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Compute NE in finite games - Introduction

I Computation of mixed Nash equilibria for finite games

I Two player games

I Express two player games as a LP in order to find mixed Nash
equilibria

I Player 1 n actions, player 2 m actions

I A and B n x m payoff matrices

I X and Y mixed strategies of player 1 and 2 as
X ≡ {x :

∑n
i=1 xi = 1, , xi ≥ 0} and

Y ≡ {y :
∑m

i=1 yi = 1, , yi ≥ 0}
I Payoffs:

u1(x , y) = xTAy

u2(x , y) = xTBy



Zero-Sum finite games

I A mixed strategy profile (x∗, y∗) is a mixed strategy Nash
equilibrium iff

(x∗)TAy∗ ≥ xTAy∗ ∀x ∈ X

(x∗)TBy∗ ≥ (x∗)TBy ∀y ∈ Y

I for a zero sum game B = -A;

I Is possible to show that finding the mixed strategy Nash
equilibrium strategies reduces to solve a pair of linear
optimization problems:

min
y∈Y

max
x∈X

xTAY = min
y∈Y

max{Ayi} i = {1, . . . , n}

max
x∈X

min
y∈Y

xTAY = max
x∈X

min{Axj} j = {1, . . . ,m}



Nonzero-Sum finite games

I Generally to solve a bimatrix game it is needed to transform it
into a bilinear programming problem.

I A mixed strategy profile (x∗, y∗) is a mixed Nash equilibrium
of the bimatrix game (A, B) if and only if there exists a pair
(p∗, q∗) such that (x∗, y∗, p∗, q∗) is a solution to the following
bilinear programming problem:

max{xTAy + xTBy − p − q}
s.t

Ay ≤ p1n By ≤ q1m∑
i

xi = 1
∑

j yj = 1

x ≥ 0 y ≥ 0



Nonzero-Sum finite games
I We now introduce the Linear Complementarity Problem

Formulation
I We add the slack variables ri ∈ Rn , ri ≥ 0 , i ∈ {1, 2} and

vi ∈ R , i ∈ {1, 2};
I We drop the normalization constraints (i.e. the sum equal to

one , practically we allow the extraneous solution z = [0, 0]T )
and define:

z = [x , y ]T

r = [r1, r2]T q = [1n, 1m]T

U =

(
0 A
BT 0

)
I we can write:

Uz + r = q

z ≥ 0 r ≥ 0

zT r = 0



Computing approximate Nash Equilibria
I Given some scalar ε > 0, a mixed strategy profile (x̄ , ȳ) is an ε

equilibrium if

xTAȳ ≤ x̄TAȳ + ε ∀x ∈ X

x̄TBy ≤ x̄TBȳ + ε ∀y ∈ Y

I A mixed strategy is called k-uniform if it is the uniform
distribution on a multiset S of pure strategies, with |S | = k ;

I Consider a 2-player game with n pure strategies. Assume that
all the entries of the matrices A and B are between 0 and 1.
Let (x∗, y∗) be a mixed Nash equilibrium and let ε > 0. For
all k ≥ 32 log n

ε2
, there exists a pair of k-uniform strategies

(x̄ , ȳ) such that:
I (x̄ , ȳ) is an ε equilibrium
I |x̄TAȳ − (x∗)TAy∗| < ε
I |x̄TBȳ − (x∗)TBy∗| < ε

I Consider a 2-player game with n pure strategies for each
player. There exists an algorithm that is quasi-polynomial in n
for computing an ε - Nash equilibrium.



Evolution and Learning in Games - Game of life

I Each organism is born programmed to play a particular
strategy.

I Payoffs given as fitness (i.e., expected number of offsprings).
If the organism is successful, it has greater fitness and more
offspring, also programmed to play in the same way. If it is
unsuccessful, it likely dies without offspring.

I Mutations imply that some of these offspring will randomly
play any one of the feasible strategies.

I At each instant, each agent is randomly matched with one
other agent, and they play a symmetric strategic form game,
each agent is programmed (committed to) to playing a given
strategy.

I Strategies with higher payoffs expand and those with lower
payoffs contract.



Evolutionarily Stable Strategies

I Consider a two player, symmetric strategic form game, so we
write it simply as 〈S , u〉. A (possibly mixed) strategy is σ ∈ Σ

I A strategy σ∗ ∈ Σ is evolutionarily stable if there exists ε̄ > 0
such that for any σ 6= σ∗and for any ε < ε̄, we have
u(σ∗, εσ + (1− ε)σ∗) > u(σ, εσ + (1− ε)σ∗)

I equivalently, A strategy σ∗ ∈ Σ is evolutionarily stable if for
any σ 6= σ∗, we have u(σ∗, σ∗) ≥ u(σ, σ∗) .

I if, for some σ ∈ Σ, u(σ∗, σ∗) = u(σ, σ∗), then
u(σ∗, σ) > u(σ, σ).

I A strict (symmetric) Nash equilibrium of a symmetric game is
an evolutionarily stable strategy.

I An evolutionarily stable strategy is a Nash equilibrium.

I The converses of the two preceding results are not true in
general.



Monomorphic and Polymorphic Evolutionarily Stability

I We could require an evolutionarily stable strategy (ESS) to be
monomorphic—that is, all agents to use the same (pure)
strategy.

I The alternative is polymorphic, where different strategies
coexist, mimicking a mixed strategy equilibrium.



Replicator dynamics

I Strategies are enumerated by s= 1,2,..,K. Denote the fraction
of the population playing strategy s by xs .

I Discrete ”ticks“

xs(t + τ) = xs(t)
τ [u(s, σ(t))− ū(σ(t))]

ū(σ(t))

ū(σ(t)) =
K∑
s=1

xs(t)u(s, σ(t))

I continuous time:

ẋs(t) =
d

dt
xs(t) = xs(t)

[u(s, σ(t))− ū(σ(t))]

ū(σ(t))



Replicator Dynamics: Implications

I Distribution x∗ could be:
I Stationary state: ẋs(t) = 0 for all s
I asymptotically stable state: starting from any x0 in this

neighborhood, dynamics induced by (Continuous replicator)
approach x∗.

I If x∗ is a Nash equilibrium, then it is a stationary state.

I If x∗ is asymptotically stable, then it is a Nash equilibrium.

I If x∗ is evolutionarily stable, then it is asymptotically stable.



Replicator Dynamics: Implications

I Random matching is not always the best model, so is possible
to incorporate a graph like structure with more focused
interactions (e.g. only with agents neighborhood).

I Imitation is another tool i.e. individuals imitate the strategies
of others in proportion to how much they outperform the
average in the population, both with global or local knowledge
of the agent.

I fictitious play is one of the earliest learning rule involving
imitation. The basic idea of fictitious play is that each player
assumes that his opponent is using a stationary mixed
strategy, and updates his beliefs about this stationary mixed
strategies at each step.

I Players choose actions in each period (or stage) to maximize
that period’s expected payoff given their prediction of the
distribution of opponent’s actions. Essentially agents try to
forecast the behaviour of the others.
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