed-point \bar{x} (Banach-Picard fixed-point theorem)
- the iteration $x^{k+1} = Ax^k$ converges linearly to the fixed-point (\bar{x}) if A is β -contractive:

$$\|x^{k+1} - \bar{x}\| = \|Ax^k - A\bar{x}\| \le \beta \|x^k - \bar{x}\| \le \beta^{k+1} \|x^0 - \bar{x}\|$$



- a contractive ($\beta < 1$) operator A has a unique fixed-point \bar{x} (Banach-Picard fixed-point theorem)
- the iteration $x^{k+1} = Ax^k$ converges linearly to the fixed-point (\bar{x}) if A is β -contractive:

$$\|x^{k+1} - \bar{x}\| = \|Ax^k - A\bar{x}\| \le \beta \|x^k - \bar{x}\| \le \beta^{k+1} \|x^0 - \bar{x}\|$$



- nonexpansive operator need not have a fixed-point
- example:

- nonexpansive operator need not have a fixed-point
- example: Ax = x + 2

$$Ax = x + 2 \neq x$$

for all $x \in \mathbf{R}$

$$||Ax - Ay|| = ||x + 2 - y - 2|| = ||x - y||$$

• iteration
$$x^{k+1} = Ax^k$$
:

- nonexpansive operator need not have a fixed-point
- example: Ax = x + 2

$$Ax = x + 2 \neq x$$

for all $x \in \mathbf{R}$

$$||Ax - Ay|| = ||x + 2 - y - 2|| = ||x - y||$$

• iteration
$$x^{k+1} = Ax^k$$
:
 x^0
 x^1

- nonexpansive operator need not have a fixed-point
- example: Ax = x + 2

$$Ax = x + 2 \neq x$$

for all $x \in \mathbf{R}$

$$||Ax - Ay|| = ||x + 2 - y - 2|| = ||x - y||$$

• iteration
$$x^{k+1} = Ax^k$$
:
 x^0
 x^1
 x^2

- nonexpansive operator need not have a fixed-point
- example: Ax = x + 2

$$Ax = x + 2 \neq x$$

for all $x \in \mathbf{R}$

$$||Ax - Ay|| = ||x + 2 - y - 2|| = ||x - y||$$

• iteration
$$x^{k+1} = Ax^k$$
:
 x^0
 x^1
 x^2
 x^3

- nonexpansive operator need not have a fixed-point
- example: Ax = x + 2

$$Ax = x + 2 \neq x$$

for all $x \in \mathbf{R}$

$$||Ax - Ay|| = ||x + 2 - y - 2|| = ||x - y||$$

• iteration
$$x^{k+1} = Ax^k$$
:
 x^0
 x^1
 x^2
 x^3
 x^4

- nonexpansive operator need not have a fixed-point
- example: Ax = x + 2

$$Ax = x + 2 \neq x$$

for all $x \in \mathbf{R}$

$$||Ax - Ay|| = ||x + 2 - y - 2|| = ||x - y||$$

• iteration
$$x^{k+1} = Ax^k$$
:
 x^0
 x^1
 x^2
 x^3
 x^4
 x^5

Fixed-points of nonexpansive operator

- nonexpansive operator need not have a fixed-point
- example: Ax = x + 2

$$Ax = x + 2 \neq x$$

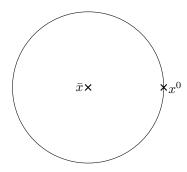
for all $x \in \mathbf{R}$

• it is nonexpansive (1-Lipschitz continuous)

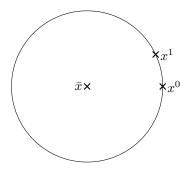
$$||Ax - Ay|| = ||x + 2 - y - 2|| = ||x - y||$$

• iteration
$$x^{k+1} = Ax^k$$
:
 x^0
 x^1
 x^2
 x^3
 x^4
 x^5

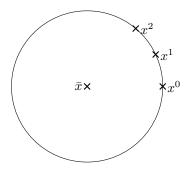
- if fixed-point \bar{x} exists, iteration $x^{k+1} = Ax^k$ must not converge
- example: rotation by 25°



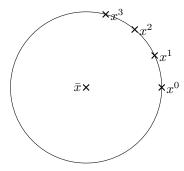
- if fixed-point \bar{x} exists, iteration $x^{k+1} = Ax^k$ must not converge
- example: rotation by 25°



- if fixed-point \bar{x} exists, iteration $x^{k+1} = Ax^k$ must not converge
- example: rotation by 25°



- if fixed-point \bar{x} exists, iteration $x^{k+1} = Ax^k$ must not converge
- example: rotation by 25°

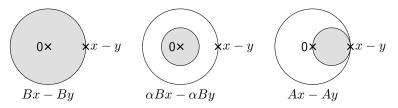


Averaged operators

• an operator A is $\alpha\text{-averaged}$ if and only if for some nonexpansive B and $\alpha\in(0,1)$:

$$A = (1 - \alpha)\mathrm{Id} + \alpha B$$

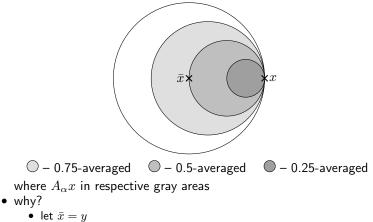
• graphical representation for $\alpha = 0.5$:



- for $\alpha = \frac{1}{2}$ we get B = 2A Id: A 0.5-averaged if and only if 2A Id nonexpansive
- $\frac{1}{2}$ -averaged is called firmly nonexpansive

Additional graphical representation

• assume that \bar{x} is a fixed-point to A_{α} which is α -averaged, then A_{α} can be represented as:



• shift by \bar{x} : $(0 \to \bar{x}, x - \bar{x} \to x, Ax - A\bar{x} \to Ax - A\bar{x} + \bar{x} = Ax)$

• distance to fixed-point strictly decreased (except for if already at fixed-point)

Fixed-points

- the fixed-points of $A = (1 \alpha)Id + \alpha B$ and B coincide (if they exist)
- proof
 - a fixed point \bar{x} to B is a fixed-point to A:

$$A\bar{x} = (1-\alpha)\bar{x} + \alpha B\bar{x} = (1-\alpha+\alpha)\bar{x} = \bar{x}$$

• a fixed-point \bar{x} to A is a fixed-point to B:

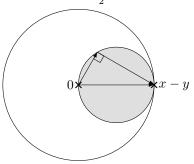
$$B\bar{x} = \frac{1}{\alpha}(A + (\alpha - 1)\mathrm{Id})\bar{x} = \frac{1}{\alpha}(1 + \alpha - 1)\bar{x} = \bar{x}$$

Averaged operator formula

• α -averaged operator satisfies

$$\frac{1-\alpha}{\alpha} \| (I-A)x - (I-A)y \|^2 + \|Ax - Ay\|^2 \le \|x - y\|^2$$

• graphical representation for $\alpha = \frac{1}{2}$:



• can be used to show sub-linear convergence

Convergence

- the iterates for $x^{k+1} = Ax^k$ converge
- proof:

$$\frac{1-\alpha}{\alpha} \|x^k - x^{k+1}\|^2 = \frac{1-\alpha}{\alpha} \|(I-A)x^k - (I-A)x^\star\|^2$$
$$\leq \|x^k - x^\star\|^2 - \|x^{k+1} - x^\star\|^2$$

• summing over k:

$$(n+1)\|x^{n+1} - x^n\|^2 \le \sum_{k=0}^n \|x^{k+1} - x^k\|^2$$
$$\le \frac{\alpha \sum_{k=1}^n \left(\|x^k - x^\star\|^2 - \|x^{k+1} - x^\star\|^2\right)}{1 - \alpha}$$
$$= \frac{\alpha \|x^0 - x^\star\|^2}{1 - \alpha}$$

• that is

$$\|x^{n+1} - x^n\|^2 \le \frac{\alpha \|x^0 - x^\star\|^2}{(n+1)(1-\alpha)}$$

• optimize w.r.t. α gives $\alpha \rightarrow 0$ (not very informative since consecutive iterates close if short steps)

29

Convergence

- convergence towards fixed-point:
- proof:

$$\frac{1-\alpha}{\alpha} \|x^{n+1} - x^n\|^2 = \frac{1-\alpha}{\alpha} \|(1-\alpha)x^n + \alpha B(x^n) - x^n\|^2$$
$$= \alpha (1-\alpha) \|B(x^n) - x^n\|^2$$

• therefore

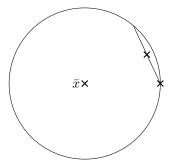
$$||B(x^{n}) - x^{n}||^{2} = \frac{1}{\alpha^{2}} ||x^{n+1} - x^{n}||^{2} \le \frac{||x^{0} - x^{\star}||^{2}}{(n+1)(1-\alpha)\alpha}$$

• optimize constant by letting $\alpha = \frac{1}{2}$:

$$||B(x^n) - x^n||^2 \le \frac{4||x^0 - x^*||^2}{(n+1)}$$

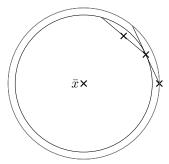
Convergence example - $\alpha = 0.5$

- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.5-averaged operator



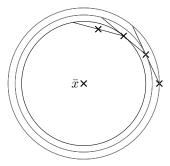
Convergence example - $\alpha = 0.5$

- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.5-averaged operator



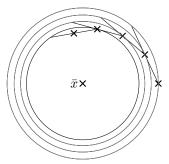
Convergence example - $\alpha = 0.5$

- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.5-averaged operator

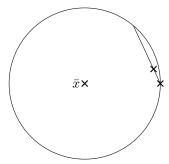


Convergence example - $\alpha=0.5$

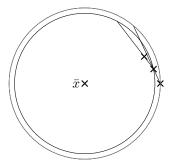
- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.5-averaged operator



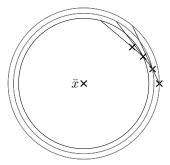
- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.25-averaged operator



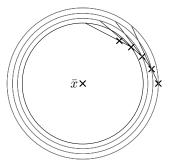
- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.25-averaged operator



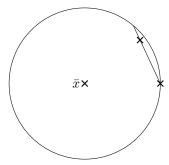
- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.25-averaged operator



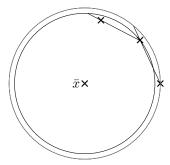
- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.25-averaged operator



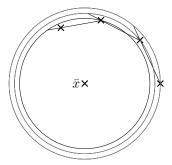
- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.75-averaged operator



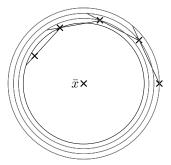
- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.75-averaged operator



- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.75-averaged operator

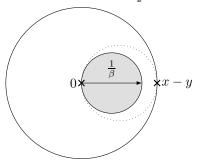


- rotation operator R_{θ} with $\theta = 50^{\circ}$
- fixed-point \bar{x} at origin
- iterate 0.75-averaged operator



Cocoercive operators

• an operator A is β -cocoercive if βA is $\frac{1}{2}$ -averaged



• Ax - Ay in gray area (dotted area shows that $\beta Ax - \beta Ax$ is $\frac{1}{2}$ -averaged)

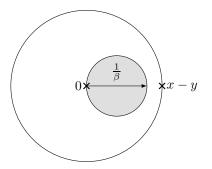
Cocoercive operator properties

• an operator A is β -cocoercive if βA is $\frac{1}{2}$ -averaged, i.e.

$$||(I - \beta A)x - (I - \beta A)y||^2 + ||\beta Ax - \beta Ay||^2 \le ||x - y||^2$$

• equivalently (by expanding the first square and div. by β)

 $\langle Ax - Ay, x - y \rangle \ge \beta \|Ax - Ay\|^2$



Properties

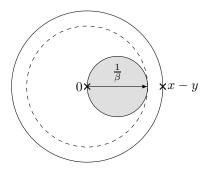
- β -cocoercivity implies γ -Lipschitz continuity:
- estimate γ ?

Properties

- β -cocoercivity implies γ -Lipschitz continuity:
- estimate γ ?

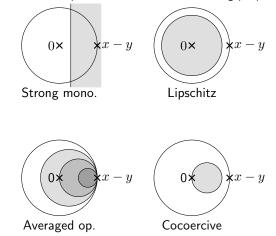
•
$$\gamma = \frac{1}{\beta}$$

$$\beta \|Ax - Ay\|^2 \le \langle Ax - Ay, x - y \rangle \le \|x - y\| \|Ax - Ay\|$$



Summary properties

• we have discussed operators A with the following properties



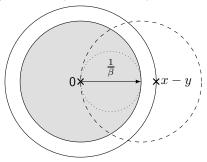
• the set (or point) $Ax \ominus Ay$ is in the respective gray areas

Exercise I

- assume that A is $\beta\text{-cocoercive}$
- estimate a small Lipschitz constant to $2A \frac{1}{\beta} Id$

Exercise I

- assume that A is β -cocoercive
- estimate a small Lipschitz constant to $2A \frac{1}{\beta}$ Id
- a Lipschitz constant is ¹/_β
 "proof":
 - 1. due to cocoercivity of A we have Ax Ay in dotted circle
 - 2. multiply by 2 (2Ax 2Ay in dashed)
 - 3. shift by $-\frac{1}{\beta} \operatorname{Id} \left((2A \frac{1}{\beta} \operatorname{Id})x (2A \frac{1}{\beta} \operatorname{Id})y \text{ in gray} \right)$



Exercise II

- assume that A is 2-cocoercive
- $\operatorname{Id} A$ is α -averaged, compute α

Exercise II

- assume that A is 2-cocoercive
- $\operatorname{Id} A$ is α -averaged, compute α
- Id A is 0.25-averaged "proof":
 - 1. due to 2-cocoercivity of A, we have Ax Ay in dotted circle
 - 2. multiply by -1 (-Ax + Ay in dashed)
 - 3. shift by Id ((Id A)x (Id A)y in gray)



Relation to (strong) monotonicity?

- can relate Lipschitz continuity, cocoercivity, and averagedness by scaling and shifting (they are all circles)
- cannot relate to (strong) monotonicity

Dual properties I

- consider the following list of properties
 - (i) $A \text{ is } \beta\text{-strongly monotone}$ (ii) $A^{-1} \text{ is } \beta\text{-cocoercive}$ (iii) $A^{-1} \text{ is } \frac{1}{\beta}\text{-Lipschitz continuous}$ we have (i) \Leftrightarrow (ii) and (ii) \Rightarrow (iii)
- the result also holds with ${\cal A}$ and ${\cal A}^{-1}$ interchanged

Dual properties II

- for proper, closed, and convex $\boldsymbol{f},$ the following are equivalent:
 - (i) f is β -strongly convex

$$f(x) \ge f(y) + \langle u, x - y \rangle + \frac{\beta}{2} ||x - y||^2$$

for all $u \in \partial f(y)$

- (ii) ∂f is β -strongly monotone
- (iii) ∂f^* is β -cocoercive
- (iv) ∂f^* is $\frac{1}{\beta}$ -Lipschitz continuous
- (v) f^* is $\frac{1}{\beta}$ -smooth

$$f^{*}(x) \leq f^{*}(y) + \langle \nabla f^{*}(x), x - y \rangle + \frac{1}{2\beta} ||x - y||^{2}$$

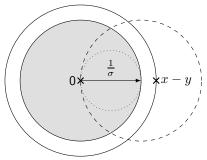
- the result also holds with f and f^* interchanged
- we have implication (iv) \Rightarrow (iii) as opposed to general case
- (recall $\partial f^* = (\partial f)^{-1}$)

Exercise I revisited

- A^{-1} is σ -strongly monotone
- estimate a small Lipschitz constant to $2A \frac{1}{\sigma}$ Id

Exercise I revisited

- A^{-1} is σ -strongly monotone
- estimate a small Lipschitz constant to $2A \frac{1}{\sigma}$ Id
- a Lipschitz constant is ¹/_σ
 "proof":
 - 1. (i) \Rightarrow (ii) implies A is σ -cocoercive (Ax Ay in dotted)
 - 2. multiply by 2 (2Ax 2Ay in dashed)
 - 3. shift by $-\frac{1}{\sigma}$ Id $((2A \frac{1}{\sigma}Id)x (2A \frac{1}{\sigma}Id)y$ in gray)

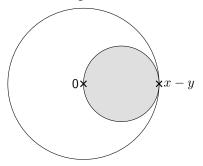


Exercise III

- A is 1-strongly convex
- A^{-1} is α -averaged, compute α

Exercise III

- A is 1-strongly convex
- A^{-1} is α -averaged, compute α
- A^{-1} is $\frac{1}{2}$ -averaged "proof":
 - 1. (i) \Rightarrow (ii) gives that A^{-1} is 1-cocoercive $(A^{-1}x A^{-1}y \text{ in gray})$
 - 2. 1-cocoercivity defined as $\frac{1}{2}$ -averagedness



Summary

- we have discussed the following operator properties
 - 1. (strong) monotonicity
 - 2. Lipschitz continuity (nonexpansiveness, contractiveness)
 - 3. averaged operators
 - 4. cocoercive operators
- 2., 3., and 4. are related to each other by scaling and translating
- 2., 3., and 4. are related to 1. through the inverse operator
- iteration of averaged operators converge (sublinearly)
- iteration of contractive operators converge linearly

Monotone inclusion problems

• we want to solve monotone inclusion problems of the form

$$0 \in A(x) + B(x)$$

where \boldsymbol{A} and \boldsymbol{B} are maximal monotone operators

• special case:

$$0\in \partial f(x)+\partial g(x)$$

is equivalent to

minimize f(x) + g(x)

• how to use the presented framework?

Creating algorithms

- state optimal point x as a fixed-point equation of some operator
- show that operator is either
 - α -averaged (sublinear convergence)
 - *β*-contractive (linear convergence)

Resolvent

• resolvent $J_A : \mathcal{D} \to \mathcal{H}$ to monotone operator is defined as

 $J_A = (\mathrm{Id} + A)^{-1}$

 if A maximally monotone, then D = H (important for algorithms involving the resolvent)

Resolvent

• resolvent $J_A : \mathcal{D} \to \mathcal{H}$ to monotone operator is defined as

 $J_A = (\mathrm{Id} + A)^{-1}$

- if A maximally monotone, then D = H (important for algorithms involving the resolvent)
- subdifferential case $A = \partial f$:

$$J_{\partial f}(z) = \operatorname*{argmin}_{x} \left\{ f(x) + \frac{1}{2} ||x - z||^2 \right\} =: \operatorname{prox}_{f}(z)$$

then resolvent called prox operator

• proof: $x = \text{prox}_f(z)$ if and only if

$$0 \in \partial f(x) + x - z$$

$$\Leftrightarrow \qquad z \in \partial f(x) + x$$

$$\Leftrightarrow \qquad z \in (\mathrm{Id} + \partial f)x$$

$$\Leftrightarrow \qquad x = (\mathrm{Id} + \partial f)^{-1}z$$

- assume A σ -strongly monotone ($\sigma = 0$ implies monotone)
- Id + A is $(1 + \sigma)$ -strongly monotone

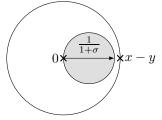
$$\langle Ax - Ay + (x - y), x - y \rangle \ge \sigma \|x - y\|^2 + \|x - y\|^2 = (1 + \sigma)\|x - y\|^2$$

• properties of $J_A = (\mathrm{Id} + A)^{-1}$?

- assume A σ -strongly monotone ($\sigma = 0$ implies monotone)
- Id + A is $(1 + \sigma)$ -strongly monotone

$$\langle Ax - Ay + (x - y), x - y \rangle \ge \sigma ||x - y||^2 + ||x - y||^2 = (1 + \sigma) ||x - y||^2$$

- properties of $J_A = (\mathrm{Id} + A)^{-1}$?
- $J_A = (\mathrm{Id} + A)^{-1}$ is $(1 + \sigma)$ -cocoercive

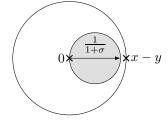


• $\sigma = 0$:

- assume $A \sigma$ -strongly monotone ($\sigma = 0$ implies monotone)
- Id + A is $(1 + \sigma)$ -strongly monotone

$$\langle Ax - Ay + (x - y), x - y \rangle \ge \sigma ||x - y||^2 + ||x - y||^2 = (1 + \sigma) ||x - y||^2$$

- properties of $J_A = (\mathrm{Id} + A)^{-1}$?
- $J_A = (\mathrm{Id} + A)^{-1}$ is $(1 + \sigma)$ -cocoercive

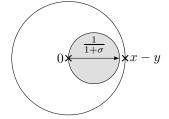


• $\sigma = 0$: J_A is $\frac{1}{2}$ -averaged (or 1-cocoercive) • $\sigma > 0$:

- assume A σ -strongly monotone ($\sigma = 0$ implies monotone)
- Id + A is $(1 + \sigma)$ -strongly monotone

$$\langle Ax - Ay + (x - y), x - y \rangle \ge \sigma ||x - y||^2 + ||x - y||^2 = (1 + \sigma) ||x - y||^2$$

- properties of $J_A = (\mathrm{Id} + A)^{-1}$?
- $J_A = (\mathrm{Id} + A)^{-1}$ is $(1 + \sigma)$ -cocoercive



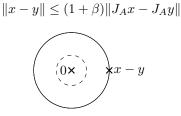
- $\sigma = 0$: J_A is $\frac{1}{2}$ -averaged (or 1-cocoercive)
- $\sigma > 0$: J_A is $\frac{1}{1+\sigma}$ -contractive
- (iteration of the resolvent converges to a fixed-point)

Further properties

- assume A is β -Lipschitz continuous
- Id + A is $(1 + \beta)$ -Lipschitz continuous

$$||Ax - Ay + x - y|| \le ||Ax - Ay|| + ||x - y|| \le (1 + \beta)||x - y||$$

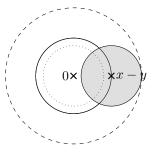
• $J_A = (\mathrm{Id} + A)^{-1}$ satisfies (by definition of inverse operator)



where $J_A x - J_A y$ outside dashed region (with radius $\frac{1}{1+\beta}$)

Suboptimal characterization

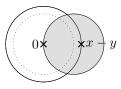
- still assume A is $\beta\text{-Lipschitz}$ continuous
- previous characterization (1 + β -Lipschitz) of Id + A not tight!



- dotted: Ax Ay
- gray: $(\mathrm{Id} + A)x (\mathrm{Id} + A)y$
- dashed: $(1 + \beta)$ -Lipschitz continuity circle

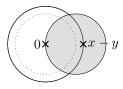
- still assume A is $\beta\text{-Lipschitz}$ continuous
- property of $A + \beta \text{Id}$?

- still assume A is β -Lipschitz continuous
- property of $A + \beta \text{Id}$?
- it is $\frac{1}{2\beta}$ -cocoercive



- dotted: Ax Ay
- gray: $(\beta \operatorname{Id} + A)x (\beta \operatorname{Id} + A)y$

- still assume A is β -Lipschitz continuous
- property of $A + \beta \text{Id}$?
- it is $\frac{1}{2\beta}$ -cocoercive

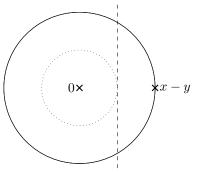


- dotted: Ax Ay
- gray: $(\beta \operatorname{Id} + A)x (\beta \operatorname{Id} + A)y$
- using $\beta Id = Id + (\beta 1)Id$, the definition of a cocoercive operator, and the definition of the inverse, we get:

$$2\langle J_A x - J_A y, x - y \rangle \ge \|x - y\|^2 + (1 - \beta^2) \|J_A x - J_A y\|^2$$

Comparison of properties

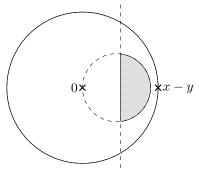
- assume A is β -Lipschitz continuous
- compare the two properties for J_A for $\beta = 1$



- first property: $J_A x J_A y$ outside dotted region
- improved property: $J_A x J_A y$ to the right of dashed line $(J_A \text{ is } \frac{1}{2}\text{-monotone})$

Combining properties

- let A be 1-Lipschitz and σ -strongly monotone (with $0 \le \sigma < 1$)
 - strong monotonity of A implies cocoerciveness of J_A
 - Lischitz continuity of A implies "improved property" of J_A
 - · intersect regions to find region when both properties are present



- $J_A x J_A y$ ends up in gray region
- $(\sigma = \frac{1}{9} \text{ and } \beta = 1 \text{ in figure})$

Proximal operator

- can properties be tighter when the resolvent is a prox operator?
- recall

$$J_{\partial f}(z) = \operatorname{prox}_{f}(z) = \operatorname{argmin}_{x} \left\{ f(x) + \frac{1}{2} \|x - z\|^{2} \right\}$$

- define $h = \frac{1}{2} \| \cdot \|^2 + f$, properties:
 - f is $\sigma\text{-strongly convex}$ implies h is $(1+\sigma)\text{-strongly convex}$
 - f is β -smooth implies h is $(1 + \beta)$ -smooth
 - we have $\partial h = (\mathrm{Id} + \partial f)$
- the prox operator satisfies

$$\operatorname{prox}_f(z) = (\operatorname{Id} + \partial f)^{-1} z = (\partial h)^{-1} z = \nabla h^*(z)$$

Proximal opertor properties

- we have
$$\mathrm{prox}_f(z) = \nabla h^*(z)$$
 where $h = \frac{1}{2} \| \cdot \|^2 + f$

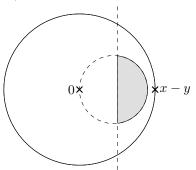
- recall equivalent dual properties
 - (i) f is β -strongly convex
 - (ii) ∂f is β -strongly monotone
 - (iii) ∂f^* is β -cocoercive
 - (iv) ∂f^* is $\frac{1}{\beta}$ -Lipschitz continuous
 - (v) f^* is $\frac{1}{\beta}$ -smooth
- this gives

f	h	$\nabla h^* = \operatorname{prox}_f$
σ -str. cvx	$(1+\sigma)$ -str. cvx.	$\frac{1}{1+\sigma}$ -cocoercive
$\beta ext{-smooth}$	$(1+\beta)$ -Lipschitz	$\frac{1}{1+\beta}$ -str. mono.

• first property same and in general case, second property different

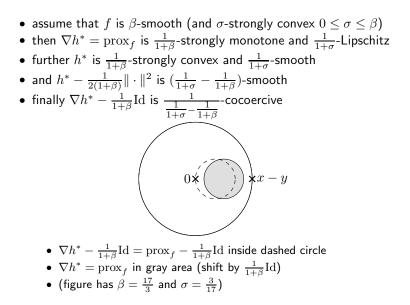
Graphical representation

• consider the case $\beta = 1$



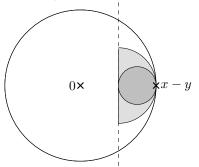
the same as in the general case

• can be improved



Comparison

- assume A is a general operator and that $B = \partial f$
- assume that A and ∂f are 1-Lipschitz and σ -strongly monotone
- the prox operator ends up in:



where J_Ax-J_Ay in light area and $J_{\partial f}x-J_{\partial f}y$ in darker area

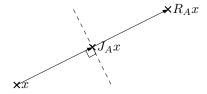
- ($\sigma = 0$ in figure, i.e., only monotonicity is assumed)
- **conclussion**: under Lipschitz assumptions, the resolvent of subdifferentials are confined to smaller regions

Reflected resolvent

• the reflected resolvent R_A to a monotone operator A is defined as

$$R_A := 2J_A - I$$

• it gives the reflection point (therefore its name)

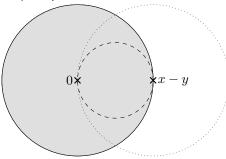


Properties of reflected resolvent

- $\bullet\,$ in the general case, A monotone
- reflected resolvent R_A is β -Lipschitz, what is β ?

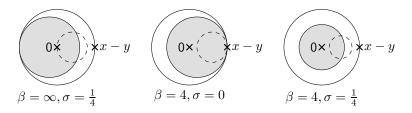
Properties of reflected resolvent

- in the general case, \boldsymbol{A} monotone
- reflected resolvent R_A is β -Lipschitz, what is β ?
- $\beta = 1$, i.e., R_A is nonexpansive proof:
 - 1. $J_A x J_A y$ within dashed region (since J_A 1-cocoercive in general case)
 - 2. $2J_Ax J_Ay$ within dotted region (multiply by 2)
 - 3. $(2J_A \mathrm{Id})x (2J_A \mathrm{Id})y = (2J_Ax 2J_Ay) (x y)$ in gray area (shift by $-\mathrm{Id}$)



Further properties of reflected resolvent

- properties under different assumptions obtained by multiplying resolvent area by 2 (radially) and shifting by -Id(-(x-y))
- examples: subdifferential operator A is $\beta\text{-smooth}$ and $\sigma\text{-strongly}$ monotone



• contractive if $\beta < \infty$ and $\sigma > 0$

How to use these operators?

• how to use these operators to solve monotone inclusion problems

 $0 \in A(x) + B(x)$

Optimality conditions

 \bullet inclusion problem with A and B maximally monotone

 $0\in A(x)+B(x)$

• x solves inclusion problem iff

$$z = R_{\gamma A} R_{\gamma B} z \qquad \qquad x = J_{\gamma A}(z)$$

with $\gamma > 0$, i.e., z is a fixed-point to composition $R_{\gamma A} R_{\gamma B}$

• algorithm: find fixed-point to $R_{\gamma A}R_{\gamma B}$ to solve problem

(Generalized) Douglas-Rachford splitting

• iterate $R_{\gamma A}R_{\gamma B}$ to find fixed-point (Peaceman-Rachford splitting)

$$z^{k+1} = R_{\gamma A} R_{\gamma B} z^k$$

- $R_{\gamma A}$ and $R_{\gamma B}$ are nonexpansive in general case, so is composition \Rightarrow algorithm not guaranteed to converge in general case
- need an averaged or contractive operator to converge
- introduce averaging with $\alpha \in (0,1)$:

$$z^{k+1} = ((1-\alpha)\mathrm{Id} + \alpha R_{\gamma A} R_{\gamma B}) z^k$$

• $\alpha = \frac{1}{2}$ usually called Douglas-Rachford splitting (here for all α)

Convergence to fixed-point

• the Douglas-Rachford algorithm converges to fixed point of

$$(1-\alpha)$$
Id $+ \alpha R_{\gamma A} R_{\gamma B}$

- fixed points coincide with fixed points of $R_{\gamma A}R_{\gamma B}$ (shown earlier)
- convergence is sublinear (shown earlier)

Linear convergence

- we get linear convergence if either of the following hold
 - A is σ -strongly monotone and β -Lipschitz
 - A is $\sigma\text{-strongly}$ monotone and B is $\beta\text{-Lipschitz}$ continuous
- reason: (1α) Id + $\alpha R_{\gamma A} R_{\gamma B}$ contractive
- can choose γ and α to optimize rates
- different rates in general case and subdifferential case

ADMM

- ADMM = the alternating direction method of multipliers
- consider the problem

minimize
$$f(x) + g(y)$$

subject to $Ax = y$

• dual problem

maximize
$$\inf_{x,y} \left(f(x) + g(y) + \mu^T (Ax - y) \right)$$

• rewrite by identifying conjugates ($f^*(z) = \sup_x \left\{ \langle z, x \rangle - f(x) \right\}$)

minimize $d(\mu) + g^*(\mu)$

where $d(\mu) = f^*(-A^T\mu)$

- apply DR to dual to get ADMM
- all convergence properties from DR translate to ADMM (use "Dual properties II" to infer properties of d and g* from f and g)

Project

- provide linear convergence rates for Douglas-Rachford splitting in general case under assumptions
 - A is $\sigma\text{-strongly monotone and }\beta\text{-Lipschitz}$
 - A is $\sigma\text{-strongly}$ monotone and B is $\beta\text{-Lipschitz}$
- optimize Douglas-Rachford algorithm parameters γ and α
- provide examples that achieve the rate exactly (if possible)

Summary

- introduced operators with different properties
 - (strong) monotonicity
 - Lipschitz continuity, nonexpansiveness, contractiveness
 - averaged operators
 - cocoercive operators
- dual properties
- stated monotone inclusion problems
- introduced resolvent and reflected resolvent
- described Douglas-Rachford splitting and "showed" convergence