Game Theory 2014

Exta Lecture 1 (BoB)

- Pursuit Evasion Games
- Isaacs' Equation
- Singular Surfaces
- The Lady in the Lake
- The Homicidal Taxi Driver
- The Exam

Baser/Olsder, Ch. 8, except 8.2.2

To understand

- Isaacs equation and Minimum principle for Pursuit evasion games
- definition of semi-permeable surface and barriers

Material

• Copies from Baser/Olsder

Pursuit-Evasion Games

The start of differential games in the 1950s-60s Special case of two player zero-sum game treated before

$$\dot{x} = f(t, x(t), u^{1}(t), u^{2}(t))), \quad x(0) = x_{0}$$

$$T = \inf\{t \in R : (x(t), t) \in \Lambda\}$$

$$L(u^{1}, u^{2}) = \int_{0}^{T} g(t, x(t), u^{1}(t), u^{2}(t)) dt + q(T, x(T))$$

 u^1 , minimizer, pursuer, P u^2 , maximizer, evader, E

Saddle Point

Feedback-strategies $u^i(t) = \gamma^i(t, x(t))$

Solutions are often first obtained in open-loop strategies and then synthesized to feedback strategies, provided that they both exist.

$$J(\gamma^{1*}, \gamma^2) \le J(\gamma^{1*}, \gamma^{2*}) \le J(\gamma^1, \gamma^{2*})$$

Upper and Lower Isaacs Equations

$$\begin{split} \overline{V}(t,x) &= \min_{\gamma_1} \max_{\gamma_2} \left\{ \int_t^T g(s,x(s),\gamma^1(s,x(s)),\gamma^2(s,x(s))\,ds + q(T,x(T)) \right\} \\ &- \frac{\partial \overline{V}}{\partial t} = \min_{u^1} \max_{u_2} \left[\frac{\partial \overline{V}}{\partial x} f(t,x,u^1,u^2) + g(t,x,u^1,u^2) \right] \\ \underline{V}(t,x) &= \max_{\gamma_2} \min_{\gamma_1} \left\{ \int_t^T g(s,x(s),\gamma^1(s,x(s)),\gamma^2(s,x(s))\,ds + q(T,x(T))) \right\} \\ &- \frac{\partial \underline{V}}{\partial t} = \max_{u^2} \min_{u_1} \left[\frac{\partial \underline{V}}{\partial x} f(t,x,u^1,u^2) + g(t,x,u^1,u^2) \right] \end{split}$$

(Provided \overline{V} and \underline{V} exist and are differentiable)

Geometrical Interpretation

Assume g = 0 (can always transform to this case). See Figure 8.1 on p. 426. The Value function should satisfy

$$V(t,x) = \min_{\gamma^1} \max_{\gamma^2} q(T, x(T)) = \max_{\gamma^2} \min_{\gamma^1} q(T, x(T))$$

Minimizer chooses γ^1 to make the inner product between $\begin{pmatrix} V_x \\ V_t \end{pmatrix}$ and $\begin{pmatrix} f \\ 1 \end{pmatrix}$ minimal, and symmetricly for the maximizer. Hence u^{1*} and u^{2*} are chosen as the arguments of $\min_{u^1} \max_{u^2} (V_x f + V_t) = \max_{u^2} \min_{u^1} (V_x f + V_t)$

Semipermeable Surfaces

Along the equilibrium trajectory, \boldsymbol{V} is constant and

 $\min_{u^1} \max_{u^2} \left(V_x f + V_t \right) = 0$

If evader E plays optimally, $u^2 = u^{2*}$ then

$$V_x f(t, x, u^1, u^{2*}) + V_t \ge 0 \qquad \forall u^1$$

This means that maximizer E can assure that V never decreases. He can make sure the surface V(t, x) = c is only traversed towards increasing V, i.e. V is made a semi-permeable surface.

Similarly minimizer P can assure V never increases by playing u^{1*} , i.e. he can make V = c a semi-permeable surface in the other direction.

When both play optimally the state stays on the level set ${\cal V}=c$

The Isaacs Condition

The interchangeability of min and max is called the Isaacs condition Interchangeability certainly holds if for all p it holds that

$$\min_{u^1} \max_{u^2} (p'f + g) = \max_{u^2} \min_{u^1} (p'f + g)$$

A special case of this is when

$$f(t, x, u^{1}, u^{2}) = f_{1}(t, x, u^{1}) + f_{2}(t, x, u^{2})$$

$$g(t, x, u^{1}, u^{2}) = g_{1}(t, x, u^{1}) + g_{2}(t, x, u^{2})$$

Note though that the problem with existence of a smooth V does not follow from this.

Theorem 8.1

If there exists a smooth \boldsymbol{V} such that

- Isaacs equation holds
- V(T, x) = q(T, x) when l(T, x(T)) = 0.
- Either $u^1=\gamma^{1*}$ or $u^2=\gamma^{2*}$ assures that the target set is reached in finite time

then V is the value function and γ^{1*} and γ^{2*} constitutes a saddle point

Example, smoothness is required

$$\dot{x} = u_1 + u_2, \quad |u_1| \le 1, \quad |u_2| \le 2, \quad x(0) = 0$$

 $l(t, x) = x^2 - 1, \quad q(T, x(T)) = |x(T)| - T$

Separable, so min max = max min

$$-V_t = \min_{|u_1| \le 1} \max_{|u_2| \le 2} (V_x(u_1 + u_2)) = |V_x|$$

One solution given by V(x,t) = |x| - t.

There are also spurious solutions, for instance V(x,t) = 2 - t - |x|.

Candidates for V can often be found via the minimum principle, Theorem 8.2

Example

Read Example 8.1 where the value function $V = x_1 + x_2$ guarantees a saddle point and the semi-permeable surfaces are illustrated.

Skip 8.2.2

Capturability

When can the minimizer/pursuer P, force the game to terminate? Consider the cost functional

$$J = \begin{cases} -1 & \text{if } (x(t), t) \in \Lambda \text{ for some } t < \infty \\ 1 & \text{else} \end{cases}$$

See Figure 8.3, p. 433

A point is said to be on the usable part (UP) of $\partial \overline{\Lambda}$ if (where ν is the outward pointing normal of Λ at x)

$$\max_{u^2} \min_{u^1} \nu' f(x, u^1, u^2) \le 0$$

This means that the state penetrates $\overline{\Lambda}$. So the Pursuer, u^1 can force the game to terminate, whatever u^2 does.

Barriers

The (barrier) surface S separates terminating states from non-terminating states. If p(x) is a normal to S then

$$\min_{u^1} \max_{u^2} p'(x) f(x, u^1, u^2) = 0$$

So for $u^{i*} = \gamma^{i*}(x)$ this leads to

$$p'(x)f(x,\gamma^{1*},\gamma^{2*}(x)) = 0$$

Differentiation leads to the equation

$$\frac{dp}{dt} = -\left(\frac{\partial f}{\partial x}\right)' p, \quad p(T) = \nu$$

where ν is the outward normal of $\overline{\Lambda}$ at S.

Example – The Homicidal Taxi Driver

The pursuer is driving a circular car with radius β and constant velocity $v_1 = 1$. The car has a minimal turning radius ω_1 . He is trying to run over the evader, a pedestrian running with speed v_2 . The pedestrian can change direction momentarily.

Use taxi-centric coordinate system. x_2 axis is along the velocity vector of the taxi.

$$\dot{x}_1 = -u^1 x_2 + v_2 \sin u^2$$

$$\dot{x}_2 = -1 + u^1 x_1 + v_2 \cos u^2, \qquad |u^1| \le 1$$

Capture if $x_1^2 + x_2^2 \leq \beta^2$

Usable Part and Capture Barriers

Usable part of
$$x_1^2 + x_2^2 = \beta^2$$
:

$$\max_{u^2} \min_{u^1} \nu' f(x, u^1, u^2) \le 0$$

$$\max_{u^2} \min_{u^1} x_1(-u^1 x_2 + v_2 \sin u^2) + x_2(-1 + u^1 x_1 + v_2 \cos u^2)$$

$$= -x_2 + v_2\beta \le 0$$

See Figure 8.4 p 437. With the normal $p = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ we get

$$\min_{u^1} \max_{u^2} p_1(-u^1 x_2 + v_2 \sin u^2) + p_2(-1 + u^1 x^1 + v_2 \cos u^2) \equiv 0$$

which gives

$$u^{1*} = \operatorname{sgn} (p_1 x_2 - p_2 x_1)$$

$$\sin u^{2*} = p_1 / (p_1^2 + p_2^2), \quad \cos u^{2*} = p_2 / (p_1^2 + p_2^2)$$

The Barriers

Complicated to solve for all possible cases

$$\dot{p}_1 = -p_2 u^1, \qquad \dot{p}_2 = -p_1 u^1$$

with $p_1(T) = \cos \alpha$, $p_2(T) = \sin \alpha$. For t close to T it can be shown that $u^1 = \operatorname{sign} x_1$, hence

$$p_1(t) = \cos(t - T + \alpha), \quad p_2(t) = \sin(t - T + \alpha)$$

which gives

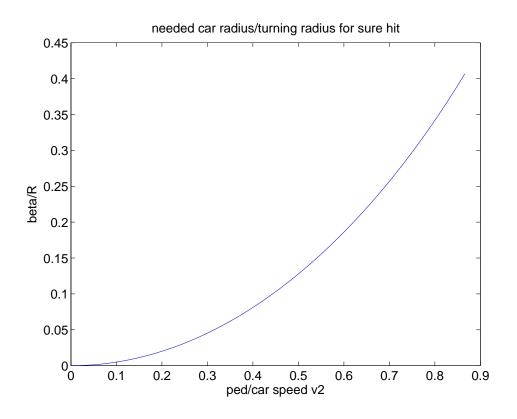
$$x_1(t) = (\beta + (t - T)v_2)\cos(t - T + \alpha) + 1 - \cos(t - T),$$

$$x_2(t) = (\beta + (t - T)v_2)\sin(t - T + \alpha) - \sin(t - T)$$

Result

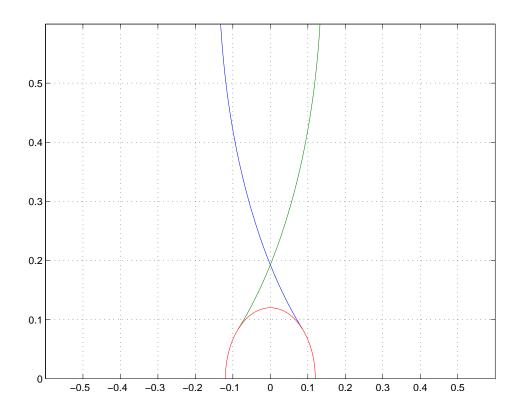
If $\beta^2 + v_2^2 < 1$ (the other cases are more complicated) then pedestrian survives if

$$\beta < v_2 \arcsin(v_2) + \sqrt{1 - v_2^2} - 1$$



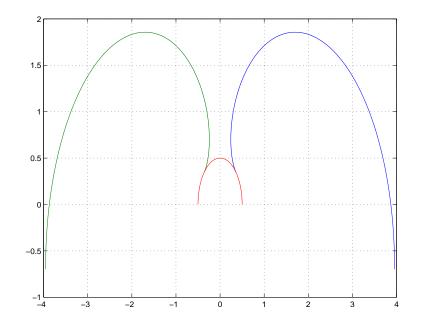
Barriers for $v_2 = 0.5, \beta = 0.12$

E escapes, except just in front of the car.



Barriers for $v_2 = 0.5$, $\beta = 0.5$

Sure hit. The Barrier ends, can go around. See figure 8.7, p.241



The Person in the Lake

The evader E is swimming with velocity v_2 in a circular pond of radius R. The Pursuer is running on the shore with velocity 1. P wants to intercept E when he/she reaches the shore. The goal function is $\theta(T)$, see figure 8.12.

In polar coordinates

$$\dot{\theta} = \frac{v_2}{r}\sin(u^2) - \frac{u^1}{R}, \quad |u^1| \le 1$$

$$\dot{r} = v_2\cos(u^2)$$

The Person in the Lake

Isaacs' equation (8.36) gives

$$u^{1*} = \operatorname{sign}(\theta(T))$$

$$\sin u^{2*} = \frac{Rv_2}{r(t)}\operatorname{sign}(\theta(T)), \quad \text{if } r(t) > Rv_2$$

When $r(t) < Rv_2$ the Isaacs equation gives 0 = 0, hence no information. It is easy to see that in the middle of the pond, the evader can outmaneuver P, i.e. keep $\theta = \pi$

After E leaves the inner circle Rv_2 P runs in the same direction all of the time and E swims in a straight line tangent to the circle of radius Rv_2

Also study the nice interpretation in Fig 8.13b.

The Outcome

The outcome of the game is

$$|\theta(T)| = \pi + \arccos v_2 - \frac{1}{v_2}\sqrt{(1-v_2^2)}$$

if $v_2 > 0.21723...$ (otherwise the person can not escape).