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Introduc tion

» To centralized or to decentralize?
» The process control experience
A few important variables were controlled
The single loop paradigm: one sensor one actuator
Add loops to control more variables
Sometimes it was not obvious how to associate sensors
and actuators - The pairing problem
» The state-feedback paradigm - centralized contol
» Complex systems - decentralize
» What happens when loops are interacting?
» Interaction measures
Bristol's relative gain array RGA
Singular values
» The pairing problem
» Decoupling: static, dynamic (different time scales), different
physical mechanisms, mass balance, energy balance
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An Example

Controller C; is a Pl controller with gains &1 = 1, k; = 1, and the
C, is a proportional controller with gains kg = 0, 0.8, and 1.6.

0 2 4 6 8 10 12 14 16 18 20

The second controller has a major impact on the first loop!
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Typical Process Control System

— Bouxite Drier

Il —Reactor

I —Setlor

IV Acid Rerun Unit

¥ —Roboller

VI —Fresh Hydroflvoric
Acid Storage Tank

VIl —Deiscbutanizer

Vill —Condenser

X —Reflux Tank

X —Coolsr

XI = Depropanizer

Xl — Hydrofluoric Acid

A —Olefins

H —N-butane and Alkylate

Agevee 0BuTAnE

Figure 13-6. Autometic control system for Perco motor fuel alkylation process.

Interaction of Simple Loops

L — .

C Y1

Yspl  —

Process

Ysp2  —m|

.

Cy Y2

Yi(s) = pu(s)Ui(s) + p12Us(s)
Yo(s) = pa1(s) U1 (s) + pa2Usa(s),
What happens when the controllers are tuned individually?

Analysis
Yi(s) = ———U 2 _u
1) = e e+ e Ve
Yals) = (3:1)2U1(3)+ (S:WUQ(S).

P-control of second loop Us(s) = —kaYa(s) gives

2+2s+1—ky
(s+1)%(s2+2s+ 1+ k)

Yi(s) = g1 (s)Ur(s) = Ui(s)-

The gain kg in the second loop has a significant effect on the
dynamics in the first loop. The static gain

1—ky

14k

changes from 1 to -1 as kg goes from 0 to oo, it is zero for
ke = 1.

954(0) =



A Bit of Intuition - Integral Control

» Diagonal dominance (Check the previous example)

» Integral control: Any stable SISO system can be controlled
by an integrating controller provided that the zero
frequency gain is not zero P(0) > 0. The characteristic
polynomial for low integral gain is s + &; P(0)

» The MIMO version for square systems. The characeristic
equation and its low frequency approximation

det(sI + P(s)K;) =~ det(sI + P(0)K;)
where K; is a diagonal matrix of integral gains.
» All eigenvalues of P(0)K; positive

» For positive integral gains det K; > 0 we must require
det P(0) > 0. (Niederlinski 1971)

Bristol's Relative Gain

» Edgar H. Bristol On a new measure of interaction for
multivariable process control IEEE TAC 11(1967) 133-135

» A simple way of measuring interaction based on static
properties

» ldea: What is effect of control of one loop on the steady
state gain of another loop?

» ldea: consider one loop when the other loop is under
perfect control

Yi1(s) = p11(s)Ui(s) + p12Ua(s)
0 = pa1(s)U1(s) + p22Uz(s).

» Frequency dependent extensions

Bristol’s Relative Gain ...

I P11(0)p22(0)
ne P11(0)p22(0) — p12(0)p21(0) —

S P12(0)p21(0) —1-2
27 p11(0)p22(0) — p12(0)p21 (0) —

or — p21(0)p12(0) —1-121
217 p11(0)p22(0) — p12(0)p21(0)

ros P22(0)p11(0) _

= 11(0)p23(0) — p12(0)p21(0)

The relative gain array

Ao1-a
R:[l—/l /1]

The parameter A is called Bristol’s interaction index

Many Loops

Let P(s) be an n x n matrix of transfer functions. The relative
gain array is

R=P0)e P T(0)=PePT=p.xpPT

The product is element by element product (Schur or
Hadamard product). Properties

> (AOB)T = AT « BT
» P diagonal gives R =1

Insight and use

» A measure of static interactions for square systems which
tells how the gain in one loop is influenced by perfect
feedback on all other loops

» Dimension free. Row and column sums are 1.

» Negative elements correspond to sign reversals due to
feedback of other loops
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Bristol’s Relative Gain

Consider the first loop u; — y; when the second loop is in
perfect control (ys = 0)

Y1(s) = p11(s) U1(s) + p12Ua(s)
0 = p21(s)Ui(s) + p2aUa(s).

Eliminating Uz (s) from the first equation gives

Yi(s) = pu(S)pzz(222—(512(8)1721(8) Uss).

The ratio of the static gains of first loop when the second loop is
open (ug = 0) and under perfect closed loop control (y2 = 0).

P p11(0)p22(0)
p11(0)p22(0) — p12(0)p21(0)°

ra =

Summary for 2 x 2 Systems

A =1 No interaction, decoupled design OK

A = 0 Closed loop gain u; — y; is zero Control y; by us
instead, decoupled design then OK

0 < A < 1 Closed loop gain u; — y; is larger than open
loop gain. Interaction strongest for 4 = 1

A > 1 Closed loop gain u; — y; is smaller than open loop
gain. Interaction increases with increasing 1. Very difficult
to control both loops independently if A is very large.

A < 0 The closed loop gain u; — y; has different sign than
the open loop gain. Opening or closing the second loop
has dramatic effects. Use multivariable control.

Pairing

When designing complex systems loop by loop we must decide
what measurements should be used as inputs for each
controller. This is called the pairing problem. The choice can be
governed by physics but the relative gain can also be used

Consider the previous example

ro=(1 ). o= (7 3

2

R = P(0) s PT(0) = [‘21 2

» Negative sign indicates the sign reversal found previously
» Better to use reverse pairing, i.e. let uy control y;

(337



Pairing ...

Consider L y
P(s) = [‘Sﬁl>2 <S+f>2]

Introducing the feedback u; = —kgy, gives

22 +4s+2+k
$*+4s+ 2+ Ry Us(s),

Yi(s) = g5() Ua(s) = (s+1)2(s2+2s+ 1+ ko) ?

Zero frequency gain decreases from 2 to 1 when k&g ranges
from 0 to oo, a significant improvement!
Discuss how dynamics changes with k&g!
Use rootlocus!

Singul ar Values

Let A be an £ x n matrix whose elements are complex
variables. The singular value decompostion of the matrix is

A=UxV"

where * denotes transpose and complex conjugation, U and V'
are unitary matrices (UU* = I and VV* = I is. The matrix ¥ is
a k x n matrix such that X;; = o; and all other elements are
zero. The elements o; are called singular values. The largest
o = max; 0; and smallest 0 = min;o singular values are of
particular interest. The number & /¢ is called the condition
number. The singular values are the square roots of the
eigenvalues of A*A.

Example: A real 2 x 2 matrix can be written as

cosf; —sin6q o;p O cosfy sin By
sinf; cos6q 0 o9 —sinBy cos Oy

Interaction Analysis

Consider a system with the scaled zero frequency gain

y1 0.48 090 —0.006 uy
yo| = 1052 095 0.008 72
¥3 0.90 —0.95 0.020 us

Relative gain array

0.7100 —0.1602 0.4501
R = |-0.3557 0.7925 0.5632
0.6456  0.3677 —0.0133

Singular values: o1 = 1.6183, 02 = 1.1434 and o3 = 0.0097.
Condition number x = 166. Only two outputs can be controlled.
What variables should be chosen?
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Step Respons es with Reverse Pairing

v

1
Uy = (1 + E)(Yspl - Yl)
> uy; = —koyy With kg = 0, 0.8, and 1.6.

Singul ar Decomposition A = UXV*

» The columns u; of U represent the output directions

The columns v; of V represent the input directions

We have AV = UX, or Av; = o;u;. Aninput in the direction
v; thus gives the output o;u;, i.e. in the direction u;

Since the vectors u; and v; are of unit length the gain of A
for the input u; is o;

v

v

v

» The largest gain is 6 = max; o;
» There are efficient numerical algorithms svd in Matlab
Singular values can be applied to nonsquare matrices

A natural way to define gain for matrices A and transfer
function matrices G(s)

v

v

l|Av]]
I[ol]

gain = max =0(A), gain = max o (G (iw))
v [

Interaction Analysis

We have y = U S VT. How to pick two input output pairs

—0.088 —1.616 0.010
SvT = | 1142 —0.062 0.018
—0.000 0.000 0.010

—0.571 0.377 —0.729
—0.604 0.409 0.684
0.556 0.831 —0.007

U =

The matrix SVT shows that u; and u, are obvious choices of inputs.
As far as the outputs are concerned. We have two choices y1, y3 or
ys,ys (@angles between rows). Notice that y;, v, is not a good choice
because the corresponding rows of U S are almost parallel. The
singular values are

Selection yq,y3 <« uj,us Con- Selection ys,y3 <« u1,us Con-
dition number x = 1.51 dition number ¥ = 1.45

R= 0.3602 0.6398 R= 0.3662 0.6338
~ (0.6398 0.3602 ~— (0.6338 0.3662

Zeros of Multivariable Systems

Transmission zeros are values of s where the transmission of
the signal e* is blocked

Y(s) = P(s)ve™, 0=P(s)v

There is a nontrivial v only if the matrix P(s) is singular. For a
square system the zeros are the solutions to

detP(s) =0

and the zero directions are the corresponding right
eigenvectors of P(s).



Rosenbrock’s Example

Stability Region - P in Both Loops

Process transfer function

1 2
P(s) = s-+l-1 s-+l-3
s+1 s+1

Very benign subsystems. Relative gain array
(1 2/3 3 -3) (3 -2
R_[l 1]'[—2 3]_[—2 3]’
The transmission zeros are given by

det P(s) = — (

s+1 0-

1 2 )_ 1-s _
s+1 s+3 (s+1)2(s+3)

RHP zero at z=1, difficult to control the system with gain
crossover frequencies larger than wg. = 0.5.

Rosenbrock’s Example

PI controllers with k£, = 2 and %; = 2 in both loops. Systems
becomes unstable if gains are increased by a factor of 3.

Interactions Can be Beneficial ...

15F
— i
>
o05p
.
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o 0.05 01 015 02 0.25 03 0.35 0.4
1 T T T T T
50
-
)
\\/\
o 0.05 01 015 02 0.25 03 0.35 04
T
S s0
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PI controllers with gains 2 = 100 and &; = 2000 in both loops

The Quadruple Tank

1-n

tz
20
10+ Unstable
Asymptolically
stable
0_ L i
10 20 L

Discuss commissioning and windup!

Interactions Can be Beneficial

s—1 s
_ (pul) Pe)) | GTDE+2) G+Di+2)
P = [le(S) p22(8)] - 6 s 9

(s+1)(s+2) (s+1)(s+2)

10
7o 1)
Transmission zeros

_(5=1)(s—=2)+6s _ s®+4s+2
det P(s) = G+126+22  (s+1)2(s+2)2

Difficult to control individual loops fast because of the zero at
s = 1. Since there are no multivariable zeros in the RHP the
multivariable system can easily be controlled fast but ths
system is not robust to loop breaks.

The relative gain array

Stability Region - P in Both Loops

4l Asymptotically
stable
: #
N T L n ) L

Discuss commissioning and windup!

Transfer Function of Linearized Model

Transfer function from wy,us to y1,y2

711 (1—72)er
1 T 1 T)(1 T
P(s) = + 8T, (14 sT1)(1+sTs)
(1 —71)ee Yac2
(1+ST2)(1+ST4) 1+ST2

Transmission zeros

(14 sT)(1 4 sTy) — E=7IA =72)

_ 1y
et P(s) = o [ 5T (1 & 5To) (1 + 575)

> No interaction of y; = y2 =1

» Minimum phase if 1 < y1 4+ 72 <2

» Nonminimum phase if 0 < y1 + 72 < 1.
Intuition?

v



Relative Gain Array

Zero frequency gain matrix

_ yier (1—7e)er
PO) = [(1 —71c2 Y2c2 ]

The relative gain array

P(0) = [1:11 111]

Y1ve
71+72—1

where

» No interaction for y; = y2 =1
» Severe interaction if y; + 5 < 1

Decoupling

Simple idea: Find a compensator so that the system appears to
be without coupling.

Many versions

v

Input decoupling @ = PD or output decoupling @ = DP
» Conventional (Feedforward)

» Inverse (Feedback)

» Static

Important to consider windup, manual control and mode
switches.

» Keep the decentralized philosophy

Feedback (Inverted) Decoupling

Simple decoupler, easy to deal with anti-windup, manual control
and mode changes (auto-tuning) if di; = doe = 1. Why?

The Wood- Berry Distillation Column

12.8¢~5 —18.9¢73¢

Po= | i AL

109s+1 144s+1
The decoupleris d;; = dge =1

dip =
P12 16.7s+1 _,
dip= P12 _gpg 2 SF 2 2
T Thn 21.0s + 1
P21 144s+1 _,
dyr = —P2L 034 228 F 2 4
T e 109s+1°

Easy to implement. What can go wrong?
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Feedforward (Conventional) Decoupling

o _ 1 | paa(s) —pia(s)
D= P06 = g (220 2] e

Complicated decoupler, difficult to deal with anti-windup,
manual control and mode changes (auto-tuning). Controller C;
does not know what happens to u;.

Inverted (Feedback) Decoupl ing

u=v+ Dpu Blockdiagram vector case
(I-Dgp)u=v
u=(I-Dsp) v
Q=PI —-Dp)™"
P=@Q—-QDp

Easy to solve for Dy, also for systems with many inputs and

outputs. Example 2 x 2, pick @ = diag(p11, pa2), why?

[pn P12] _ [Pn 0 ] _ [Pn 0 ] [ 0 dlz]
D21 D22 0  po 0 p2) |dax O

Hence

12 21
dig = P12 do1 = P2
P11 P22

Wood and His Column




Decoupling with Anti-windup

—y u
/' Actuator

model Actuator

Interaction

Properties of Inverted (Feedback) Decoupling
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A Prototype Example

v

Simple decoupler even for systems with many inputs and
many outputs

Easy to deal with anti-windup, manual control and other
mode changes (auto-tuning)

Decoupler may be noncausal (pure predictor). Try different
pairing or add extra time delay in d;;.

» Since it is a feedback coupling there may be instabilities

v

v

Systems with Parallel Actuation

dw
J—+Dw Mi+My—M;, KA

dt W
Proportional control @

M1 =M10+K1(a)sp—a)) L
My = My + Ka(0sp — 0)
The proportional gains tell how the load is distributed

dw
de + (D + K1 + K)o = My + My — M, + (K1 + K2)wsp.

A first order system with time constant T' = J /(D + K1 + K3)

Discuss response speed, damping and steady state

K| +K; Myo + Mo — My,

» Motor drives for papermachines and rolling mills

» Trains with several motors or several coupled trains
» Electric cars with motors for each wheel

» Power systems, HVAC systems

Integral Action?

W =Wy = [0)
T DK+ K P D+ K+ K,
Integral Action
Osp T~
1
0 T T T
0 10 20 30
I M,
0.4 // R
! M,
O T T T
0 10 20 30
[
0 M,
—1 T T T
0 10 20 30

Notice that M; is driving and My is breaking for ¢ > 22

e

)
— I —*-‘Motorz}—J
. M

A

@1

L.

Prototype for lack of reachability and observability!

Better Integral Action

Pﬁo
*@

@




Better Integral Action?

Electric Cars

o s
1
05 / o
0 T T T
0 10 20 30
M,
04] /77T T O\ M
A N — AN
0 T T T
0 10 20 30
&
0
M, ]
1 . . .
0 10 20 30

Power Systems - Massive Parallellism

One motor for each wheel

Turbine Governors

» Edison’s experience
Two generators with
governors having
integral action

» Many generators supply

power to the net.
Frequency control
Voltage control

» Isochronous governors

(integral action) and

governors with

speed-drop (no integral

action)

Load Sharing - Through Propor tional Action

o, = rotor speed Y = valve/gate position
P, = mechanical power

Figure 11.6 Schematic of an isochronous governor

Valve/gate

To generator

Speed ref. oy

Figure 11.8 CGovernor with steady-state feedback

Interaction

fHz) fHz)
. .
A %
r f
AP, AP,
PR Py P
Power output Power output
Unit 1 Unit 2

Figure 11.11 Load sharing by parallel units with drooping governor characteristics

Integral action through central action

Kundur: The isochronous governors cannot be used when
there are two or more units connected to the same system
since each governor would have to have precisely the same
speed setting. Otherwise, they would fight each other, each
trying to control system frequency to its own setting.

A Gallery of Systems

Rosenbrock 1 och 2
Distillation columns
Wood-Berry
» Tyreus system
» Quadruple tank
» Basis weight and moisture control of paper machine
» Concentration and level control
» Boiler control
» Shell standard control problem

v

v
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Paper Machine Control

Decoupling through physics

Storage Refiner  Machine Screen and Headbox Wire Presses Drying Reel
chest chest cleaners section

!

Thick stock
flow valve
“-~Thick stock
dilution valve

“~- Beta ray

Fig. 69. Simplified diagram of a kraft paper machine.

» Primary quality: Basis weight and moisture
» Head box control: Pressure and flow rate



Flight Control

Decoupling through physics

» Longitudinal
» Lateral

The Shell Standard Control Problem

Kess
T8+ 1

Units for 0, 7 are in minutes.

BOTTOMS | INTER.
REFLUX | REFLUX
DUTY DpUTY

K=588 | K=120

Jlo UPPER

! G REFLUX
TEMP
SIDE
DRAW
TEMP
INTER.

REFLUX

Y xa
Pl
x|
TE“ 9

°3L

BOTTOMS
REFLUX
TEMP

.
I}

3N

o

u
°
Il

Interaction Analysis ...

Singular values
01=237 09=323, 03=097, 04=023, o04=0.15
Condition number is k¥ = 162

—12.0740 —-8.8747 —17.6193 —-3.5152 —3.8122
0.6437 —2.9896 0.9498 0.3149  0.2407
0.6436 0.0103 —0.5729  0.2125  0.3896

SVT = | —0.1065 0.0030 0.0241 0.0198  0.2005
0.0308 —0.0048 0.0028 —0.1402 0.0300

0 0 0 0 0

0 0 0 0 0

All variables cannot be controlled, choose y; and ys and ug and
ug, condition number x = 5.34

057 157
k= [ 157 —0.57]

Significant interaction, use multivariable control!

Summary

» All real systems are coupled
» Relative gain array and singular values give insight
» Never forget process redesign
» Multivariable zeros and zero directions
» Why decouple
Simple system.
SISO design, tuning and operation can be used
What is lost?
» Multivariable design

Dont forget windup and operational aspects (tuning, manual
control, ... )

» Parallel systems
One integrator only!

Boiler Control

Attemperator valves

Feed water valve

Fuel valye

Schematic diagram of the boiler-turbine unit.

Interaction Analysis

4.05e7%"  1.77¢2%  588e72™  1.20e72* 1.44e7%"

1+ 50s 1+ 60s 1+ 50s 1+ 45s 1+ 40s
5.39¢71%  5.72¢71%  6.90e71%  1.52¢71%  1.83e71%
1+ 50s 1+60s 1+ 40s 1+ 25s 1+ 20s
3.66e7%  1.65¢72% 553 % 1.16 1.27
1+4+9s 1+ 30s 1+ 40s 1+11s 1+6s
P(s) = 5.92¢71s  254e71%  8.10e % 1.73 1.79
1+12s 1+ 27s 1+ 20s 1+5s 1+ 19s
4.18e7%  2.38e ™ 6.23e7% 1.31 1.26
1+48s 1+19s 1+ 10s 1+2s 1+ 22s
4.06e%  4.18e™* 6.53e~° 1.19 1.17
1+13s 1+ 33s 1+9s 1+ 19s 1+ 24s
4.38¢72%  4.42¢72% 7.20 1.14 1.26

1+33s 1+44s 1+19s 1+27s 1+ 32s

Controls: top draw, side draw, bottoms reflux duty. inter reflux duty, upper
reflux duty. Outputs are: top end draw, side end point top temperature, upper
reflux temperature, side draw temperature, inter reflux temperature, bottoms
reflux temperature.
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