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Lecture 0

Course Contents

Matrix theory

Norms

Distributions

Fourier and Laplace Transforms

Material: Lecture slides
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Linear Systems I, 2014

Introduction

Multivariable Time-varying Systems

Transition Matrices

Controllability and Observability

Realization Theory

Stability Theory

Linear Feedback

Multivariable input/output descriptions

Some Bonus Material
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Linear Systems I, 2014

Rugh, Linear System Theory, 2nd edition

Most of 1-7,9-12,13-14,16-17

Scan 15,20-23,25-29

Skip 8,18-19, 24

Optimization by Vector Space Methods, Handout Lec 6

Some more handouts
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Course Contents

Credits: 9hp

9 Lectures (incl this intro)

8 Exercise sessions (nothing this week)

8 Handins (7 best counts). Strict deadlines!

Take home exam 24 hours
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Matrix Theory

Definition and standard rules for det(A) =∏
λ i and

tr(A) =∑
λ i

det(AB) = det(A)det(B), tr(AB) = tr(BA)
(AB)−1 = B−1A−1 and (AB)T = BTAT

det(A) =∑
i ai jci j =

∑
j ai jci j

cofactors ci j = (−1)i+ j det(A′) (delete row i and col j)

adj(A) = CT

Aadj(A) = det(A)I, so A−1 = adj(A)
det(A)

d
dt
(AB) = dA

dt
B + AdB

dt

If in need: Google "Matrix Cookbook"
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Eigenvalues

Av = λv

Characteristic equation p(λ) = det(λ I − A) = 0
Geometric multiplicity ≤ Algebraic multiplicity

If AT = A then eigenvalues are real and there are n orthogonal

eigenvectors: A = VΛVT with VTV = I
General A: Jordan normal form

A = V blockdiag (Ji)V−1 where Ji =




λ i 1
. . . 1

λ i




Cayley-Hamilton: p(A) = 0
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Computation of eAt

Definition: eAt =
∞∑
k=0

1
k!
(At)k. Satisfies dX

dt
= AX .

d
dt
eAt = AeAt = eAtA

If A = VΛVT then eAt = Vdiag(eλ it)VT

If A = V blockdiag (Ji)V−1 then eAt = V blockdiag (eJit)V−1

where eJit =




eλ it teλ it . . . tni−1

(ni−1)! e
λ it

. . .
. . .

eλ it teλ it

eλ it




Laplace-transform L(eAt) = (sI − A)−1

e(A+B)t = eAteBt for all t\ AB = BA.
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Singular Value Decomposition etc

If A ∈ Rm$n then

A = U

Σ 0

0 0


 VT

where U ∈ Rm$m,V ∈ Rn$n orthogonal and

Σ = diag(σ 1, . . . ,σ r) > 0 diagonal of size r=rank(A)

A symmetric =[ A = UΣUT .
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Geometric View

A =

U1 . . . Ur . . .Um





Σ 0

0 0







VT1
...

VTr
...

VTn




Null space N(A) := {x p Ax = 0}
Range space R(A) := {y p y= Ax for some x}
Rn = R(AT )︸ ︷︷ ︸

spanned by V1...Vr

⊕ N(A)︸ ︷︷ ︸
spanned by Vr+1...Vn

Rm = R(A)︸ ︷︷ ︸
spanned by U1...Ur

⊕ N(AT )︸ ︷︷ ︸
spanned by Ur+1 ...Um
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Quadratic Forms xTAx

Let’s assume AT = A (note that xTAx = xT(A+ AT)x/2)
A ≥ 0 \ xTAx ≥ 0,∀x
A > 0 \ xTAx > 0,∀x ,= 0
We say that A ≥ B iff A− B ≥ 0.

Courant-Fisher formulas when AT = A:

λmax(A) = max
x ,=0

xT Ax
xT x

= max
xT x=1

xTAx

λmin(A) = min
x ,=0

xT Ax
xT x

= min
xT x=1

xTAx

λmin(A)I ≤ A ≤ λmax I

A > 0\ λ i(A) > 0,∀i
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Norms

A norm is a real-valued function satisfying

qxq ≥ 0, with equality iff x = 0 (1)

qα xq = pα pqxq (2)

qx + yq ≤ qxq + qyq (3)

Some vector norms on Rn

qxq1 =
∑

pxip

qxq2 =
(∑

pxip2
)1/2

qxq∞ = max pxip

qxqp =
(∑

pxipp
)1/p

, 1 ≤ p ≤ ∞
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Signal Norms

q fqp =
(∫ ∞

−∞
p f (t)ppdt

)1/p

For p = 2, called "signal-energy"

Lp(I) denotes functions with
∫
I
p f (t)ppdt < ∞
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Matrix Norms

A matrix norm is a function satisfying (1)-(3) above

Examples: (induced matrix norms)

qAqα ,β = sup
x ,=0

qAxqβ

qxqα

Induced 2-norm

qAq2 = sup
x ,=0

qAxq2
qxq2

= σmax(A)

This is often the "default-norm".
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Submultiplicative Matrix Norms

If the norm also satisfies qABq ≤ qAqqBq it is called

submultiplicative

All induced matrix norms are submultiplicative.

Frobenius-norm or Hilbert-Schmidt norm (submultiplicative, but

not an induced norm)

qAqF =


∑

i, j

pai j p2


1/2

=
(
Trace(ATA)

)1/2

Linear Systems Lecture 0 Some Math Background



Scalar Products

A scalar product 〈⋅, ⋅〉 V $ V ]→ C satisfies

Positive definite 〈x, x〉 ≥ 0 with equality iff x = 0
Conjugate symmetric 〈x, y〉 = 〈y, x〉
Linearity 〈x,λ1y1 + λ2y2〉 = λ1〈x, y1〉 + λ2〈x, y2〉

Examples

〈x, y〉 = x∗y

〈X ,Y〉 = Trace(X ∗Y)

〈x(t), y(t)〉 =
∫
x(t)∗y(t)dt
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Scalar Products

We say that x and y are orthogonal, denoted x ⊥ y if 〈x, y〉 = 0
For subspace: X ⊥ Y means that x ⊥ y,∀x ∈ X , y ∈ Y
Example: cos t is orthogonal to sin t in V = L2([−π ,π ])
Cauchy-Schwarz’ inequality:

n∑

i=1
pxiyip = 〈x, y〉 ≤ qxq2qyq2

(with equality if and only if x and y are proportional)
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Summary of Distributions

A distribution S is a "generalized function".

One defines the distribution via its action on (suitably smooth)

test-functions ϕ ∈D
Different notations S(ϕ) = 〈S,ϕ〉 =

∫
S(t)φ(t)dt

Schwarz test functions

D = {ϕ(t) p sup
t∈R

ptkdϕ
n

dtn
p < ∞, ∀k,n ≥ 0}

gives "tempered distributions"

S(ϕ) should be linear and "continuous" function of ϕ
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Example

Dirac function defined via
∫

δ (t)ϕ(t)dt = ϕ(0)

Derivative of S is defined via S′(ϕ) = −S(ϕ ′)
∫

δ (k)(t)ϕ(t)dt = (−1)kϕ (k)(0)
Step function θ (x) = 1x>0
θ ′(x) = δ (x)
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5 min Exercise

Verify that we for a smooth f have

δ (x) f (x) = δ (x) f (0)

where equality is interpreted in the sense of distributions

Also show that

δ ′(x) f (x) = δ ′(x) f (0) − δ (x) f ′(0)

Similarly simplify δ (k)(x) f (x)
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Fourier Transforms

F (ω ) = f̂ (ω ) =
∫∞
−∞ e

−iω t f (t)dt
Well defined in classical sense if

∫
p f (t)pdt < ∞

Inversion-formula f (t) = 1

2π

∫∞
−∞ e

iω tF (ω )dω

f̂ can be defined, as a distribution, via

〈 f̂ ,ϕ〉 = 〈 f , ϕ̂ 〉, ϕ ∈ S

This works e.g. if f is a tempered distribution, for example if

f ∈ C∞
sup
t
p(1+ ptp)−n f (t)p < ∞, for some n

("at most polynomial growth")
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Examples

f (t) " 1, F (ω ) = 2πδ (ω )
f (t) = cos(ω 0t), F (ω ) = π (δ (ω −ω 0) + δ (ω −ω 0))
f (t) = δ (t), F (ω ) " 1
f ′(t) ]→ iωF (ω )
f (at) ]→ 1

papF (ω
a
)

f (t) =
∞∑

n=−∞
δ (x − nT), F (ω ) = 2π

T

∞∑
k=−∞

δ (ω − 2π k
T
)
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Laplace Transforms

Double-sided Laplace-transform F(s) :=
∫∞
−∞ e

−st f (t)dt
Well defined in classical sense if

∫
pe−st f (t)pdt < ∞

Typically satisfied in a strip a < Re(s) < b
Examples

f (t) = θ (t), F(s) = 1
s

for Res > 0

f (t) = tk

k!
θ (t), F(s) = 1

sk+1 for Res > 0

f (t) = eAtθ (t), F(s) = (sI − A)−1 when

Re(s) > maxReλ i(A)
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One-sided Laplace Transform

F(s) :=
∫ ∞

0−
e−st f (t)dt

Convergence strip is now a < Re(s)
Laplace transform of f ′ is sF(s) − f (0)
ẋ = Ax, x(0) = x0, (sI − A)X (s) = x0
when Re(s) > maxReλ i(A)
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10 min problem

What is the Fourier-transform of step function f (t) = θ (t)?
Hint: First guess F (ω ) = 1

iω is wrong
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Exercise: Markov Parameters and Moments

Consider h(t) = ceAtbθ (t) and H(s) = c(sI − A)−1b

• Expansion of H(s) around s = ∞ gives

H(s) = c(I/s+ A/s2 + A2/s3 + . . .)b =
∞∑

k=1
hk/sk

where hk = h(k)(0) = cAk−1b are the Markov parameters.

• If A as. stable then Taylor-expansion of H(s) around s = 0 is

H(s) =
∞∑

k=0
mks

k,

where mk =
∫∞
0

(−t)k
k!
h(t)dt are the moments of h(t).
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Heat transfer in semi-infinite rod

T(t, x) temperature at time t at x

dT

dt
= d

2T

dx2

Assume input: T(t, 0) = u(t) = est

Assume output at x > 0: T(t, x) = Ψ(x)est (neglect transients)

sΨ(x) = d
2Ψ

dx2
, Ψ(0) = 1

Gives Ψ(x) = Aex
√
s + Be−x

√
s =[ A = 0 and B = 1

Hence transfer function from u(t) to T(t, x0) equals

H(s) = e−x0
√
s
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Tools

Make sure you know how to simulate an ordinary differential

system in e.g. Matlab/Simulink or Maple

You should also be familiar with using some symbolic

manipulation program such as Maple

You should be able to use the Control System Toolbox (or

similar)
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Handin 1

1. Use Matlab and/or Maple to calculate characteristic

polynomial, eigenvalues, eigenvectors and eAt both numerically

and symbolically for A =

0 −1
1 −1


.

2. The following frequency domain based code can be used

(why?) to simulate the step response of the system 1/(s+ 1).

N=2^12; dt=0.01; T=N*dt; dw=2*pi/T;

t = dt*(0:N-1);

omega = -pi/dt:dw:(pi/dt-dw);

u = [ones(1,N/2) zeros(1,N/2)];

U = fft(u);

P = 1./(i*omega+1);

y = ifft(fftshift(P).*U);

plot(t+dt/2,real(y),’-bx’);

hold on;grid on

plot(t,1-exp(-t),’-ro’)
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Handin 1 - continued

Simulate the step response of the open loop system

P(s) = exp (−√s) and of the closed loop system PC/(1 + PC)
under PI-control with C(s) = 1+ 1/s (you might want to tune N

and dt).

Compare the rise time to 50% and the settling times to 99% of

the final value for open loop vs closed loop control.

3. See exercise session.
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