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Lecture 4 – Nonlinear Control

Nonlinear Controllability
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Material

Notes

Handout from Nonlinear Control Theory, Torkel Glad
(Linköping)
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Nonlinear System

ẋ = f (x,u)
y = h(x,u)

Important special affine case:

ẋ = f (x) + �(x)u
y = h(x)

f : drift term

� : input term



lionwhite

Basic Result: Linearization at (x0,u0)

ẋ = f (x) + �(x)u

Theorem: Suppose f (x0) + �(x0)u0 = 0. If

ż = Az+ Bv

A =
� f
�x (x0) +

��

�x (x0)u0

B = �(x0)

is controllable, then for all T , ε > 0 the set

XT ,ε = {x(T); pu− u0p < ε}

contains a neighborhood of x0.
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Rolling Penny

ẋ = u1 cos(θ )
ẏ = u1 sin(θ )

ϕ̇ = u1

θ̇ = u2

penny

The linearization is not controllable (check)

Can the penny be moved sideways in small time (keeping the
head up)?
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Rolling Penny

Yes it can. But it is not obvious.

Non-holonomic constraints a(z)ż = 0

sinθ − cosθ 0 0
cosθ sinθ −1 0



ẋ
ẏ
ϕ̇

θ̇

 = 0

Holonomic constraints h(z) = 0 =[ hz ż = 0.
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Main new object: Lie Bracket of vector fields

Consider two vector fields ẋ = f (x) and ẋ = �(x)

Lie-bracket. New vector field

[ f ,�] = ��
�x f −

� f
�x �
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Why is it interesting?

ẋ = �1(x)u1 + �2(x)u2

Controllability: If the Liebracket "tree" has full rank, then the
system is controllable
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Example

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 ± x2u1

This means �1 =


1
0
±x2

 and �2 =


0
1
x1


[�1,�2] =


0 0 0
0 0 0
1 0 0




1
0
±x2

−


0 0 0
0 0 0
0 ±1 0




0
1
x1
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Example

Hence at x = 0 we have

�1 =


1
0
0

 , �2 =


0
1
0

 , [�1,�2] =


0
0

1−±1


With the minus-sign the three vector fields span R3, and we
have controllability.

With the plus-sign the system is not controllable, in fact it can
be seen that x2

1 + x2
2 − 2x3 is an invariant.



lionwhite

Some more notation

X t(p) = solution to ẋ = X (x), x(0) = p

X t is smooth. X 0 = id

LX (�) = X (�) =
n∑
i=1
Xi
��

�xi
= lim
h→0

�(X h(p)) − �(p)
h

Lα X+βY = α LX + β LY , α , β ∈ R
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Example

ẋ = f (x) + �(x)u
y = h(x)

ẏ =
�h
�x ẋ =

�h
�x ( f + �u) = L f+�uh

= L fh+ uL�h
y(k) = (L f+�u)kh
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Lie-Brackets

[X ,Y]p( f ) = Xp(Y( f )) − Yp(X ( f ))

X ∼


X1
...
Xn

 ; Y ∼


Y1
...
Yn


[X ,Y] = �Y

�x X −
�X
�x Y
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Another example

X =

cosφ

r

 ∼ cosφ
�

�r + r
�

�φ

Y =

r1
 ∼ r �

�r +
�

�φ

[X ,Y] =

1 0
0 0

cosφ

r

−0 − sinφ

1 0

r1


=

cosφ − sinφ

−r

 ∼ (cosφ − sinφ)
�

�r − r
�

�φ
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Lie-Brackets
Why are Lie-brackets so fundamental?

ẋ = �1u1 + �2u2

(u1(t),u2(t)) =


(1, 0) t ∈ [0,h)
(0, 1) t ∈ [h, 2h)
(−1, 0) t ∈ [2h, 3h)
(0,−1) t ∈ [3h, 4h)

x(4h) = x0 + h2[�1,�2] + O(h3)

Trotters Product Formula

Φ
t
[X ,Y] = lim

n→∞

(
Φ

√ t
n

−Y Φ

√ t
n

−X Φ

√ t
n

Y Φ

√ t
n

X

)n
Proof sketch (

1+ t fn + o
( t f
n

))n
→ et f
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Some Lie-Bracket Formulas

[ f X ,�Y] = f�[X ,Y] + f X (�)Y − �Y( f )X
[X ,Y] = −[Y, X ]
[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0

LX Y = [X ,Y] = lim
h→0

1
h [X

−h
∗
Y − Y]

X −h
∗
Y =

∞∑
n=0

adnX Y
hn
n! = Y + h[X ,Y] + h

2

2 [X , [X ,Y]] . . .

related to

eAeB = eC; C = A+ B + 1
2 [A, B] + . . .
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Park Your Car Using Lie-Brackets!

(x, y) : position
φ : direction of car
θ : direction of wheels

(x, y,φ ,θ ) ∈ R2 $ S1 $ [θmin,θmax]
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Parking cont’d

�1 = Steer :=


0
0
0
1


�2 = Drive :=


cos(φ + θ )
sin(φ + θ )

sin(θ )
0
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[Steer, Drive] = . . . =


− sin(φ + θ )
cos(φ + θ )

cos(θ )
0


:= Wriggle
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Define

Slide :=


− sin(φ + θ )
cos(φ + θ )

0
0


We have

Slidet(x, y,φ ,θ ) = (x − t sin(φ), x + t cos(φ),φ ,θ )

An easy calculation (exercise) shows that

[Wriggle, Drive] = Slide

Fundamental Parking Theorem
You can get out of any parking lot that is larger than the car.
Use the following control: Wriggle, Drive, –Wriggle (this
requires a cool head), –Drive (repeat).

Proof: Trotters Product Formula
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Linear Systems

ẋ = Ax + Bu = f (x) + �(x)u

[ f ,�] = [Ax, B] = 0− AB
[�, [ f ,�]] = 0
[ f , [ f ,�]] = [Ax,−AB] = A2B

...

Adkf� = [ f , [ f , . . . , [ f ,�]]]︸ ︷︷ ︸
k Lie-brackets

= (−1)kAkB
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Controllability Theorem

ẋ =
∑
i �i(x)ui

C = smallest Lie subalg. containing {�1, . . . ,�m}

Controllability:

dim C = n =[ can reach open set

With drift term f (x) the theorem is slightly different


