
1

Advanced PID Cont rol - Interaction

Karl Johan Åström

Department of Automatic Control LTH,
Lund University

Interaction

K. J. Åström

1. Introduction

2. An Example

3. RGA and Singular Values

4. Multivariable zeros

5. Decoupling

6. Parallel Systems

7. More Examples

8. Summary
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Int roduc tion

◮ To centralized or to decentralize?
◮ The process control experience

A few important variables were controlled
The single loop paradigm: one sensor one actuator
Add loops to control more variables
Sometimes it was not obvious how to associate sensors
and actuators - The pairing problem

◮ The state-feedback paradigm - centralized contol
◮ Complex systems - decentralize
◮ What happens when loops are interacting?
◮ Interaction measures

Bristol’s relative gain array RGA
Singular values

◮ The pairing problem
◮ Decoupling: static, dynamic (different time scales), different

physical mechanisms, mass balance, energy balance

Typical Process Cont rol System
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Interaction of Simple Loops

ysp1

ysp2

u1

u2

y1

y2

C1

C2

Process

Y1(s) = p11(s)U1(s) + p12U2(s)

Y2(s) = p21(s)U1(s) + p22U2(s),

What happens when the controllers are tuned individually?

An Example

Controller C1 is a PI controller with gains k1 = 1, ki = 1, and the
C2 is a proportional controller with gains k2 = 0, 0.8, and 1.6.
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The second controller has a major impact on the first loop!

Analys is

Y1(s) =
1

(s+ 1)2
U1(s) +

2

(s+ 1)2
U2(s)

Y2(s) =
1

(s+ 1)2
U1(s) +

1

(s+ 1)2
U2(s).

P-control of second loop U2(s) = −k2Y2(s) gives

Y1(s) = �
cl
11(s)U1(s) =

s2 + 2s+ 1− k2
(s+ 1)2(s2 + 2s+ 1+ k2)

U1(s).

The gain k2 in the second loop has a significant effect on the
dynamics in the first loop. The static gain

�cl11(0) =
1− k2
1+ k2

.

changes from 1 to -1 as k2 goes from 0 to ∞, it is zero for
k2 = 1.
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A Bit of Intui tion - Integral Cont rol

◮ Diagonal dominance (Check the previous example)
◮ Integral control: Any stable SISO system can be controlled

by an integrating controller provided that the zero
frequency gain is not zero P(0) > 0. The characteristic
polynomial for low integral gain is s+ kiP(0)

◮ The MIMO version for square systems. The characeristic
equation and its low frequency approximation

det(sI + P(s)Ki) ( det(sI + P(0)Ki)

where Ki is a diagonal matrix of integral gains.

◮ All eigenvalues of P(0)Ki positive
◮ For positive integral gains det Ki > 0 we must require
det P(0) > 0. (Niederlinski 1971)
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Bristol ’s Relative Gain

◮ Edgar H. Bristol On a new measure of interaction for
multivariable process control IEEE TAC 11(1967) 133–135

◮ A simple way of measuring interaction based on static
properties

◮ Idea: What is effect of control of one loop on the steady
state gain of another loop?

◮ Idea: consider one loop when the other loop is under
perfect control

Y1(s) = p11(s)U1(s) + p12U2(s)

0 = p21(s)U1(s) + p22U2(s).

◮ Frequency dependent extensions

Bristol ’s Relative Gain

Consider the first loop u1 → y1 when the second loop is in
perfect control (y2 = 0)

Y1(s) = p11(s)U1(s) + p12U2(s)

0 = p21(s)U1(s) + p22U2(s).

Eliminating U2(s) from the first equation gives

Y1(s) =
p11(s)p22(s) − p12(s)p21(s)

p22(s)
U1(s).

The ratio of the static gains of first loop when the second loop is
open (u2 = 0) and under perfect closed loop control (y2 = 0).

r11 = λ =
p11(0)p22(0)

p11(0)p22(0) − p12(0)p21(0)
.

Bristol ’s Relative Gain ...

r11 =
p11(0)p22(0)

p11(0)p22(0) − p12(0)p21(0)
= λ

r12 =
p12(0)p21(0)

p11(0)p22(0) − p12(0)p21(0)
= 1− λ

r21 =
p21(0)p12(0)

p11(0)p22(0) − p12(0)p21(0)
= 1− λ

r22 =
p22(0)p11(0)

p11(0)p22(0) − p12(0)p21(0)
= λ

The relative gain array

R =









λ 1− λ

1− λ λ









The parameter λ is called Bristol’s interaction index

Summary for 2$ 2 Systems

λ = 1 No interaction, decoupled design OK

λ = 0 Closed loop gain u1 → y1 is zero Control y1 by u2
instead, decoupled design then OK

0 < λ < 1 Closed loop gain u1 → y1 is larger than open
loop gain. Interaction strongest for λ = 1

λ > 1 Closed loop gain u1 → y1 is smaller than open loop
gain. Interaction increases with increasing λ . Very difficult
to control both loops independently if λ is very large.

λ < 0 The closed loop gain u1 → y1 has different sign than
the open loop gain. Opening or closing the second loop
has dramatic effects. Use multivariable control.

Many Loops

Let P(s) be an n$ n matrix of transfer functions. The relative
gain array is

R = P(0) • P
−T(0) = P • P

−T = P. ∗ P−T

The product is element by element product (Schur or
Hadamard product). Properties

◮ (A • B)T = AT • BT

◮ P diagonal gives R = I

Insight and use

◮ A measure of static interactions for square systems which
tells how the gain in one loop is influenced by perfect
feedback on all other loops

◮ Dimension free. Row and column sums are 1.
◮ Negative elements correspond to sign reversals due to

feedback of other loops

Pairing

When designing complex systems loop by loop we must decide
what measurements should be used as inputs for each
controller. This is called the pairing problem. The choice can be
governed by physics but the relative gain can also be used

Consider the previous example

P(0) =









1 2

1 1








, P−1(0) =









−1 2

1 −1









R = P(0) • P
−T(0) =









−1 2

2 −1








,

◮ Negative sign indicates the sign reversal found previously
◮ Better to use reverse pairing, i.e. let u2 control y1

R =









2 1

1 1







 •









−1 1
−1 2








=









2 −1
−1 2








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Pairing ...

Consider

P(s) =











1
(s+1)2

2
(s+1)2

1
(s+1)2

1
(s+1)2











Introducing the feedback u1 = −k2y2 gives

Y1(s) = �
cl
12(s)U2(s) =

2s2 + 4s+ 2+ k2
(s+ 1)2(s2 + 2s+ 1+ k2)

U2(s),

Zero frequency gain decreases from 2 to 1 when k2 ranges
from 0 to ∞, a significant improvement!

Discuss how dynamics changes with k2!
Use rootlocus!

Step Respons es with Reverse Pairing
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◮ U2 =
(

1+
1

s

)

(Ysp1 − Y1)

◮ u1 = −k2y2 with k2 = 0, 0.8, and 1.6.

Singul ar Values

Let A be an k$ n matrix whose elements are complex
variables. The singular value decompostion of the matrix is

A = UΣV ∗

where ∗ denotes transpose and complex conjugation, U and V
are unitary matrices (UU∗ = I and VV ∗ = I is. The matrix Σ is
a k$ n matrix such that Σii = σ i and all other elements are
zero. The elements σ i are called singular values. The largest
σ = maxiσ i and smallest σ = miniσ singular values are of
particular interest. The number σ̄ /σ is called the condition
number. The singular values are the square roots of the
eigenvalues of A∗A.

Example: A real 2$ 2 matrix can be written as

A =









cosθ1 − sinθ1
sinθ1 cosθ1

















σ 1 0

0 σ 2

















cosθ2 sinθ2
−sinθ2 cosθ2









Singul ar Decompos ition A = UΣV ∗

◮ The columns ui of U represent the output directions
◮ The columns vi of V represent the input directions
◮ We have AV = UΣ, or Avi = σ iui. An input in the direction
vi thus gives the output σ iui, i.e. in the direction ui

◮ Since the vectors ui and vi are of unit length the gain of A
for the input ui is σ i

◮ The largest gain is σ̄ = maxiσ i
◮ There are efficient numerical algorithms svd in Matlab
◮ Singular values can be applied to nonsquare matrices
◮ A natural way to define gain for matrices A and transfer

function matrices G(s)

gain = max
v

ppAvpp

ppvpp
= σ (A), gain = max

ω
σ (G(iω ))

Interaction Analys is

Consider a system with the scaled zero frequency gain
















y1
y2
y3

















=

















0.48 0.90 −0.006
0.52 0.95 0.008

0.90 −0.95 0.020

































u1
u2
u3

















Relative gain array

R =

















0.7100 −0.1602 0.4501

−0.3557 0.7925 0.5632

0.6456 0.3677 −0.0133

















Singular values: σ 1 = 1.6183, σ 2 = 1.1434 and σ 3 = 0.0097.
Condition number κ = 166. Only two outputs can be controlled.
What variables should be chosen?

Interaction Analys is

We have y= U S VT . How to pick two input output pairs

SVT =















−0.088 −1.616 0.010

1.142 −0.062 0.018

−0.000 0.000 0.010















U =















−0.571 0.377 −0.729
−0.604 0.409 0.684

0.556 0.831 −0.007















The matrix SVT shows that u1 and u2 are obvious choices of inputs.
As far as the outputs are concerned. We have two choices y1, y3 or
y2, y3 (angles between rows). Notice that y1, y2 is not a good choice
because the corresponding rows of US are almost parallel. The
singular values are

Selection y1, y3 ← u1,u2 Con-
dition number κ = 1.51

R =









0.3602 0.6398

0.6398 0.3602









Selection y2, y3 ← u1,u2 Con-
dition number κ = 1.45

R =









0.3662 0.6338

0.6338 0.3662








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Zeros of Mul tivariable Systems

Transmission zeros are values of s where the transmission of
the signal est is blocked

Y(s) = P(s) v est, 0 = P(s) v

There is a nontrivial v only if the matrix P(s) is singular. For a
square system the zeros are the solutions to

det P(s) = 0

and the zero directions are the corresponding right
eigenvectors of P(s).
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Rosenbr ock’s Example

Process transfer function

P(s) =



















1

s+ 1

2

s+ 3
1

s+ 1

1

s+ 1



















Very benign subsystems. Relative gain array

R =









1 2/3
1 1







 •









3 −3
−2 3








=









3 −2
−2 3








,

The transmission zeros are given by

det P(s) =
1

s+ 1

( 1

s+ 1
−
2

s+ 3

)

=
1− s

(s+ 1)2(s+ 3)
= 0.

RHP zero at z=1, difficult to control the system with gain
crossover frequencies larger than ω�c = 0.5.

Stabi li ty Region - P in Both Loops

Discuss commissioning and windup!

Rosenbr ock’s Example
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PI controllers with kp = 2 and ki = 2 in both loops. Systems
becomes unstable if gains are increased by a factor of 3.

Interactions Can be Benefic ial

P(s) =









p11(s) p12(s)
p21(s) p22(s)








=





















s− 1

(s+ 1)(s+ 2)

s

(s+ 1)(s+ 2)
−6

(s+ 1)(s+ 2)

s− 2

(s+ 1)(s+ 2)





















.

The relative gain array

R =









1 0

0 1








,

Transmission zeros

det P(s) =
(s− 1)(s− 2) + 6s

(s+ 1)2(s+ 2)2
=

s2 + 4s+ 2

(s+ 1)2(s+ 2)2

Difficult to control individual loops fast because of the zero at
s = 1. Since there are no multivariable zeros in the RHP the
multivariable system can easily be controlled fast but ths
system is not robust to loop breaks.

Interactions Can be Benefic ial ...
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PI controllers with gains k = 100 and ki = 2000 in both loops

Stabi li ty Region - P in Both Loops

Discuss commissioning and windup!

The Quadrupl e Tank

u1 u2

y1 y2

y3 y4

γ 1

1− γ 1

γ 2

1− γ 2

Tank 1
(A2)

Tank 2
(B2)

Tank 3
(A1)

Tank 4
(B1)

Pump 1 (BP) Pump 2 (AP)

Transfer Func tion of Linearized Model

Transfer function from u1,u2 to y1, y2

P(s) =

























γ 1c1
1+ sT1

(1− γ 2)c1
(1+ sT1)(1+ sT3)

(1− γ 1)c2
(1+ sT2)(1+ sT4)

γ 2c2
1+ sT2

























Transmission zeros

det P(s) =

(1+ sT3)(1+ sT4) −
(1− γ 1)(1− γ 2)

γ 1γ 2
(1+ sT1)(1+ sT2)(1+ sT3)(1+ sT4)

◮ No interaction of γ 1 = γ 2 = 1

◮ Minimum phase if 1 ≤ γ 1 + γ 2 ≤ 2

◮ Nonminimum phase if 0 < γ 1 + γ 2 ≤ 1.
◮ Intuition?
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Relative Gain Array

Zero frequency gain matrix

P(0) =









γ 1c1 (1− γ 2)c1
(1− γ 1c2 γ 2c2









The relative gain array

P(0) =









λ 1− λ

1− λ λ









where
λ =

γ 1γ 2
γ 1 + γ 2 − 1

◮ No interaction for γ 1 = γ 2 = 1

◮ Severe interaction if γ 1 + γ 2 < 1
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Decoupl ing

Simple idea: Find a compensator so that the system appears to
be without coupling.

Many versions

◮ Input decoupling Q = PD or output decoupling Q = DP
◮ Conventional (Feedforward)
◮ Inverse (Feedback)
◮ Static

Important to consider windup, manual control and mode
switches.

◮ Keep the decentralized philosophy

Feedforward (Convent ional) Decoupl ing

D = P−1(s)Q(s) =
1

det P(s)









p22(s) −p12(s)
−p21(s) p11(s)








Q(s)

Complicated decoupler, difficult to deal with anti-windup,
manual control and mode changes (auto-tuning). Controller C1
does not know what happens to u1.

Feedback (Inverted) Decoupl ing

Simple decoupler, easy to deal with anti-windup, manual control
and mode changes (auto-tuning) if d11 = d22 = 1. Why?

Inverted (Feedback) Decoupl ing

u = v+ D f bu

(I − D f b)u = v

u = (I − D f b)
−1v

Q = P(I − D f b)
−1

P = Q − QD f b

Blockdiagram vector case

Easy to solve for D f b also for systems with many inputs and
outputs. Example 2$ 2, pick Q = diag(p11, p22), why?









p11 p12
p21 p22








=









p11 0

0 p22








−









p11 0

0 p22

















0 d12
d21 0









Hence
d12 = −

p12

p11
d21 = −

p21

p22

The Wood- Berry Distill ation Column

P(s) =





















12.8e−s

16.7s+ 1

−18.9e−3s

21.0s+ 1
6.60e−7s

10.9s+ 1

−19.4e−3s

14.4s+ 1





















.

The decoupler is d11 = d22 = 1

d11 = 1

d12 = −
p12

p11
= 0.68

16.7s+ 1

21.0s+ 1
e−2s

d21 = −
p21

p22
= 0.34

14.4s+ 1

10.9s+ 1
e−4s

d22 = 1

Easy to implement. What can go wrong?

Wood and His Column
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Decoupl ing with Ant i-windup Properties of Inverted (Feedback) Decoupl ing

◮ Simple decoupler even for systems with many inputs and
many outputs

◮ Easy to deal with anti-windup, manual control and other
mode changes (auto-tuning)

◮ Decoupler may be noncausal (pure predictor). Try different
pairing or add extra time delay in dii.

◮ Since it is a feedback coupling there may be instabilities

Interaction

K. J. Åström
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Systems with Parallel Actuation

ω

  
w sp

    A1

    A2    C2

    C1

Gearb

◮ Motor drives for papermachines and rolling mills
◮ Trains with several motors or several coupled trains
◮ Electric cars with motors for each wheel
◮ Power systems, HVAC systems

A Protot ype Example

J
dω

dt
+Dω = M1+M2−ML,

Proportional control

M1 = M10 + K1(ω sp −ω )

M2 = M20 + K2(ω sp −ω )

The proportional gains tell how the load is distributed

J
dω

dt
+ (D + K1 + K2)ω = M10 + M20 − ML + (K1 + K2)ω sp.

A first order system with time constant T = J/(D + K1 + K2)

Discuss response speed, damping and steady state

ω = ω 0 =
K1 + K2

D + K1 + K2
ω sp +

M10 + M20 − ML
D + K1 + K2

.

Integral Action?

Prototype for lack of reachability and observability!

Integral Action

0

0

0

0

0
0

10

10

10

20

20

20

30

30

30

0.4

0.5

1

−1

ω sp

ω

M1

M2

n

ML

Notice that M1 is driving and M2 is breaking for t > 22

Better Integral Action
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Better Integral Action?
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Electric Cars

One motor for each wheel

Power Systems - Massive Parallelli sm

◮ Edison’s experience
Two generators with
governors having
integral action

◮ Many generators supply
power to the net.

Frequency control
Voltage control

◮ Isochronous governors
(integral action) and
governors with
speed-drop (no integral
action)

Turbine Governor s

Load Sharing - Through Propor tional Action

Integral action through central action

Kundur: The isochronous governors cannot be used when
there are two or more units connected to the same system
since each governor would have to have precisely the same
speed setting. Otherwise, they would fight each other, each
trying to control system frequency to its own setting.

Interaction

K. J. Åström

1. Introduction

2. An Example

3. RGA and Singular Values

4. Multivariable zeros

5. Decoupling

6. Parallel Systems

7. More Examples

8. Summary

Theme: When the wires get crossed

A Gallery of Systems

◮ Rosenbrock 1 och 2
◮ Distillation columns

Wood-Berry

◮ Tyreus system
◮ Quadruple tank
◮ Basis weight and moisture control of paper machine
◮ Concentration and level control
◮ Boiler control
◮ Shell standard control problem

Paper Machine Cont rol

Decoupling through physics

◮ Primary quality: Basis weight and moisture
◮ Head box control: Pressure and flow rate
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Flight Cont rol

Decoupling through physics

◮ Longitudinal
◮ Lateral

Boi ler Cont rol

The Shell Standard Cont rol Problem Interaction Analys is

P(s) =









































































































4.05e−27s

1+ 50s

1.77e−28s

1+ 60s

5.88e−27s

1+ 50s

1.20e−27s

1+ 45s

1.44e−27s

1+ 40s
5.39e−18s

1+ 50s

5.72e−14s

1+ 60s

6.90e−15s

1+ 40s

1.52e−15s

1+ 25s

1.83e−15s

1+ 20s
3.66e−2s

1+ 9s

1.65e−20s

1+ 30s

5.53e−2s

1+ 40s

1.16

1+ 11s

1.27

1+ 6s
5.92e−11s

1+ 12s

2.54e−12s

1+ 27s

8.10e−2s

1+ 20s

1.73

1+ 5s

1.79

1+ 19s
4.13e−5s

1+ 8s

2.38e−7s

1+ 19s

6.23e−2s

1+ 10s

1.31

1+ 2s

1.26

1+ 22s
4.06e−8s

1+ 13s

4.18e−4s

1+ 33s

6.53e−s

1+ 9s

1.19

1+ 19s

1.17

1+ 24s
4.38e−20s

1+ 33s

4.42e−22s

1+ 44s

7.20

1+ 19s

1.14

1+ 27s

1.26

1+ 32s









































































































Controls: top draw, side draw, bottoms reflux duty. inter reflux duty, upper

reflux duty. Outputs are: top end draw, side end point top temperature, upper

reflux temperature, side draw temperature, inter reflux temperature, bottoms

reflux temperature.

Interaction Analys is ...

Singular values

σ 1 = 23.7, σ 2 = 3.23, σ 3 = 0.97, σ 4 = 0.23, σ 4 = 0.15

Condition number is κ = 162

SVT =

















































−12.0740 −8.8747 −17.6193 −3.5152 −3.8122
0.6437 −2.9896 0.9498 0.3149 0.2407

0.6436 0.0103 −0.5729 0.2125 0.3896

−0.1065 0.0030 0.0241 0.0198 0.2005

0.0308 −0.0048 0.0028 −0.1402 0.0300

0 0 0 0 0

0 0 0 0 0

















































All variables cannot be controlled, choose y1 and y2 and u2 and
u3, condition number κ = 5.34

R =









−0.57 1.57

1.57 −0.57









Significant interaction, use multivariable control!

Interaction

K. J. Åström

1. Introduction

2. An Example

3. RGA and Singular Values

4. Multivariable zeros

5. Decoupling

6. Parallel Systems

7. More Examples

8. Summary

Theme: When the wires get crossed

Summary

◮ All real systems are coupled
◮ Relative gain array and singular values give insight
◮ Never forget process redesign
◮ Multivariable zeros and zero directions
◮ Why decouple

Simple system.
SISO design, tuning and operation can be used
What is lost?

◮ Multivariable design
Dont forget windup and operational aspects (tuning, manual
control, ... )

◮ Parallel systems
One integrator only!
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