Nonlinear Control Theory

Lecture 9

@ Periodic Perturbations
@ Averaging
@ Singular Perturbations
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Today: Two Time-scales

Averaging
x = ef(t,x,¢€)

The state x moves slowly compared to f.

Singular perturbations

x = f(t,x,z¢)
ez = g(t,x,z2¢€)

The state x moves slowly compared to z.
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Example: Vibrating Pendulum |

2
a sin a)tI <
x = Isin(0),

y = lcos(0) — a sin(wt)
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Newton’s law in tangential direction
m (10 — aw? sin ot sin 6)
= —mgsin 0 — k(16 + aw cos wt sin H)
(incl. viscous friction in joint)
Lete =a/l,7 = wt, 0 = wol/wa,and B = k/may

x1 = 6

xg = € 1(d0/dr)+costsinb
fi(t,x) = x9—cosTsinxg
fo(7,2x) = —aBxy—a?sinx

+2x9 COS T €OS X1 — €OS2 7 Sin x1 oS X1

the state equation is given by
dx

% = ef(T’x)
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Averaging Assumptions

Consider the system
x = ef(t,x,¢€), x(0)=x

where f and its derivatives up to second order are continuous
and bounded.

Let x,, be defined by the equations

Xy = 6fow (xav)a Xav (0) = X0
R\
fav (x) = 711_1)130 T ] f(T, X, O)dT

lecture 9 Nonlinear Control Theory 2006



Example: Vibrating Pendulum li

The averaged system
X = efg(x)
R/ 2
T —oBxg —a?sinx; — i sin 2x;

has

Ofaw 0 1
ox PR [0(2—0.5 —(xﬁ}

which is Hurwitz for 0 < & < 1/v/2, B > 0.

Can this be used for rigorous conclusions?
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Periodic Averaging Theorem

Let f be periodic in ¢ with period T'.

Let x = 0 be an exponentially stable equilibrium of
Xopy = 6f(xazv)-

If |xo| is sufficiently small, then

x(t,e) = xa(t,e) + O(e) for all £ € [0, 0]

Furthermore, for sufficiently small e > 0, the equation
i = €f(¢,x,€) has a unique exponentially stable periodic
solution of period T' in an O(e) neighborhood of x = 0.
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General Averaging Theorem

Under certain conditions on the convergence of

AN [l $588 S Nie

T—o0 0

there exists a C > 0 such that for sufficiently small ¢ > 0
|x(¢,€) — xap(t,€)] < Ce

forallt € [0,1/€].
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Example: Vibrating Pendulum lii

The Jacobian of the averaged system is Hurwitz for
0<a<1/V2 B>0.

For a /I sufficiently small and
0w > \/§a)0l/a

the unstable pendulum equilibrium (8, 8) = (x,0) is therefore
stabilized by the vibrations.
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Periodic Perturbation Theorem

Consider

x = f(x)+eg(tx,e)

where f, g, 9f/0x and dg/dx are continuous and bounded.
Let g be periodic in ¢ with period T'.
Let x = 0 be an exponentially stable equilibrium point for e = 0.

Then, for sufficiently small e > 0, there is a unique periodic
solution

%(t,e) = O(e)

which is exponentially stable.
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Proof ideas of Periodic Perturbation Theorem

Let ¢(¢, xo, €) be the solution of

x = f(x)+eg(t,x,e), x(0)=xp

@ Exponential stability of x = 0 for e = 0, plus bounds on the
magnitude of g, shows existence of a bounded solution x
for small e > 0.

@ The implicit function theorem shows solvability of
x = ¢(T,0,x,¢)

for small e. This gives periodicity of x.

@ Put z = x — x. Exponential stability of x = 0 for e = 0 gives
exponential stability of z = 0 for small e > 0.
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Proof idea of Averaging Theorem

For small ¢ > 0 define u and y by

u(t,x) = / £(,2,0) — fun(x)]de

x = y+eu(ty)
Then Bult,) Bult,)
< u(t,y u(t,y) .
e
ou| . ou
|:I+€a_y:|y = Gf(t,y‘i'GU,e) _Eat (t’y)
5 €fav(y)+€2p(t,y’€)
With s = et,
dy s
% = fav(y)'i'eq (g,y,E)

which has a unique and exponentially stable periodic solution for
small e. This gives the desired result.
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Application: Second Order Oscillators

For the second order system

j+o’y = (59 (1)
introduce
y = rsing
y/@ = rcosg¢
_ g(rsin ¢, wr cos @) cos ¢
f(g.r.e) = 2% — (¢/r)g(r sin ¢, wr cos @) sin ¢
1 2r
fav(r) = % 7 f(¢’r’0)d¢
2r
= Flaﬂ/ g(rsin ¢, wr cos ¢) cos pd@
0
Then (1) is equivalent to
Z_; = Ef(¢’r’€)

and the periodic averaging theorem may be applied.
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lllustration: Van der Pol Oscillator |

-
llllllll

I
elemen

linear osc-part

For an ordinary resistance we will get a damped oscillation.
For a negative resistance/admittance chosen as

i=h(V) = (—V+%V3)
N———’

gives van der Pol eq.
we get
ic+ir+i=0, i=h(V)

=
d2V o dV
CL g +V + LI (V)= =0
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Example: Van der Pol Oscillator |

The vacuum tube circuit equation (a k a the van der Pol equation)

j+y = e(l-y)
gives
1 2
fa(r) = o r cos ¢(1 — r? sin® ¢) cos ¢d¢
T Jo
1
= %r— §r3

The averaged system

ar (1, _1ls
dp ~ “\2" "8

has equilibria r = 0, r = 2 with

d fur 4
dr |._y
so small € give a stable limit cycle, which is close to circular with

radius r = 2.
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Singular Perturbations

Consider equations of the form

x = f(tx,z¢€), x(0)=x
ez = g(t,x,z,¢) 2(0) =2

For small € > 0, the first equation describes the slow dynamics,
while the second equation defines the fast dynamics.

The main idea will be to approximate x with the solution of the
reduced problem

x = f(tx,h(¢%),0) %(0) = x
where h(t, %) is defined by the equation

0 = g(tx,h(t,x),0)
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Example: DC Motor |

dw /
Jd—t' = ki
Lﬂ = —kw—Ri+u
dt
With x = @, z =i and e = Lk?/J R? we get
X = z
€2 = —x—z+4+u
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Linear Singular Perturbation Theorem

Let the matrix Agg have nonzero eigenvalues y4,...,7,» and let
A1, ..., An be the eigenvalues of Ay = A1; — A12A5) Ag;.

Then, Vd > 0 J¢g > 0 such that the eigenvalues a1,...,0n+m
of the matrix

[ A Ap ]
Ag1/e Aggle

satisfy the bounds

|li—0(i| < 5, i=1,...,n
|}/i_n—60{i| < 0, i=n+1,...,n+m

for 0 < € < €.
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Ags is invertible, so it follows from the implicit function theorem
that for sufficiently small ¢ the Riccati equation

€A1 P+ Apg —eP A1 P.— P Ayp = 0
has a unique solution P, = Aj3A53 + O(e).

The desired result now follows from the similarity transformation
I —€eP.| | Ain A | [I €P.
0 I A21/6 A22/€ 0 I

O |:I —€P€:| |: A11 A12 + 6A11P€:|

— |0 I A21/€ A22/6 + A1 P,
Ao+ O(e) 0
a * A22/6 + 0(1)
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Example: DC Motor I

In the example

X = =z
€2 = —x—z+4+u
we have
[An A12] [ 41 RS ]
Aoy Ay -1 -1
Ay — ApAztAy = —1
so stability of the DC motor model for small
— LEk?
JR?
is verified.

See Khalil for example where reduced system is stable but fast
dynamics unstable.
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The Boundary-Layer System

For fixed (¢, x) the boundary layer system

dy

dr = g(t,x,9+ h(t,x),0), F(0)=2z9—h(0,x0)

describes the fast dynamics, disregarding variations in the slow
variables ¢, x.
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Tikhonov’s Theorem

Consider a singular perturbation problem with

f,9,h,09/0x € C'. Assume that the reduced problem has a
unique bounded solution x on [0, T'] and that the equilibrium
3 = 0 of the boundary layer problem is exponentially stable
uniformly in (¢,x). Then

x(t,e) = %)+ O(e)
z(t,e) = h(t,x(t)) +9(t/e) + O(e)

uniformly for ¢ € [0, T'].
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Example: High Gain Feedback

Up

’>®4.®4 w0 ks Xp = Yy

ks

Closed loop system

Zp = Ax,+ Bu,
kilup = V(u—up—koCxp)
Reduced model

%p = (A—BkeC)x,+ Bu
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Proof ideas of Tikhonov’s Theorem

Replace f and g with F and G that are identical for |x| < r, but
nicer for large x.

For small ¢, G(¢,x,y,¢) is close to G(¢,x,y,0).

y-bound for G (-, -,-,0)-equation
= y-bound for G-equation
= «x,y-bound for F, G-equations

For small € > 0, the x, y-solutions of the F, G-equations will
satisfy |x| < r. Hence, they also solve the f, g-equations
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The Slow Manifold

For small € > 0, the system

X = f(x,z)

ez = g(x,2)
has the invariant manifold
z = H(x,e)
It can often be computed approximately by Taylor expansion
H(x,e) = Ho(x)+eHi(x) + Ha(x) + -
where H,, satisfies

0 = g(x,H)y)

lecture 9 Nonlinear Control Theory 2006



The Fast Manifold

e =0.001

—oxez epsion - 0.001
2" = epsilon atan(1 -z -x)
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Example: Van der Pol Oscillator Il

Consider
d?v dv
@—y(l—ﬁ)%ﬁ-v =0
With
1dv+v 1113
8y = = = =
Hds 3
2 = U
= s/u
e = 1/p?
we have the system
X = Z
. 1,
€2 = —x+z—§z
with slow manifold
_ o
X = Zz2 3
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Illustration: Van der Pol lll

Phase plot for van der Pol example ¢ = 0.001
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