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Fictitious play

Consider a finite game that is played repeatedly in discrete time.

The basic idea of fictitious play is that each player assumes that
his opponents are using a fixed mixed strategy, and updates his
beliefs about these strategies at each time step.

Players choose actions in each time step to maximize that step’s
expected payoff given their belief of the opponents’s strategies.

The belief is formed as the empirical frequency distribution of the
opponents’s previously played strategies.
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Properties of fictitious play

Myopic, because players are trying to maximize current payoff
without considering their future payoffs. They are also not
learning the “true model” generating the empirical frequencies
(that is, how their opponent is actually playing the game).

Not a unique rule due to multiple best responses. Traditional
analysis assumes player chooses any of the pure best responses.

Players do not need to know about their opponents’s payoff; they
only form beliefs about how their opponents will play.
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Convergence

It is of interest to study when fictitious play converges, and if so, to
what. Let {st}∞t=0 be a sequence in S generated by fictitious play.
Each player i needs some initial belief s0

i is needed to get started.

Definition (Convergence to pure strategy)

The sequence {st} converges to s∞ ∈ S if

∃T ∈ N : ∀t ≥ T, st = s∞.

Theorem (Convergence and Nash equilibria)
1 If s∞ exists, then it is a Nash equilibrium.
2 If s∗ is a Nash equilibrium and sT = s∗, then st = s∗ for all
t ≥ T .
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Convergence to mixed strategies

Fictitious play will sometimes converge to a mixed strategy rather than
a pure one.

Definition (Convergence to mixed strategy)

The sequence {st} converges to σ ∈ Σ if

∀i ∈ I,∀si ∈ Si, lim
T→∞

T−1∑
t=0

δ(sti − si)

T
= σi(si).

Theorem (Convergence and Nash equilibria)

If {st} converges to σ ∈ Σ, then σ is a Nash equilibrium.
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Convergence conditions

Theorem (Convergence conditions)
Fictitious play converges if any of the following holds.

1 G is a two-player zero-sum game.
2 G is a two-player game with |Si| = 2.
3 G is solvable by iterated strict dominance.
4 ∀i, j ∈ I, ui = uj .
5 G is a potential game.
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Miscoordination

Fictitious play may converge to a mixed Nash equilibrium, but
continued execution of fictitious play may yield very different payoffs
than simply repeatedly playing the strategies in the corresponding
Nash equilibrium.

See lecture notes for illustrative example.
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Continuous time fictitious play

Let pti : Si → R+ be the empirical probability distribution of the plays
by player i up until time t. This is determined by a differential equation
involving the best response to the opponents’s play up until time t,
denoted by BRi(pt−i), by two variants (CTFP and perturbed CTFP):

1
dpt

i
dt ∈ BRi(p

t
−i)− pti,

BRi(pt−i) = arg maxσi∈Σi ui(σi, pt−i).

2
dpt

i
dt = Ci(pt−i)− pti,

Ci(pt−i) = arg maxσi∈Σi

(
ui(σi, pt−i)− Vi(σi)

)
,

Vi : Σi → R ∧ strictly convex ∧ boundary condition.

Perturbation Vi is used to make the best response unique.
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Questions

Do the proofs for CTFP carry over to DTFP?

Is (perturbed) CTFP just a theoretical tool, or can it be employed
in practice? Would you want to (e.g. to avoid miscoordination)?

Does pti actually tell you what strategy to play? How to update
your beliefs about the opponents?

Can DTFP be extended to infinite games? Can CTFP?

∂

∂t
pi(s, t) = Ci(s, pt−i)− pi(s, t)

Ci(s, pt−i) = arg max
σi∈Σi

(
ui(σi, pt−i)− Vi(σi)

)∣∣∣∣
s

For perturbed CTFP, p∞ is seemingly a Nash equilibrium iff for all
i, Vi(p∞i ) is very small compared to ui(p∞i , p∞−i). Is this the
case? If so, is that a problem (i.e., is it hard to find a useful V )?
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Extensive-form games

We have so far considered games where each player i chooses a
single (possibly mixed) strategy out of their action set Si (or Σi).

We have also considered situations where the same game is
played repeatedly.

Extensive-form games:

Divided into K (possibly infinite) stages.

In each stage k, only a subset of the players choose an action ak.

The available actions depend on k and the history of previous
actions hk = (a0, a1, . . . , ak−1).
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Strategies

Strategies are contingency plans for every possible history hk.

That is, a pure strategy is a set of maps si := {ski }Kk=0 from all
possible histories to available actions; that is,

ski : Hk → Si(Hk),

where Hk = {hkj }.

A mixed strategy (behavior strategy) is a set of maps from all
possible histories to a probability measure on the available
actions.
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Utility functions

Utility function for player i can be defined

on the set of possible strategies; that is

ui : S → R.

or on the set of final outcomes of the game (since each pure
strategy determines an outcome); that is

ui : HK+1 → R.
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Tree

Extensive-form games are conveniently represented using trees.
Example shamelessly stolen from lecture slides:

Player 1’s strategies (two): s1 : H0 = ∅ → S1(H0) = {C,D}
Player 2’s strategies (four):

s2 :H1 = {{C}, {D}} → S2(H1) = {E,F,G,H}
∧ ∀h1

j ∈ H1, s2(h1) ∈ S2(h1)

The four strategies for player 2 are EG,EH,FG, and FH .
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History information

A game in which the players that need to choose an action at
stage k have full information about hk is said to have perfect
information.

Information sets h ∈ H are introduced to model games without
perfect information.

Details omitted, but this is used to e.g. model that players choose
action simultaneously: player i acts first and then player j acts
without knowing what player i did.
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Exogenous events

Book also introduces exogenous events (moves by ”Nature”),
which is not covered in the lecture slides.

In some stages, no player chooses an action, but rather some
random event occurs which will affect future stages.
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Strategic- vs. extensive-form games

My interpretation of Section 3.4 Strategies and Equilibria in
Extensive-Form Games:

Strategic-form games can be transformed to extensive-form
games of perfect recall (players never lose information that they
once had) and vice versa.

Most important part of proving this is

Theorem (3.1)
In a game of perfect recall, mixed strategies in the strategic form are
equivalent to mixed strategies in the extensive form.

We can thus use our theory from strategic form games to analyze
extensive form games.
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Equilibria

Theorem (3.2)
A finite game of perfect information has a pure-strategy Nash
equilibrium.

For finite strategic form games, we can only guarantee the
existence of a mixed-strategy Nash equilibrium.

As we already know, some Nash equilibria are unlikely to be
played in a real situation (e.g. if they are not evolutionarily stable).

The equilibrium concept for extensive-form games can be refined
to get rid of (some) “unlikely” equilibria: subgame-perfect
equilibria.
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Subgame-perfect equilibrium

Loosely speaking, a subgame of an extensive-form game G is a
subtree of G in which every player knows that they stay in the
subtree once they reach it.

Thus, in a game of perfect information, every node in the tree
corresponds to a subgame.

Definition (Subgame-perfect equilibrium)
A mixed strategy σ of an extensive-form game is a subgame-perfect
equilibrium if for every subgame G the restriction of σ to G is a Nash
equilibrium of G.
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Finding subgame-perfect equilibria

For finite games, all subgame-perfect equilibria can be found
using backward induction.

Backward induction is essentially dynamic programming: find the
Nash equilibria of the last (smallest) subgame, associate the
strategies and payoffs of the equilibria with the top node of the
subgame, and proceed to the next smallest subgame.
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Existence of subgame-perfect equilibria

Theorem (3.2, refined)
A finite game of perfect information has a pure-strategy
subgame-perfect equilibrium.

Theorem (Existence without perfect information)
A finite game has a mixed-strategy subgame-perfect equilibrium.
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One-stage deviation principle

If K =∞, we have no algorithm for finding all subgame-perfect
equilibria.

We do however have a useful characterization if the game has
perfect information, which is essentially the principle of optimality:

Theorem (One-stage deviation principle)
If the game is continuous at infinity and has perfect information, then
s∗ is a subgame-perfect equilibrium if and only if

∀i ∈ I,∀k ∈ Z+, ∀l ∈ Z++,∀hk ∈ Hk, ∀hk+l ∈ Hk+l,

∀si ∈ Si : si(hk) 6= s∗i (hk) ∧ si(hk+l) = s∗i (hk+l),
ui(s∗i , s∗−i|hk) ≥ ui(si, s∗−i|hk).

Loosely speaking, a strategy is a subgame-perfect equilibrium if
and only if no deviation in a single stage yields a higher payoff.
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