Game Theory - Discussion Session 2

Gustav Nilsson

September 11, 2014

(ロ)、(型)、(E)、(E)、 E) の(の)

Mixed strategies

- Σ_i set of probability measures over S_i
- $\sigma_i \in \Sigma_i$ mixed strategy of player *i*, $\sigma \in \Sigma = \prod_{i \in I} \Sigma_i$

- $\sigma_{-i} \in \Sigma_i = \prod_{j \neq i} \Sigma_j$
- Players randomize independently

Mixed strategies - Battle of sexes

Player $1 \setminus Player 2$	ballet	football
ballet	(2,1)	(0,0)
football	(0,0)	(1,2)

For player 1 to be indifferent between ballet and football, y prob that player 2 plays ballet

$$2y + 0(1 - y) = 0y + 1(1 - y)$$
$$y = 1/3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Two pure and one mixed NE.

Mixed strategies

Definition (Mixed Nash Equilibrium)

A mixed strategy profile σ^* is a mixed strategy Nash Equilibrium if for each player *i*,

$$u_i(\sigma_i^*,\sigma_{-i}^*) \geq u_i(\sigma_i,\sigma_{-i}^*) \quad \forall \sigma_i \in \Sigma_i$$

Proposition

A mixed strategy profile σ^* is a mixed strategy Nash Equilibrium if and only if for each player i,

$$u_i(\sigma_i^*,\sigma_{-i}^*) \geq u_i(s_i,\sigma_{-i}^*) \quad \forall s_i \in S_i$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

For a finite strategic form game, $\sigma^* \in \Sigma$ is a NE if and only if for each player $i \in \mathcal{I}$, every pure strategy in the support of σ_i^* is a best response to σ_{-i}^* .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (Strict Domination by Mixed Strategies)

An action s_i is strictly dominated if there exits a mixed strategy $\sigma'_i \in \Sigma_i$ such that $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$, for all $s_{-i} \in S_{-i}$.

Iterative Elimination of Strictly Dominated Strategies

• Let
$$S_i^0 = S_i$$
 and $\Sigma_i^0 = \Sigma_i$

▶ For each player $i \in \mathcal{I}$ and for each $n \ge 1$, we define S_i^n as

$$egin{aligned} S_i^n &= \{s_i \in S_i^{n-1} | \nexists \sigma_i \in \sigma_i^{n-1} ext{ such that} \ & u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i}) \quad orall s_{-i} \in S_{-i}^{n-1} \} \end{aligned}$$

- Independently mix over S_i^n to get Σ_i^n .
- Let $D_i^{\infty} = \bigcap_{n=1}^{\infty} S_i^n$
- ▶ D_i[∞] strategies of player *i* that survive iterated strict dominance

A rational player would only play those strategies that are best responses to some beliefs he might have about his opponent. Leads to an infinite regress.

Definition (Belief)

A belief of player *i* about the other players' action is a probability measure $\sigma_{-i} \in \prod_{j \neq i} \Sigma_i$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Beliefs

Definition (Never-best response)

A pure strategy s_i is a never-best response if for all beliefs σ_{-i} there exists $\sigma_i \in \Sigma_i$ such that

$$u_i(\sigma_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i})$$

Strictly dominated strategy \Rightarrow Never best response (N.B \Leftarrow not true (if the number of players are more than 2) see Lecture Slides))

Rationalizable Strategies

• Let
$$\tilde{S}_i^0 = S_i$$
 and $\tilde{\Sigma}_i^0 = \Sigma_i$

For each player $i \in \mathcal{I}$ and for each $n \ge 1$, let

$$\begin{split} \tilde{S}_i^n &= \{s_i \in \tilde{S}_i^{n-1} | \exists \sigma_{-i} \in \Pi_{j \neq i} \tilde{\Sigma}_j^{n-1} \text{ such that} \\ & u_i(s_i, \sigma_{-i} \geq u_i(s'_i, \sigma_{-i}) \quad \forall s'_i \in \tilde{S}_i^{n-1} \} \end{split}$$

- Independently mix over \tilde{S}_i^n to get $\tilde{\Sigma}_i^n$.
- Let R[∞]_i = ∩[∞]_{i=1} Sⁿ_i be the set of rationalizable strategies for player i.

Let NE_i denode the set of **pure** strategies of player *i* used with positive probability in any mixed NE.

$$NE_i \subseteq R_i^\infty \subseteq D_i^\infty$$

The player might believe that the other players' are in coalition, and the theirs actions are correlated. Then

$$R_i^\infty = D_i^\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

See additional Lecture Notes.

Correlated Equilibrium

Definition (Correlated Equilibrium)

A correlated equilibrium of a finite game is a joint probability distribution $\pi \in \Delta(s)$ such that if R is a random variable distributed according to π then

$$\sum_{s_{-i} \in S_{-i}} \operatorname{Prob}(R = s | R_i = s_i) [u_i(s_i, s_{i-1}) - u_i(s_i, s_{-i})] \ge 0$$

for all players *i*, all $s_i \in \S_i$ such that $\operatorname{Prob}(R_i = s_i) > 0$, and all $t_i \in S_i$.