A Course on Distributed Control

Anders Rantzer and Enrico Lovisari
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Can we stabilize the system? Are the optimal controllers
linear? Can they be computed efficiently?

These questions will be adressed during the first two lectures.

A Course of Six Lectures

1. Introduction
Fixed modes, Team theory, Witsenhausen’s counterexample

2. Partial nestedness and quadratic invariance
Control with information delays
Example: Tele-operation
3. Dual decomposition
The saddle algorithm
Example: The Internet protocol

4. Distributed MPC
Example: Water Supply Network

5. Distributed control of positive systems. Consensus algorithms

6. Spatially invariant systems.

50 year old idea: Dual decomposition

mzin[Vl(zl,zz) + Va(22) + V3(23,22)]

= n';axrgltn [Vl(zl,vl) + Va(z2) + V3(z3,v3) + p1(z2 —v1) + ps(z2 — vg)}

The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respecive costs
Computer 1: min,, ,, [Vl(zl,vl) —plvl]
Computer 2: min,, [Va(z2) + (p1 + ps)z2)
Computer 3: min,, ,, [V3(23,v3) —pgv3]

while the "market makers” try to maximize their payoffs

Between computer 1 and 2: max,, [p1(z2 — v1)]

Between computer 2 and 3: max,, [p3(z2 — vs3)]

Schedule

Mo April 8 at 1315-1430 lecture

Mo April 15 at 1315-1600 lecture and exercises
Fr April 26 at 0815-1100 lecture and exercises
We May 8 at 0915-1200 lecture and exercises
We May 15 at 0915-1200 lecture and exercises
Mo May 20 at 1315-1600 lecture and exercises
Mo May 27 at 1315-1500 exercises

Control Synthesis from a Decentralized Perspective

Can local controllers be designed without knowledge of the
entire system?
What level of performance can be achieved this way?

This will be the main topic in of lecture 3-4.

Outline of Lecture 3

» Dual decomposition and the saddle algorithm
[Arrow/Hurwicz/Uzawa 1958]

» Example: The TCP protocol [Low/Paganini/Doyle 2002]

Decentralized Bounds on Suboptimality

Given any p1, ps, 21, 22, 23, the distributed test
Vi(21,22) — p122 < alefll}'vlll [Vi(z1,v1) — p1v1]
Va(22) + (p1 + ps) 22 < amin [Va(22) + (p1 + p3)ze]
V3(23,22) — p3Za < alefsl}'vlal [V3(23,v3) — p3vs]
implies that the globally optimal cost J* is bounded as

J* < Vl(fl,iz) + V2(§2) + V3(23,22) <ad*

Proof: Add both sides up!



The saddle point algorithm

Update in gradient direction:

Computer 1: Z = —0V1/0z

U1 =—0V1/0z2 + p1
Computer 1 and 2: PL=23—U1
Computer 2: 29 = —3V2/822 —p1— D3
Computer 2 and 3: pP3 =29 — U3
Computer 3: 25 = —0Vs/02

v3 = —0V3/dz9 + ps3

Globally convergent if V; are convex!
[Arrow, Hurwicz, Usawa 1958]

Example: Three Trading Units (The Beer Game)

Consumer utility Ui(wi +u11) — prun
Retailer utility Us (w2 — ug1 + usg) + p1us1 — pautss
Factory utility Us(ws — us2) + pauss

Consumer demand: w11 =—Uj(wi +u11) — p1

Consumer market: P1=u11 —ug

) 191 = Uy(ws —
Retailer supply and demand:  { %! 2(1,”2 ug1 +um) + 21
gy = —Uy(wz — ug1 + ugs) — p2
Factory market: P2 = ugp —Uss

Factory supply rate: Uge = —Uj(ws — uss) + pa

Gradient dynamics tend to be oscillative

Global stability of discrete saddle algorithm

min U (x) = maxmin[U (x) + pT Rx]
Rx=0 P x

The discrete time saddle algorithm

x* =x—G[(0U/6x)T + RTp|
pt=p+ HRx

is stable for convex U provided that G, H > 0 and

3RTHR < —(82U /9x%) < %G‘l

Exercise: Prove this using the Lyapunov function
V=lx—x g+ p—ply —2(p — )" R(x — &)

Global stability of saddle algorithm

min V(x) = maxmin[V (x) + p” Rx]
Rx=0 P x

{x = —G[(8V/ox)T + RTp]

5 — HR G, H > 0 adjustment rates
b= x

- pese

V= %4 + |4
i _ 2T—1 T opr—1 s
dtv_ G+ p H 'p
= —iT[(8*V/0x*)i + R p] + p” (Rx)
=T (PV/0x?)% <0

Example: Three Trading Units

Three utility functions plotted together with possible equilibrium point.

Uy(x1) = 24 — 6(x; — 2)? .
Us(x) = 27 — 3(x5 — 3)2 w 7
Us(xg) = 32 — 2(x3 — 4)? 5

When prices and quantities have settled, there is no trade incentive.
The equilibrium is a global optimum (social welfare):

IE%)Z([U1(W1 +u1) + Us(we —uy + us) + Us(ws — uz)]

This is a Nash equilibrium for the game with five players, three agents
and two markets.

Network congestion control

Maximize U;(x) subject to >, R;x; < ¢;. Introduce link prices p;:

Ui(x:) = > pi (Ruixi — Cz)]
[

max E U;(x;) = min max E
20 < P20 x>0
13 1

P20 x>0 <
1

= min max |:Ui(x,-) — % Zleli:| + Zplcl
7 [

To update the send rate x;, we need to know >_, p;R;;. To update the
price p;, we need R;;x; — ¢;. Are these quantities locally known?

What did we achieve?

v

Optimality test inherits structure of original problem

» Prices show the relative importance of different terms

v

Suboptimality bounds indicate where things went wrong

v

Sparsity structure useful for efficient computations



