Game Theory 2014

Extra Lecture 1 (BoB)

- Differential games
- Tools from optimal control
- Dynamic programming
- Hamilton-Jacobi-Bellman-Isaacs' equation
- Zerosum linear quadratic games and H_{∞} control

Baser/Olsder, pp. 233-246, 265-288, 310-333, 342-350

To understand

- Definition of difference/differential games
- Optimal Control
- Dynamic programming and HJBI equation
- Open-loop and feedback Nash Equilibria

Material

• Copies from Baser/Olsder

Difference Games

State equation

$$x_{k+1} = f(x_k, u_1, u_2, \dots, u_N), \quad x_1 \text{ given}$$

 u_i determined by player i

Observations $y_k^i = h_k^i(x_k), \quad i = 1, \dots, N$

Information structure, for each player a subset η_k^i of

$$\{y_1^1, \dots, y_k^1; \dots; y_1^N, \dots, y_k^N; u_1^1, \dots, u_{k-1}^1; \dots; u_1^N, \dots, u_{k-1}^N\}$$

Goal: Player *i* wants to minimize some functional, L_i , of *x* and *u* given his available information.

Solution concepts: As before, Nash, Stackelberg, etc

Differential Games

$$\frac{d}{dt}x(t) = f(x(t), u_1(t), u_2(t), \dots, u_N(t)), \quad x(t_0)$$
 given

Goal: to minimize

$$L^{i} = \int_{0}^{T} g^{i}(x, u^{1}, \dots, u^{N}) dt$$

T either fixed, or given by an implicit equation

$$T = \min_{t} \{t; l(x(t)) \le 0\}$$

Example, Robust Control ${\it H}_{\infty}$ control

Assume u^1, u^2 and y are related via

$$\dot{x} = Ax + B_1u_1 + B_2u_2$$
$$z = C_1x$$
$$y = C_2x + Du_2$$

Typical H_{∞} question: Is $\int z^2(t) + u_1^2(t)dt \le \gamma^2 \int u_2^2(t)dt$? Differential game between

controller, $u_1(t)$ function of y([0,t])disturbance, $u_2(t)$ function of x([0,t]) and $u_1([0,t])$

Performance criterium

$$\min_{u_1} \max_{u_2} \int_0^\infty (z^2 + u_1^2 - \gamma^2 u_2^2) dt$$

Robust/ H_{∞} Control

The interpretation is that u^1 is the control signal and u^2 is a worst-case disturbance signal.

Introduce the L_2 (or energy) norm of the signal w

$$||w||_2 = \left(\int_0^\infty |w(t)|^2 \, dt\right)^{1/2}$$

The H_{∞} norm of a linear system G(s) is defined by

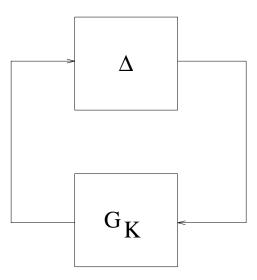
$$||G||_{\infty} = \sup_{w \neq 0} \frac{||Gw||}{||w||}$$

Robustness

The H_{∞} norm measures the largest amplification of energy by the system.

Minimization of the norm is clearly interesting if w is a disturbance signal. Another motivation is given by the so called small-gain theorem

Theorem A closed loop system is stable for all perturbations Δ with norm $||\Delta||_{\infty} < \gamma$ if and only if $||G_K||_{\infty} \le 1/\gamma$



H_∞ control

$$||G_K||_{\infty} < \gamma \Leftrightarrow$$

$$\exists K : ||z||^2 - \gamma^2 ||w||^2 < 0 \Leftrightarrow$$

$$\min_u \max_w (||z||^2 - \gamma^2 ||w||^2) < 0$$

This is exactly (the upper value of) an affine quadratic game

The relation between H_{∞} control and game theory was noted rather late (end of 80s).

For details see Section 6.6

Pursuit Evasion Games

Tools from One-Person Optimization

Dynamic programming

The (maximum) minimum principle

Baser/Olsder Ch 5.5

Dynamic Programming, discrete time

$$x_{k+1} = f_k(x_k, u_k), \quad u_k \in U_k$$
$$L(u) = \sum_{k=1}^{K} g_k(x_{k+1}, u_k, x_k)$$

 f_k, g_k, U_k, K, x_1 given.

Want $u_k = \gamma_k(x_k)$ that minimizes L

Idea: Generalize the problem; Calculate the value function

$$V(k, x) = \min_{\gamma_k, \dots, \gamma_K} \sum_{i=k}^K g_i(x_{i+1}, u_i, x_k)$$

for all initial conditions $x_k = x$.

Principle of Optimality

An optimal control sequence u_1, \ldots, u_K should be sequentially optimal. The only coupling between the optimization problems on time horizons [1, k - 1] and [k, K] is via the state x_k .

This leads to

$$V(k,x) = \min_{u_k \in U_k} [g_k(f_k(x,u_k), u_k, x) + V(k+1, f_k(x,u_k))]$$

with the final condition $V(K, x) = \min_{u_K} g_k(x_{K+1}, u_K, x_K)$.

Example – Affine quadratic problems

$$x_{k+1} = A_k x_k + B_k u_k + c_k$$
$$L(u) = \frac{1}{2} \sum_{k=1}^{K} (x'_{k+1} Q x_{k+1} + u'_k R u_k)$$

has the solution

$$V(k,x) = \frac{1}{2}x'S_kx + x's_k + q_k$$

$$u_k^* = -P_kS_{k+1}A_kx_k - P_k(s_{k+1} + S_{k+1}c_k)$$

Formulas for P_k, S_k, s_k are given on p.234-5

Dynamic Programming, continuous-time

The same reasoning leads to a PDE equation called the Hamilton-Jacobi-Bellman (HJB) equation

$$\dot{x}(t) = f(x(t), u(t))$$

$$u(t) = \gamma(x(t))$$

$$L(u) = \int_0^T g(x(t), u(t)dt + q(T, x(T)))$$

The final time T can be either fixed known, or given implicitly by

$$T = \min_{t \ge 0} \{ t : l(x(t)) = 0 \}$$

HJB equation

$$V(t,x) = \min_{\{u(s), s \in [t,T]\}} \int_{t}^{T} g(x(s), u(s)) ds + q(T, x(T))$$
$$V(T,x) = q(T,x) \text{ along } l(x) = 0$$

Principle of optimality shows that if V is C^1 then

$$-\frac{\partial V(t,x)}{\partial t} = \min_{u \in U} \left[\frac{\partial V(t,x)}{\partial x} f(x,u) + g(x,u) \right]$$

(+ final condition when t = T)

Theorem of Sufficiency

Theorem 5.3 p 237 If a C^1 function V can be found that satisfies the HJB equation and boundary conditions above then it generates the optimal strategy u^* through the pointwise optimization problem defined by the right hand side.

Proof see p. 237

Example: Affine-quadratic problems has a quadratic function $V(t,x) = \frac{1}{2}x'S(t)x + k'(t)x + m(t)$, see p.238-9

The Minimum Principle

Introduce the costate vector $p'(t) = \partial V(t, x^*(t)) / \partial x$ where x^* denotes the optimal trajectory corresponding to u^* , i.e. $\dot{x}^*(t) = f(x^*(t), u^*(t))$. Also define (the Hamiltonian)

$$H(t, p, x, u) = g(x, u) + p'(t)f(x, u)$$

Theorem 5.4

$$p'(T) = \frac{\partial q(T(x^*), x^*)}{\partial x} \text{ along } l(T, x) = 0$$

$$\dot{p}'(t) = \frac{\partial H(t, p, x^*, u^*)}{\partial x}$$

$$u^* = \arg \min_{u \in U} H(t, p, x^*, u)$$

See also the discrete-time counterpart Theorem 5.5

$N\ {\rm person}\ {\rm difference}\ {\rm games}$

How does this translate to difference games with N > 1 players?

$$x_{k+1} = f_k(x_k, u_k^1, \dots, u_k^N)$$

$$J^i(u^1, \dots, u^N) = \sum_{k=1}^K g_k^i(x_{k+1}, u_k^1, \dots, u_k^N, x_k)$$

The control laws $u_i = \gamma^{i*}$ constitute a Nash equilibrium if

$$J^{i}(\gamma^{*}) \leq J^{i}(\{\gamma_{-i}^{*}, \gamma_{i}\}) \quad \forall i$$

Open-loop information: u_k^i is an open-loop function of k

Closed-loop information: $u_k^i(x_k)$ is allowed to be a function of x_k . Hence changing u^i will result in changes in u^j

Open Loop Dynamic Games

See Section 6.2.1

Idea: Player *i* solves a one-player problem. His choice u^i will not influence the other u^j , so these can be treated as given functions of time.

Then the results from the N = 1 apply directly

Open Loop Theorems

Theorem 6.1 If $u^* = \gamma^*$ provides an open-loop Nash equilibrium, then there exists a sequence of costate vectors p^i such that

$$\begin{aligned} x_{k+1}^* &= f_k(x_k^*, u_k^*) \\ \gamma_k^{i*} &= \arg\min_{u_k^i} H_k^i(p_{k+1}^i, \{\gamma_k^{-i*}, u_k^i\}, x_k^*) \\ p_k^i &= \frac{\partial}{\partial x_k} f_k' \left[p_{k+1}^i + \left(\frac{\partial}{\partial x_{k+1}} g_k^i\right)' \right] + \left(\frac{\partial}{\partial x_k} g_k^i\right)' \end{aligned}$$

where $H^i = g^i + p^{i'} f$. For details see p. 268

The affine case results in coupled Riccati equations. The special zero-sum case for N = 2 is given in Theorem 6.3, and 6.4. Only one Riccati equation must be solved. The condition for existence of Nash equilibrium has the form $I - B_k^{2'}S_{k+1}B_k^2 > 0$.

Feedback Solutions

Theorem 6.6 The set of strategies γ^* provides a feedback Nash equilibrium if and only if there exists functions $V^i(k, x)$ such that

$$V^{i}(k,x) = \arg\min_{u_{k}^{i}} [g_{k}^{i}(-i*,u_{k}^{i}) + V^{i}(k+1,\tilde{f}_{k}^{i*}(x,u_{k}^{i}))]$$

= $g_{k}^{i}(-i*,\gamma_{k}^{i*}) + V^{i}(k+1,\tilde{f}_{k}^{i*}(x,\gamma_{k}^{i*}))$

where $\tilde{f}_{k}^{i*}(x, u_{k}^{i}) = f_{k}(x, \{\gamma^{-i*}(x), u_{k}^{i}\})$

Feedback Solutions, Zero-sum case ${\cal N}=2$

See Corollary 6.2 p. 282 The set of strategies γ^{1*}, γ^{2*} provides a feedback saddle-point solution if and only if there exists functions V(k, x) such that for all k

$$V(k, x) = \min_{\substack{u_k^1 \\ u_k^2}} \max_{\substack{u_k^2}} \left[g_k(f_k(x, u_k^1, u_k^2), u_k^1, u_k^2, x) + V(k+1, f_k(x, u_k^1, u_k^2)) \right]$$

=
$$\max_{\substack{u_k^2 \\ u_k^1}} \min_{\substack{u_k^1}} \left[g_k(f_k(x, u_k^1, u_k^2), u_k^1, u_k^2, x) + V(k+1, f_k(x, u_k^1, u_k^2)) \right]$$

=
$$g_k(f_k(x, \gamma_k^{1*}, \gamma_k^{2*}), \gamma_k^{1*}(x), \gamma_k^{2*}(x), x) + V(k+1, f_k(x, \gamma_k^{1*}(x), \gamma_k^{2*}(x)))$$

Differential Games Open-loop Nash Equilibria

Want to present counterparts for continuous time.

Existence of smooth cost function V is more problematic.

$$\dot{x}(t) = f(x(t), u^{1}(t), \dots, u^{N}(t))$$

$$L^{i}(u^{1}, \dots, u^{N}) = \int_{0}^{T} g^{i}(x(t), u^{1}(t), \dots, u^{N}(t)) dt + q^{i}(x(T))$$

Open-loop Nash Equilibria

Theorem 6.11 (Some smoothness assumptions) If $u_i^* = \gamma^{i*}(t, x_0)$ provides an open-loop Nash equilibrium (with corresponding x^*) then there exist N costate functions $p^i(t)$ such that

$$\dot{x}^{*}(t) = f(x^{*}(t), u^{1*}(t), \dots, u^{N*}(t))$$

$$\gamma^{i*} = \arg \min_{u^{i} \in U^{i}} H^{i}(p^{i}(t), x^{*}(t), \{u^{-i*}, u^{i}\})$$

$$\dot{p}^{i'}(t) = \frac{\partial}{\partial x} H^{i}(p^{i}(t), x^{*}, u^{*}(t))$$

$$\dot{p}^{i'}(T) = \frac{\partial}{\partial x} q^{i}(x^{*}(T))$$

where $H^{i}(p^{i}, x, u) = g^{i}(x, u) + p^{i'}f(x, u)$.

The Affine-Quadratic Case

$$f(x,u) = A(t)x + \sum B^{i}(t)u^{i} + c(t)$$
$$g^{i}(x,u) = \frac{1}{2}x'Q^{i}(t)x + \sum u^{j'}R^{ij}u^{j}$$
$$q^{i}(x(T)) = \frac{1}{2}x'(T)Q^{i}_{f}x(T)$$

with $Q^{i} \ge 0, Q_{f}^{i} \ge 0, R^{ii} > 0.$

The Affine-Quadratic Case

Theorem 6.12+p.316 There is an open-loop Nash equilibrium solution to the affine-quadratic game for any $T \in [0, T_f]$ if and only if the following coupled matrix Riccati differential equations have solutions for any $T \in [0, T_f]$

$$\dot{M}^{i} + M^{i}A + A'M^{i} + Q^{i} - M^{i}\sum_{j} B^{j}R^{jj}(t)^{-1}B^{j'}M^{j} = 0$$
$$M^{i}(T) = Q_{f}^{i}$$

The NE is given by $u^i = -R^{ii}(t)^{-1}B^{i'}[M^ix^*(t) + m^i]$ where the feedforward signal m^i is given by (6.51)

N=2 Zero-Sum Case

P1 minimizes, P2 maximizes.

$$L(u^{1}, u^{2}) = \frac{1}{2} \int_{0}^{T} x' Q x + u^{1'} u^{1} - u^{2'} u^{2} dt + \frac{1}{2} x'(T) Q_{f} x(T)$$

with $Q \ge 0$, $Q_f \ge 0$.

Assume there exists a unique bounded symmetric solution $S(\cdot)$ to the matrix equation

$$\dot{S} + A'S + SA + Q + SB^2B^{2'}S = 0, \qquad S(T) = Q_f$$

on the interval [0, T].

Then there exists a solution to

$$\dot{M} + A'M + MA + Q - M(B^1N^{1'} - N^2B^{2'})M = 0; M(T) = Q_f$$

and the game admits a unique open-loop saddle-point given by

$$\gamma^{1*}(t, x_0) = -B^1(t)'[M(t)x^*(t) + m(t)]$$

$$\gamma^{2*}(t, x_0) = B^2(t)'[M(t)x^*(t) + m(t)]$$

Closed-loop Feedback Nash Equilibria

Will only give the result for ${\cal N}=2$ and zero-sum situation

Corollary 6.6, p326 A pair of strategies $\{\gamma^{i*}\}$ provides a feedback saddle-point solution if there exists a function V satisfying the PDE

$$-\frac{\partial V(t,x)}{\partial t} = \min_{u^1} \max_{u^2} \left[\frac{\partial V(t,x)}{\partial x} f(x,u^1,u^2) + g(x,u^1,u^2) \right]$$
$$= \max_{u^2} \min_{u^1} \left[\frac{\partial V(t,x)}{\partial x} f(x,u^1,u^2) + g(x,u^1,u^2) \right]$$
$$= \left[\frac{\partial V(t,x)}{\partial x} f(x,\gamma^{1*},\gamma^{2*}) + g(x,\gamma^{1*},\gamma^{2*}) \right]$$

The value of the game is $V(0, x_0)$

This is the famous Hamilton-Jacobi-Bellman-Isaacs' equation obtained by Isaacs in 1950s.

N=2, Zero-sum Affine Case

$$\dot{x} = Ax + B^{1}u^{1} + B^{2}u^{2} + c$$

$$L = \frac{1}{2} \int_{0}^{T} x'Qx + u^{1'}u^{1} - u^{2'}u^{2} dt$$

Theorem 6.17 If there exists a unique symmetric bounded solution to the Riccati equation

$$\dot{Z} + A'Z + ZA + Q - Z(B^1B^{1'} - B^2B^{2'})Z = 0, \quad Z(T) = Q_f$$

then the two-player zero-sum game admits a unique feedback saddle-point given by (for details see p. 327)

$$\gamma^{i*}(t,x) = (-1)^i B^i(t)' [Z(t)x(t) + \zeta(t)]$$