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The Shift Operator

Forward shift operator

In terms of this operator, the model given earlier
becomes:

For a discrete time system it is also possible to have
discrete state space models. In the shift domain these
models take the form:

q(f [k]) � f [k + 1]

qny[k] + an−1q
n−1y[k] + · · · + a0y[k] = bmqmu[k] + · · · + b0u[k]

qx[k] = Aqx[k] +Bqu[k]
y[k] = Cqx[k] +Dqu[k]
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Z-Transform

Analogously to the use of Laplace Transforms for
continuous time signals, we introduce the Z-transform
for discrete time signals.

Consider a sequence {y[k]; k = 0, 1, 2, …].  Then the
Z-transform pair associated with {y[k]} is given by

Z [y[k]] = Y (z) =
∞∑

k=0

z−ky[k]

Z−1 [Y (z)] = y[k] =
1
2πj

∮
zk−1Y (z)dz
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How do we use Z-transforms ?

We saw earlier that Laplace Transforms have a
remarkable property that they convert differential
equations into algebraic equations.

Z-transforms have a similar property for discrete
time models, namely they convert difference
equations (expressed in terms of the shift operator q)
into algebraic equations.

We illustrate this below for a discrete high-order
difference equation model:
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Discrete Delta Domain Models

The shift operator (as described above) is used in the
vast majority of digital control and digital signal
processing work.  However, in some applications the
shift operator can lead to difficulties.  The reason for
these difficulties are explained below.
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Consider the first order continuous time equation

and the corresponding discretized shift operator
equation is of the form:

Expanding the differential explicitly as a limiting
operation, we obtain the following form of the
continuous time equation:

ρy(t) + y(t) =
dy(t)
dt

+ y(t) = u(t)

a2qy(tk) + a1y(tk) = b1u(tk)

lim
∆→0

(
y(t+ ∆) − y(t)

∆

)
+ y(t) = u(t)
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If we now compare the discrete model to the
approximate expanded form, namely

we then see that the fundamental difference between
continuous and discrete time is that the discrete
model describes absolute displacements (i.e. y(t+∆)
in terms of y(t), etc.) whereas the differential
equation describes the increment
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This fundamental difficulty is avoided by use of an
alternative operator;  namely the Delta operator:

For sampled signals, an important feature of this
operation is the observation that

i.e., the Delta operator acts as a derivative in the limit as
the sampling period →0.  Note, however, that no
approximations will be involved in employing the Delta
operator for finite sampling periods since we will derive

δ (f(k∆)) ,
f((k + 1)∆)− f(k∆)

∆

lim
∆→0

[δ{f(k∆)}] = ρ(f(t))
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exact model descriptions relevant to this operator at the
given sampling rate.

We next develop an alternative discrete transform (which
we call the Delta transform) which is the appropriate
transform to use with the Delta operator, i.e.

Time Domain Transfer Domain

q
δ

Z-transform
delta transform
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Discrete Delta Transform
We define the Discrete Delta Transform pair as:

The Discrete Delta Transform can be related to Z-
transform by noting that

where  Yq(z) = Z[(k∆)].  Conversely

D [y(k∆)]
�
= Yδ(γ) =

∞∑
k=0

(1 + γ∆)−ky(k∆)∆

D−1 [Yδ(γ)] = y(k∆) =
1

2πj

∮
(1 + γ∆)k−1Yδ(γ)dγ

Yδ(γ) = ∆Yq(z)
∣∣∣
z=∆γ+1

Yq(z) =
1
∆
Yδ(γ)

∣∣∣
γ= z−1

∆
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❖ The next slide shows a table of Delta transform pairs;
❖ The slide after next lists some Delta transform properties.
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Table 12.3: Delta Transform Table

f [k] (k ≥ 0) D [f [k]] Region of Convergence

1
1 + ∆γ

γ

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

1
∆
δK [k] 1 |γ| < ∞

µ[k] − µ[k − 1]
1
∆

|γ| < ∞
k

1 + ∆γ

∆γ2

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

k2 (1 + ∆γ)(2 + ∆γ)
∆2γ3

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

eα∆k α ∈ C
1 + ∆γ

γ − eα∆−1
∆

∣∣∣∣γ +
1
∆

∣∣∣∣ > eα∆

∆

keα∆k α ∈ C
(1 + ∆γ)eα∆

∆
(
γ − eα∆−1

∆

)2

∣∣∣∣γ +
1
∆

∣∣∣∣ > eα∆

∆

sin(ωo∆k)
(1 + ∆γ)ωosinc(ωo∆)

γ2 + ∆φ(ωo,∆)γ + φ(ωo,∆)

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆

where sinc(ωo∆) =
sin(ωo∆)
ωo∆

and φ(ωo,∆) =
2(1 − cos(ωo∆))

∆2

cos(ωo∆k)
(1 + ∆γ)(γ + 0.5∆φ(ωo,∆))
γ2 + ∆φ(ωo,∆)γ + φ(ωo,∆)

∣∣∣∣γ +
1
∆

∣∣∣∣ > 1
∆
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Table 12.4: Delta Transform properties.  Note that Fi(γ) = D[fi[k]],
µ[k] denotes, as usual, a unit step,  f[∞] must be well
defined and the convolution property holds provided
that  f1[k] = f2[k] = 0 for all k < 0.

f [k] D [f [k]] Names
l∑

i=1

aifi[k]
l∑

i=1

aiFi(γ) Partial fractions

f1[k + 1] (∆γ + 1)(F1(γ) − f1[0]) Forward shift
f1[k + 1]− f1[k]

∆
γF1(γ)− (1 + γ∆)f1[0] Scaled difference

k−1∑
l=0

f [l]∆
1
γ
F (γ) Reimann sum

f [k − 1] (1 + γ∆)−1F (γ) + f [−1] Backward shift
f [k − l]µ[k − l] (1 + γ∆)−lF (γ)

kf [k] −1 + γ∆
∆

dF (γ)
dγ

1
k
f [k]

∫ ∞

γ

F (ζ)
1 + ζ∆

dζ

lim
k→∞

f [k] lim
γ→0

γF (γ) Final value theorem

lim
k→0

f [k] lim
γ→∞

γF (γ)
1 + γ∆

Initial value theorem
k−1∑
l=0

f1[l]f2[k − l]∆ F1(γ)F2(γ) Convolution

f1[k]f2[k]
1

2πj

∮
F1(ζ)F2

(
γ − ζ

1 + ζ∆

)
dζ

1 + ζ∆
Complex convolution

(1 + a∆)kf1[k] F1

(
γ − a

1 + a∆

)
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Why is the Delta Transform sometimes
better than the Z-Transform?

As can be seen from by comparing the Z-transform
given in Table 12.1 with those for the Laplace
Transform given in Table 4.1, expressions in Laplace
and Z-transform do not exhibit an obvious structural
equivalence.  Intuitively, we would expect such an
equivalence to exist when the discrete sequence is
obtained by sampling a continuous time signal.
We will show that this indeed happens if we use the
alternative delta operator.
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In particular, by comparing the entries in Table 12.3
(The Delta Transform) with those in Table 4.1 (The
Laplace Transform) we see that a key property of
Delta Transforms is that they converge to the
associated Laplace Transform as ∆→0, i.e.

We illustrate this property by a simple example:

lim
∆→0

Yδ(γ) = Y (s)
∣∣∣
s=γ
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Example 12.9

Say that  {y[k]} arises from sampling, at period ∆, a
continuous time exponential  eβt.  Then

and, from Table 12.3

In particular, note that as ∆→0,                      which
is the Laplace transform of eβt.
Hence we confirm the close connections between the
Delta and Laplace Transforms.

y[k] = eβk∆

Yδ(γ) =
1 + γ∆

γ −
[

eβ∆−1
∆

]

βγ
γδ −

→ 1)(Y
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How do we use Delta Transforms?

We saw earlier in this chapter that Z-transforms
could be used to convert discrete time models
expressed in terms of the shift operator into algebraic
equations. Similarly, the Delta Transform can be
used to convert difference equations (expressed in
terms of the Delta operator) into algebraic equations.
The Delta Transform also provides a smooth
transition from discrete to continuous time as the
sampling rate increases.
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We next examine several properties of discrete time
models, beginning with the issue of stability.
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Discrete System Stability
Relationship to Poles
We have seen that the response of a discrete system
(in the shift operator) to an input  U(z) has the form

where  α1 … αn are the poles of the system.
We then know, via a partial fraction expansion, that
Y(z) can be written as

Y (z) = Gq(z)U(z) +
fq(z, xo)

(z − α1)(z − α2) · · · (z − αn)

Y (z) =
n∑

j=1

βjz

z − αj
+ terms depending on U(z)
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where, for simplicity, we have assumed non repeated
poles.

The corresponding time response is

Stability requires that [αj]k → 0, which is the case if
[αj] < 1.

Hence stability requires the poles to have magnitude
less than 1, i.e. to lie inside a unit circle centered at
the origin.

y[k] = βj [αj ]
k + terms depending on the input
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Delta Domain Stability

We have seen that the delta domain is simply a shifted
and scaled version of the Z-Domain, i.e.
                                        It follows that the Delta
Domain stability boundary is simply a shifted and
scaled version of the Z-domain stability boundary.  In
particular, the delta domain stability boundary is a
circle of radius 1/∆ centered on - 1/∆ in the γ domain.
Note again the close connection between the
continuous s-domain and discrete δ-domain, since the
δ-stability region approaches the s-stability region
(OLHP) as ∆ → 0.

.1and1 +∆==
∆
− γγ ZZ
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Using Continuous State Space
Models

Next we show how a discrete model can be developed
when the plant is described by a continuous time state
space model

Then, using the solution formula (see Chapter 3) the
sampled state response over an interval ∆ is given by

Now using the fact that  u(τ+k∆) is equal to u(k∆) for
0 ≤ τ < ∆ we have

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t)

x((k + 1)∆) = eA∆x(k∆) +
∫ ∆

0

eA(∆−τ)Bu(τ )dτ
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where

Also the output is

x((k + 1)∆) = Aqx(k∆) + Bqu(k∆)

Aq = eA∆

Bq =
∫ ∆

0

eA(∆−τ)Bdτ

y(k∆) = Cqx(k∆) where Cq = C
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Shift form

The discrete time state space model derived above
can be expressed compactly using the forward shift
operator, q, as

where

qx[k] = Aqx[k] + Bqu[k]
y[k] = Cqx[k]

Aq
�
= eA∆ =

∞∑
k=0

(A∆)k

k!

Bq
�
=

∫ ∆

0

eA(∆−τ)Bdτ = A−1
[
eA∆ − I

]
if A is nonsingular

Cq
�
= C

Dq
�
= D
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Delta Form

δx(tk) = Aδx(tk) + Bδu(tk)
y(tk) = Cδx(tk) + Dδu(tk)

where Cδ = Cq = C, Dδ = Dq = D and

Aδ
�
=

eA∆ − I

∆

Bδ
�
= ΩB

Ω =
1
∆

∫ ∆

0

eAτdτ = I +
A∆
2!

+
A2∆2

3!
+ . . .

Alternatively, the discrete state space model can be
expressed in Delta form as
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Some Comparisons of Shift and
Delta Forms

For the delta form we have

For the shift form

Indeed, this reconfirms one of the principal
advantages of the delta form, namely that it
converges to the underlying continuous time model
as the sampling period approaches zero.  Note that
this is not true of the alternative shift operator form.

lim
∆→0

Aδ = A lim
∆→0

Bδ = B

lim
∆→0

Aq = I lim
∆→0

Bq = 0
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❖ The chapter has introduced two discrete operators:
◆ the shift operator,  q, defined by

◆ the δ-operator, δ, defined by

❖ Thus,               or

❖ Due to this conversion possibility, the choice is largely
based on preference and experience.  Comparisons are
outlined below.

]1[][ +∆ kxkqx

∆
−+∆ ][]1[][ kxkxkxδ

,1
∆
−= qδ .1+∆=δq
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❖ The shift operator, q,
◆ is the traditional operator;
◆ is the operator many engineers feel more familiar with;
◆ is used in the majority of the literature.

❖ The δ-operator, δ, has the advantages of:
◆ emphasizing the link between continuous and discrete systems

(resembles a differential);
◆ δ-expressions converge to familiar continuous expressions as

∆ → 0, which is intuitive;
◆ is numerically vastly superior at fast sampling rates when properly

implemented.
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❖ Analysis of digital systems relies on discrete time versions
of the continuous operators:

◆ the discrete version of the differential operator is difference
operator;

◆ the discrete version of the Laplace Transform is either the Z-
transform (associated with the shift operator) or the γ-transform
(associated with the δ-operator).

❖ With the help of these operators,
◆ continuous time differential equation models can be converted to

discrete time difference equation models;
◆ continuous time transfer or state space models can be converted to

discrete time transfer or state space models in either the shift or δ
operators.




