
Game Theory 2014

Extra Lecture 1 (BoB)

• Differential games

• Tools from optimal control

• Dynamic programming

• Hamilton-Jacobi-Bellman-Isaacs’ equation

• Zerosum linear quadratic games and H∞ control

Baser/Olsder, pp. 233-246, 265-288, 310-333, 342-350
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To understand

• Definition of difference/differential games

• Optimal Control

• Dynamic programming and HJBI equation

• Open-loop and feedback Nash Equilibria

Material

• Copies from Baser/Olsder
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Difference Games

State equation

xk+1 = f(xk, u1, u2, . . . , uN ), x1 given

ui determined by player i

Observations yik = hi
k(xk), i = 1, . . . , N

Information structure, for each player a subset ηik of

{y11, . . . , y
1
k; . . . ; y

N
1 , . . . , yNk ;u1

1, . . . , u
1
k−1; . . . ;u

N
1 , . . . , u

N
k−1}

Goal: Player i wants to minimize some functional, Li, of x and u
given his available information.

Solution concepts: As before, Nash, Stackelberg, etc
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Differential Games

d

dt
x(t) = f(x(t), u1(t), u2(t), . . . , uN (t)), x(t0) given

Goal: to minimize

Li =

∫ T

0

gi(x, u1, . . . , uN ) dt

T either fixed, or given by an implicit equation

T = min
t
{t; l(x(t)) ≤ 0}
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Example, Robust Control H∞ control

Assume u1, u2 and y are related via

ẋ = Ax+B1u1 + B2u2

z = C1x

y = C2x+Du2

Typical H∞ question: Is
∫

z2(t) + u2
1(t)dt ≤ γ2

∫

u2
2(t)dt?

Differential game between

controller, u1(t) function of y([0, t])

disturbance, u2(t) function of x([0, t]) and u1([0, t])

Performance criterium

min
u1

max
u2

∫ ∞

0

(z2 + u2
1 − γ2u2

2)dt
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Robust/H∞ Control

The interpretation is that u1 is the control signal and u2 is a worst-
case disturbance signal.

Introduce the L2 (or energy) norm of the signal w

||w||2 =

(
∫ ∞

0

|w(t)|2 dt

)1/2

The H∞ norm of a linear system G(s) is defined by

||G||∞ = sup
w 6=0

||Gw||

||w||
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Robustness

The H∞ norm measures the largest amplification of energy by the
system.

Minimization of the norm is clearly interesting if w is a disturbance
signal. Another motivation is given by the so called small-gain
theorem

Theorem A closed loop system is stable for all perturbations ∆
with norm ||∆||∞ < γ if and only if ||GK ||∞ ≤ 1/γ

∆

GΚ
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H∞ control

||GK ||∞ < γ ⇔

∃K : ||z||2 − γ2||w||2 < 0 ⇔

min
u

max
w

(||z||2 − γ2||w||2) < 0

This is exactly (the upper value of) an affine quadratic game

The relation between H∞ control and game theory was noted
rather late (end of 80s).

For details see Section 6.6
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Pursuit Evasion Games
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Tools from One-Person Optimization

Dynamic programming

The (maximum) minimum principle

Baser/Olsder Ch 5.5
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Dynamic Programming, discrete time

xk+1 = fk(xk, uk), uk ∈ Uk

L(u) =

K
∑

k=1

gk(xk+1, uk, xk)

fk, gk, Uk,K, x1 given.

Want uk = γk(xk) that minimizes L

Idea: Generalize the problem; Calculate the value function

V (k, x) = min
γk,...,γK

K
∑

i=k

gi(xi+1, ui, xk)

for all initial conditions xk = x.
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Principle of Optimality

An optimal control sequence u1, . . . , uK should be sequentially
optimal. The only coupling between the optimization problems on
time horizons [1, k − 1] and [k,K] is via the state xk.

This leads to

V (k, x) = min
uk∈Uk

[gk(fk(x, uk), uk, x) + V (k + 1, fk(x, uk))]

with the final condition V (K,x) = min
uK

gk(xK+1, uK , xK).
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Example – Affine quadratic problems

xk+1 = Akxk + Bkuk + ck

L(u) =
1

2

K
∑

k=1

(x′
k+1Qxk+1 + u′

kRuk)

has the solution

V (k, x) =
1

2
x′Skx+ x′sk + qk

u∗
k = −PkSk+1Akxk − Pk(sk+1 + Sk+1ck)

Formulas for Pk, Sk, sk are given on p.234-5
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Dynamic Programming, continuous-time

The same reasoning leads to a PDE equation called the Hamilton-
Jacobi-Bellman (HJB) equation

ẋ(t) = f(x(t), u(t))

u(t) = γ(x(t))

L(u) =

∫ T

0

g(x(t), u(t)dt+ q(T, x(T ))

The final time T can be either fixed known, or given implicitly by

T = min
t≥0

{t : l(x(t)) = 0}
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HJB equation

V (t, x) = min
{u(s),s∈[t,T ]}

∫ T

t

g(x(s), u(s))ds+ q(T, x(T ))

V (T, x) = q(T, x) along l(x) = 0

Principle of optimality shows that if V is C1 then

−
∂V (t, x)

∂t
= min

u∈U

[

∂V (t, x)

∂x
f(x, u) + g(x, u)

]

(+ final condition when t = T )
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Theorem of Sufficiency

Theorem 5.3 p 237 If a C1 function V can be found that satisfies
the HJB equation and boundary conditions above then it generates
the optimal strategy u∗ through the pointwise optimization problem
defined by the right hand side.

Proof see p. 237

Example: Affine-quadratic problems has a quadratic function
V (t, x) = 1

2
x′S(t)x+ k′(t)x+m(t), see p.238-9
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The Minimum Principle

Introduce the costate vector p′(t) = ∂V (t, x∗(t))/∂x where x∗

denotes the optimal trajectory corresponding to u∗, i.e. ẋ∗(t) =
f(x∗(t), u∗(t)). Also define (the Hamiltonian)

H(t, p, x, u) = g(x, u) + p′(t)f(x, u)

Theorem 5.4

p′(T ) =
∂q(T (x∗), x∗)

∂x
along l(T, x) = 0

ṗ′(t) =
∂H(t, p, x∗, u∗)

∂x
u∗ = arg minu∈UH(t, p, x∗, u)

See also the discrete-time counterpart Theorem 5.5
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N person difference games

How does this translate to difference games with N > 1 players?

xk+1 = fk(xk, u
1
k, . . . , u

N
k )

J i(u1, . . . , uN ) =

K
∑

k=1

gik(xk+1, u
1
k, . . . , u

N
k , xk)

The control laws ui = γi∗ constitute a Nash equilibrium if

J i(γ∗) ≤ J i({γ∗
−i, γi}) ∀i

Open-loop information: ui
k is an open-loop function of k

Closed-loop information: ui
k(xk) is allowed to be a function of xk.

Hence changing ui will result in changes in uj
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Open Loop Dynamic Games

See Section 6.2.1

Idea: Player i solves a one-player problem. His choice ui will not
influence the other uj, so these can be treated as given functions of
time.

Then the results from the N = 1 apply directly

19



Open Loop Theorems

Theorem 6.1 If u∗ = γ∗ provides an open-loop Nash equilibrium,
then there exists a sequence of costate vectors pi such that

x∗
k+1 = fk(x

∗
k, u

∗
k)

γi∗
k = arg min

ui

k

H i
k(p

i
k+1, {γ

−i∗
k , ui

k}, x
∗
k)

pik =
∂

∂xk

f ′
k

[

pik+1 +

(

∂

∂xk+1

gik

)′]

+

(

∂

∂xk

gik

)′

where H i = gi + pi
′

f . For details see p. 268

The affine case results in coupled Riccati equations. The special
zero-sum case for N = 2 is given in Theorem 6.3, and 6.4. Only
one Riccati equation must be solved. The condition for existence of
Nash equilibrium has the form I −B2′

k Sk+1B
2
k > 0.
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Feedback Solutions

Theorem 6.6 The set of strategies γ∗ provides a feedback Nash
equilibrium if and only if there exists functions V i(k, x) such that

V i(k, x) = arg min
ui

k

[gik(−i∗, ui
k) + V i(k + 1, f̃ i∗

k (x, ui
k))]

= gik(−i∗, γi∗
k ) + V i(k + 1, f̃ i∗

k (x, γi∗
k ))

where f̃ i∗
k (x, ui

k) = fk(x, {γ
−i∗(x), ui

k})
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Feedback Solutions, Zero-sum case N = 2

See Corollary 6.2 p. 282 The set of strategies γ1∗, γ2∗ provides a
feedback saddle-point solution if and only if there exists functions
V (k, x) such that for all k

V (k, x)

= min
u1

k

max
u2

k

[

gk(fk(x, u
1
k, u

2
k), u

1
k, u

2
k, x) + V (k + 1, fk(x, u

1
k, u

2
k)
]

= max
u2

k

min
u1

k

[

gk(fk(x, u
1
k, u

2
k), u

1
k, u

2
k, x) + V (k + 1, fk(x, u

1
k, u

2
k)
]

= gk(fk(x, γ
1∗
k , γ2∗

k ), γ1∗
k (x), γ2∗

k (x), x) + V (k + 1, fk(x, γ
1∗
k (x), γ2∗

k (x)))
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Differential Games Open-loop Nash Equilibria

Want to present counterparts for continuous time.

Existence of smooth cost function V is more problematic.

ẋ(t) = f(x(t), u1(t), . . . , uN (t))

Li(u1, . . . , uN ) = =

∫ T

0

gi(x(t), u1(t), . . . , uN (t)) dt+ qi(x(T ))
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Open-loop Nash Equilibria

Theorem 6.11 (Some smoothness assumptions) If u∗
i = γi∗(t, x0)

provides an open-loop Nash equilibrium (with corresponding x∗)
then there exist N costate functions pi(t) such that

ẋ∗(t) = f(x∗(t), u1∗(t), . . . , uN∗(t))

γi∗ = arg min
ui∈U i

H i(pi(t), x∗(t), {u−i∗, ui})

ṗi
′

(t) =
∂

∂x
H i(pi(t), x∗, u∗(t))

ṗi
′

(T ) =
∂

∂x
qi(x∗(T ))

where H i(pi, x, u) = gi(x, u) + pi
′

f(x, u).
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The Affine-Quadratic Case

f(x, u) = A(t)x+
∑

Bi(t)ui + c(t)

gi(x, u) =
1

2
x′Qi(t)x+

∑

uj′Rijuj

qi(x(T )) =
1

2
x′(T )Qi

fx(T )

with Qi ≥ 0, Qi
f ≥ 0, Rii > 0.

25



The Affine-Quadratic Case

Theorem 6.12+p.316 There is an open-loop Nash equilibrium
solution to the affine-quadratic game for any T ∈ [0, Tf ] if and only
if the following coupled matrix Riccati differential equations have
solutions for any T ∈ [0, Tf ]

Ṁ i +M iA+ A′M i +Qi −M i
∑

j

BjRjj(t)−1Bj′M j = 0

M i(T ) = Qi
f

The NE is given by ui = −Rii(t)−1Bi′ [M ix∗(t) + mi] where the
feedforward signal mi is given by (6.51)
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N = 2 Zero-Sum Case

P1 minimizes, P2 maximizes.

L(u1, u2) =
1

2

∫ T

0

x′Qx+ u1′u1 − u2′u2 dt+
1

2
x′(T )Qfx(T )

with Q ≥ 0, Qf ≥ 0.

Assume there exists a unique bounded symmetric solution S(·) to
the matrix equation

Ṡ + A′S + SA +Q+ SB2B2′S = 0, S(T ) = Qf

on the interval [0, T ].
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Then there exists a solution to

Ṁ + A′M +MA+Q−M(B1N 1′ −N 2B2′)M = 0;M(T ) = Qf

and the game admits a unique open-loop saddle-point given by

γ1∗(t, x0) = −B1(t)′[M(t)x∗(t) +m(t)]

γ2∗(t, x0) = B2(t)′[M(t)x∗(t) +m(t)]
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Closed-loop Feedback Nash Equilibria

Will only give the result for N = 2 and zero-sum situation

Corollary 6.6, p326 A pair of strategies {γi∗} provides a feedback
saddle-point solution if there exists a function V satisfying the PDE

−
∂V (t, x)

∂t
= min

u1

max
u2

[

∂V (t, x)

∂x
f(x, u1, u2) + g(x, u1, u2)

]

= max
u2

min
u1

[

∂V (t, x)

∂x
f(x, u1, u2) + g(x, u1, u2)

]

=

[

∂V (t, x)

∂x
f(x, γ1∗, γ2∗) + g(x, γ1∗, γ2∗)

]

The value of the game is V (0, x0)

This is the famous Hamilton-Jacobi-Bellman-Isaacs’ equation
obtained by Isaacs in 1950s.
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N = 2, Zero-sum Affine Case

ẋ = Ax+ B1u1 + B2u2 + c

L =
1

2

∫ T

0

x′Qx+ u1′u1 − u2′u2 dt

Theorem 6.17 If there exists a unique symmetric bounded solution
to the Riccati equation

Ż + A′Z + ZA+Q− Z(B1B1′ − B2B2′)Z = 0, Z(T ) = Qf

then the two-player zero-sum game admits a unique feedback
saddle-point given by (for details see p. 327)

γi∗(t, x) = (−1)iBi(t)′[Z(t)x(t) + ζ(t)]
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