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Today: Two Time-scales

Averaging

ẋ = ǫ f (t, x, ǫ)

The state x moves slowly compared to f .

Singular perturbations

ẋ = f (t, x, z, ǫ)
ǫż = �(t, x, z, ǫ)

The state x moves slowly compared to z.
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Example: Vibrating Pendulum I

m

θ

l

a sinω t

x = l sin(θ ),
y = l cos(θ ) − a sin(ω t)
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Newton’s law in tangential direction

m(lθ̈ − aω 2 sinω t sinθ )
= −m� sinθ − k(lθ̇ + aω cosω t sinθ )

(incl. viscous friction in joint)

Let ǫ = a/l,τ = ω t, α = ω 0l/ωa, and β = k/mω 0

x1 = θ

x2 = ǫ
−1(dθ/dτ ) + cosτ sinθ

f1(τ , x) = x2 − cosτ sin x1
f2(τ , x) = −α β x2 −α 2 sin x1

+x2 cosτ cos x1 − cos2 τ sin x1 cos x1

the state equation is given by

dx

dτ
= ǫ f (τ , x)
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Averaging Assumptions

Consider the system

ẋ = ǫ f (t, x, ǫ), x(0) = x0

where f and its derivatives up to second order are continuous

and bounded.

Let xav be defined by the equations

ẋav = ǫ fav(xav), xav(0) = x0

fav(x) = lim
T→∞

1

T

∫ T

0

f (τ , x, 0)dτ
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Example: Vibrating Pendulum II

The averaged system

ẋ = ǫ fav(x)

= ǫ

[
x2

−α β x2 −α 2 sin x1 − 1
4
sin 2x1

]

has

� fav
�x (π , 0) =

[
0 1

α 2 − 0.5 −α β

]

which is Hurwitz for 0 < α < 1/
√
2, β > 0.

Can this be used for rigorous conclusions?
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Periodic Averaging Theorem

Let f be periodic in t with period T .

Let x = 0 be an exponentially stable equilibrium of

ẋav = ǫ f (xav).
If px0p is sufficiently small, then

x(t, ǫ) = xav(t, ǫ) + O(ǫ) for all t ∈ [0,∞]

Furthermore, for sufficiently small ǫ > 0, the equation

ẋ = ǫ f (t, x, ǫ) has a unique exponentially stable periodic

solution of period T in an O(ǫ) neighborhood of x = 0.
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General Averaging Theorem

Under certain conditions on the convergence of

fav(x) = lim
T→∞

1

T

∫ T

0

f (τ , x, 0)dτ

there exists a C > 0 such that for sufficiently small ǫ > 0

px(t, ǫ) − xav(t, ǫ)p < Cǫ

for all t ∈ [0, 1/ǫ].
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Example: Vibrating Pendulum III

The Jacobian of the averaged system is Hurwitz for

0 < α < 1/
√
2, β > 0.

For a/l sufficiently small and

ω >
√
2ω 0l/a

the unstable pendulum equilibrium (θ , θ̇ ) = (π , 0) is therefore

stabilized by the vibrations.
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Periodic Perturbation Theorem

Consider

ẋ = f (x) + ǫ�(t, x, ǫ)

where f , �, � f/�x and ��/�x are continuous and bounded.

Let � be periodic in t with period T .

Let x = 0 be an exponentially stable equilibrium point for ǫ = 0.
Then, for sufficiently small ǫ > 0, there is a unique periodic

solution

x̄(t, ǫ) = O(ǫ)

which is exponentially stable.
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Proof ideas of Periodic Perturbation Theorem

Let φ(t, x0, ǫ) be the solution of

ẋ = f (x) + ǫ�(t, x, ǫ), x(0) = x0

Exponential stability of x = 0 for ǫ = 0, plus bounds on the

magnitude of �, shows existence of a bounded solution x̄

for small ǫ > 0.
The implicit function theorem shows solvability of

x = φ(T , 0, x, ǫ)

for small ǫ. This gives periodicity of x̄.

Put z = x − x̄. Exponential stability of x = 0 for ǫ = 0 gives

exponential stability of z = 0 for small ǫ > 0.
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Proof idea of Averaging Theorem

For small ǫ > 0 define u and y by

u(t, x) =
∫ t

0

[ f (τ , x, 0) − fav(x)]dτ

x = y+ ǫu(t, y)
Then

ẋ = ẏ+ ǫ

�u(t, y)
�t + ǫ

�u(t, y)
�y ẏ

[

I + ǫ

�u
�y

]

ẏ = ǫ f (t, y+ ǫu, ǫ) − ǫ

�u
�t (t, y)

= ǫ fav(y) + ǫ
2p(t, y, ǫ)

With s = ǫt,

dy

ds
= fav(y) + ǫq

(s

ǫ

, y, ǫ
)

which has a unique and exponentially stable periodic solution for

small ǫ. This gives the desired result.
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Application: Second Order Oscillators

For the second order system

ÿ+ω 2y = ǫ�(y, ẏ) (1)

introduce

y = r sinφ

ẏ/ω = r cosφ

f (φ , r, ǫ) = �(r sinφ ,ω r cosφ) cosφ

ω 2 − (ǫ/r)�(r sinφ ,ω r cosφ) sinφ

fav(r) = 1

2π

∫ 2π

0

f (φ , r, 0)dφ

= 1

2πω 2

∫ 2π

0

�(r sinφ ,ω r cosφ) cosφdφ

Then (1) is equivalent to

dr

dφ
= ǫ f (φ , r, ǫ)

and the periodic averaging theorem may be applied.
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Illustration: Van der Pol Oscillator I

+

−

C L

iC iL

i

V
resistive
element

linear osc-part

For an ordinary resistance we will get a damped oscillation.

For a negative resistance/admittance chosen as

i = h(V ) = (−V + 1
3
V 3)

︸ ︷︷ ︸

�ives van der Pol eq.

we get

iC + iL + i = 0, i = h(V )
[

CL
d2V

dt2
+ V + Lh′(V )dV

dt
= 0
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Example: Van der Pol Oscillator I

The vacuum tube circuit equation (a k a the van der Pol equation)

ÿ+ y = ǫẏ(1− y2)
gives

fav(r) = 1

2π

∫ 2π

0

r cosφ(1− r2 sin2 φ) cosφdφ

= 1

2
r − 1
8
r3

The averaged system

dr

dφ
= ǫ

(
1

2
r − 1
8
r3

)

has equilibria r = 0, r = 2 with

d fav

dr

∣
∣
∣
∣
r=2

= −1

so small ǫ give a stable limit cycle, which is close to circular with

radius r = 2.
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Singular Perturbations

Consider equations of the form

ẋ = f (t, x, z, ǫ), x(0) = x0
ǫż = �(t, x, z, ǫ) z(0) = z0

For small ǫ > 0, the first equation describes the slow dynamics,

while the second equation defines the fast dynamics.

The main idea will be to approximate x with the solution of the

reduced problem

˙̄x = f (t, x,h(t, x̄), 0) x̄(0) = x0

where h(t, x̄) is defined by the equation

0 = �(t, x,h(t, x), 0)
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Example: DC Motor I

u

R
i

L

ω J

EMK = kω

J
dω

dt
= ki

L
di

dt
= −kω − Ri+ u

With x = ω , z = i and ǫ = Lk2/JR2 we get

ẋ = z

ǫż = −x− z+ u
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Linear Singular Perturbation Theorem

Let the matrix A22 have nonzero eigenvalues γ 1, . . . ,γ m and let

λ1, . . . ,λn be the eigenvalues of A0 = A11 − A12A−122 A21.
Then, ∀δ > 0 ∃ǫ0 > 0 such that the eigenvalues α 1, . . . ,α n+m
of the matrix

[
A11 A12
A21/ǫ A22/ǫ

]

satisfy the bounds

pλ i −α ip < δ , i = 1, . . . ,n
pγ i−n − ǫα ip < δ , i = n+ 1, . . . ,n+m

for 0 < ǫ < ǫ0.
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Proof

A22 is invertible, so it follows from the implicit function theorem

that for sufficiently small ǫ the Riccati equation

ǫA11Pǫ + A12 − ǫPǫA21Pǫ − PǫA22 = 0

has a unique solution Pǫ = A12A−122 + O(ǫ).
The desired result now follows from the similarity transformation

[
I −ǫPǫ

0 I

] [
A11 A12
A21/ǫ A22/ǫ

] [
I ǫPǫ

0 I

]

=
[
I −ǫPǫ

0 I

] [
A11 A12 + ǫA11Pǫ

A21/ǫ A22/ǫ+ A21Pǫ

]

=
[
A0 + O(ǫ) 0

∗ A22/ǫ+ O(1)

]
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Example: DC Motor II

In the example

ẋ = z

ǫż = −x − z+ u
we have

[
A11 A12
A21 A22

]

=
[
0 1

−1 −1

]

A11 − A12A−122 A21 = −1
so stability of the DC motor model for small

ǫ = Lk2

JR2

is verified.

See Khalil for example where reduced system is stable but fast

dynamics unstable.
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The Boundary-Layer System

For fixed (t, x) the boundary layer system

dŷ

dτ
= �(t, x, ŷ+ h(t, x), 0), ŷ(0) = z0 − h(0, x0)

describes the fast dynamics, disregarding variations in the slow

variables t, x.
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Tikhonov’s Theorem

Consider a singular perturbation problem with

f ,�,h,��/�x ∈ C1. Assume that the reduced problem has a

unique bounded solution x̄ on [0,T ] and that the equilibrium

ŷ = 0 of the boundary layer problem is exponentially stable

uniformly in (t, x). Then

x(t, ǫ) = x̄(t) + O(ǫ)
z(t, ǫ) = h(t, x̄(t)) + ŷ(t/ǫ) + O(ǫ)

uniformly for t ∈ [0,T ].
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Example: High Gain Feedback

+ +

− −

ψ (⋅) k1/s

k2

u
up

ẋp = ... y

y = ..

Closed loop system

ẋp = Axp + Bup
1

k1
u̇p = ψ (u− up − k2Cxp)

Reduced model

ẋp = (A− Bk2C)xp + Bu
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Proof ideas of Tikhonov’s Theorem

Replace f and � with F and G that are identical for pxp < r, but

nicer for large x.

For small ǫ, G(t, x, y, ǫ) is close to G(t, x, y, 0).

y-bound for G(⋅, ⋅, ⋅, 0)-equation

[ y-bound for G-equation

[ x, y-bound for F,G-equations

For small ǫ > 0, the x, y-solutions of the F,G-equations will

satisfy pxp < r. Hence, they also solve the f ,�-equations
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The Slow Manifold

For small ǫ > 0, the system

ẋ = f (x, z)
ǫż = �(x, z)

has the invariant manifold

z = H(x, ǫ)

It can often be computed approximately by Taylor expansion

H(x, ǫ) = H0(x) + ǫH1(x) + ǫ
2H2(x) + ⋅ ⋅ ⋅

where H0 satisfies

0 = �(x,H0)
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The Fast Manifold

ǫ = 0.001
x ’ = − x + z                  
z ’ = 1/epsilon atan(1 − z − x)

epsilon = 0.001
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Example: Van der Pol Oscillator III

Consider

d2v

ds2
− µ(1− v2)dv

ds
+ v = 0

With

x = − 1
µ

dv

ds
+ v− 1

3
v3

z = v

t = s/µ

ǫ = 1/µ2

we have the system

ẋ = z

ǫż = −x + z− 1
3
z3

with slow manifold

x = z− 1
3
z3
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Illustration: Van der Pol III

Phase plot for van der Pol example ǫ = 0.001
x ’ = z                             

z ’ = 1/epsilon ( − x + z − 1/3 z
3
)

epsilon = 0.001
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z ’ = 1/epsilon ( − x + z − 1/3 z
3
)

epsilon = 0.1
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The red dotted curve is the slow manifold x z z3 3.
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