Nonlinear Control Theory

Lecture 9

- Periodic Perturbations
- Averaging
- Singular Perturbations

Khalil Chapter (9, 10) 10.3-10.6, 11

Today: Two Time-scales

Averaging

 $\dot{x} = \epsilon f(t, x, \epsilon)$

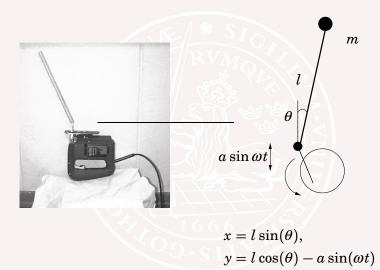
The state x moves slowly compared to f.

Singular perturbations

 $\dot{x} = f(t, x, z, \epsilon)$ $\epsilon \dot{z} = g(t, x, z, \epsilon)$

The state x moves slowly compared to z.

Example: Vibrating Pendulum I



Newton's law in tangential direction

$$m(l\ddot{\theta} - a\omega^{2}\sin\omega t\sin\theta) = -mg\sin\theta - k(l\dot{\theta} + a\omega\cos\omega t\sin\theta)$$

(incl. viscous friction in joint)

Let $\epsilon = a/l, \tau = \omega t, \alpha = \omega_0 l/\omega a$, and $\beta = k/m\omega_0$

$$\begin{array}{rcl} x_1 &=& \theta \\ x_2 &=& \epsilon^{-1}(d\theta/d\tau) + \cos\tau\sin\theta \\ f_1(\tau,x) &=& x_2 - \cos\tau\sin x_1 \\ f_2(\tau,x) &=& -\alpha\beta x_2 - \alpha^2\sin x_1 \\ &+ x_2\cos\tau\cos x_1 - \cos^2\tau\sin x_1\cos x_1 \end{array}$$

the state equation is given by

$$\frac{dx}{d\tau} = \epsilon f(\tau, x)$$

Averaging Assumptions

Consider the system

$$\dot{x} = \epsilon f(t, x, \epsilon), \quad x(0) = x_0$$

where f and its derivatives up to second order are continuous and bounded.

Let x_{av} be defined by the equations

$$\begin{aligned} \dot{x}_{av} &= \epsilon f_{av}(x_{av}), \quad x_{av}(0) = x_0 \\ f_{av}(x) &= \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\tau, x, 0) d\tau \end{aligned}$$

Example: Vibrating Pendulum II

The averaged system

j

$$\begin{aligned} \dot{x} &= \epsilon f_{av}(x) \\ &= \epsilon \left[\begin{array}{c} x_2 \\ -\alpha\beta x_2 - \alpha^2 \sin x_1 - \frac{1}{4}\sin 2x_1 \end{array} \right] \end{aligned}$$

has

$$\frac{\partial f_{av}}{\partial x}(\pi,0) = \begin{bmatrix} 0 & 1 \\ \alpha^2 - 0.5 & -\alpha\beta \end{bmatrix}$$

which is Hurwitz for $0 < \alpha < 1/\sqrt{2}, \beta > 0.$

Can this be used for rigorous conclusions?

Periodic Averaging Theorem

Let f be periodic in t with period T.

Let x = 0 be an exponentially stable equilibrium of $\dot{x}_{av} = \epsilon f(x_{av})$.

If $|x_0|$ is sufficiently small, then

$$x(t,\epsilon) = x_{av}(t,\epsilon) + O(\epsilon)$$
 for all $t \in [0,\infty]$

Furthermore, for sufficiently small $\epsilon > 0$, the equation $\dot{x} = \epsilon f(t, x, \epsilon)$ has a unique exponentially stable periodic solution of period *T* in an $O(\epsilon)$ neighborhood of x = 0.

General Averaging Theorem

Under certain conditions on the convergence of

$$f_{av}(x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\tau, x, 0) d\tau$$

there exists a C > 0 such that for sufficiently small $\epsilon > 0$

$$|x(t,\epsilon)-x_{av}(t,\epsilon)| < C\epsilon$$

for all $t \in [0, 1/\epsilon]$.

Example: Vibrating Pendulum III

The Jacobian of the averaged system is Hurwitz for $0 < \alpha < 1/\sqrt{2}, \beta > 0.$

For a/l sufficiently small and

$$\omega > \sqrt{2}\omega_0 l/a$$

the unstable pendulum equilibrium $(\theta, \dot{\theta}) = (\pi, 0)$ is therefore stabilized by the vibrations.

Periodic Perturbation Theorem

Consider

$$\dot{x} = f(x) + \epsilon g(t, x, \epsilon)$$

where f, g, $\partial f / \partial x$ and $\partial g / \partial x$ are continuous and bounded. Let g be periodic in t with period T.

Let x = 0 be an exponentially stable equilibrium point for $\epsilon = 0$.

Then, for sufficiently small $\epsilon > 0,$ there is a unique periodic solution

$$\bar{x}(t,\epsilon) = O(\epsilon)$$

which is exponentially stable.

Proof ideas of Periodic Perturbation Theorem

Let $\phi(t, x_0, \epsilon)$ be the solution of

$$\dot{x} = f(x) + \epsilon g(t, x, \epsilon), \quad x(0) = x_0$$

- Exponential stability of x = 0 for ε = 0, plus bounds on the magnitude of g, shows existence of a bounded solution x
 for small ε > 0.
- The implicit function theorem shows solvability of

$$x = \phi(T, 0, x, \epsilon)$$

for small ϵ . This gives periodicity of \bar{x} .

Put z = x - x̄. Exponential stability of x = 0 for ε = 0 gives exponential stability of z = 0 for small ε > 0.

Proof idea of Averaging Theorem

For small $\epsilon > 0$ define u and y by

$$u(t,x) = \int_0^t [f(\tau, x, 0) - f_{av}(x)] d\tau$$

$$x = y + \epsilon u(t, y)$$

Then

$$\dot{x} = \dot{y} + \epsilon \frac{\partial u(t, y)}{\partial t} + \epsilon \frac{\partial u(t, y)}{\partial y} \dot{y}$$
$$\begin{bmatrix} I + \epsilon \frac{\partial u}{\partial y} \end{bmatrix} \dot{y} = \epsilon f(t, y + \epsilon u, \epsilon) - \epsilon \frac{\partial u}{\partial t}(t, y)$$
$$= \epsilon f_{av}(y) + \epsilon^2 p(t, y, \epsilon)$$

With $s = \epsilon t$,

$$rac{dy}{ds} = f_{av}(y) + \epsilon q\left(rac{s}{\epsilon}, y, \epsilon
ight)$$

which has a unique and exponentially stable periodic solution for small ϵ . This gives the desired result.

Application: Second Order Oscillators

For the second order system

$$\ddot{y} + \omega^2 y = \epsilon g(y, \dot{y}) \tag{1}$$

introduce

$$y = r \sin \phi$$

$$\dot{y}/\omega = r \cos \phi$$

$$f(\phi, r, \epsilon) = \frac{g(r \sin \phi, \omega r \cos \phi) \cos \phi}{\omega^2 - (\epsilon/r)g(r \sin \phi, \omega r \cos \phi) \sin \phi}$$

$$f_{av}(r) = \frac{1}{2\pi} \int_0^{2\pi} f(\phi, r, 0) d\phi$$

$$= \frac{1}{2\pi\omega^2} \int_0^{2\pi} g(r \sin \phi, \omega r \cos \phi) \cos \phi d\phi$$

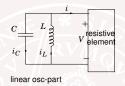
Then (1) is equivalent to

$$\frac{dr}{d\phi} = \epsilon f(\phi, r, \epsilon)$$

and the periodic averaging theorem may be applied.

lecture 9 Nonlinear Control Theory 2006

Illustration: Van der Pol Oscillator I



For an ordinary resistance we will get a damped oscillation. For a negative resistance/admittance chosen as

$$i = h(V) \quad = \quad \underbrace{\left(-V + \frac{1}{3}V^3\right)}_{\underbrace{}}$$

gives van der Pol eq.

we get

$$i_C + i_L + i = 0, \qquad i = h(V)$$

$$CL\frac{d^2V}{dt^2} + V + Lh'(V)\frac{dV}{dt} = 0$$

 \Rightarrow

Example: Van der Pol Oscillator I

The vacuum tube circuit equation (a k a the van der Pol equation)

$$\ddot{y} + y = -\epsilon \dot{y}(1 - y^2)$$

gives

$$f_{av}(r) = \frac{1}{2\pi} \int_{0}^{2\pi} r \cos \phi (1 - r^{2} \sin^{2} \phi) \cos \phi d\phi$$
$$= \frac{1}{2}r - \frac{1}{8}r^{3}$$

The averaged system

$$\frac{dr}{d\phi} = \epsilon \left(\frac{1}{2}r - \frac{1}{8}r^3\right)$$

has equilibria r = 0, r = 2 with

$$\left. \frac{df_{av}}{dr} \right|_{r=2} = -1$$

so small ϵ give a stable limit cycle, which is close to circular with radius r = 2.

Singular Perturbations

Consider equations of the form

$$\begin{aligned} \dot{x} &= f(t, x, z, \epsilon), \quad x(0) = x_0 \\ \epsilon \dot{z} &= g(t, x, z, \epsilon) \quad z(0) = z_0 \end{aligned}$$

For small $\epsilon > 0$, the first equation describes the *slow dynamics*, while the second equation defines the *fast dynamics*.

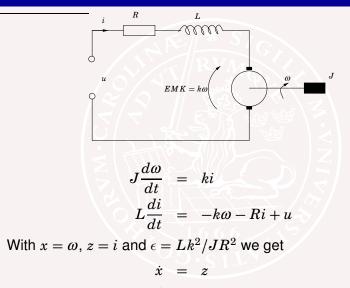
The main idea will be to approximate *x* with the solution of the *reduced problem*

$$\dot{\bar{x}} = f(t, x, h(t, \bar{x}), 0) - \bar{x}(0) = x_0$$

where $h(t, \bar{x})$ is defined by the equation

$$0 = g(t, x, h(t, x), 0)$$

Example: DC Motor I



$$\epsilon \dot{z} = -x - z + u$$

Linear Singular Perturbation Theorem

Let the matrix A_{22} have nonzero eigenvalues $\gamma_1, \ldots, \gamma_m$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $A_0 = A_{11} - A_{12}A_{22}^{-1}A_{21}$.

Then, $\forall \delta > 0 \ \exists \epsilon_0 > 0$ such that the eigenvalues $\alpha_1, \dots, \alpha_{n+m}$ of the matrix

$$egin{bmatrix} A_{11} & A_{12} \ A_{21}/\epsilon & A_{22}/\epsilon \end{bmatrix}$$

satisfy the bounds

for $0 < \epsilon < \epsilon_0$.

Proof

 A_{22} is invertible, so it follows from the implicit function theorem that for sufficiently small ϵ the Riccati equation

$$\epsilon A_{11}P_{\epsilon} + A_{12} - \epsilon P_{\epsilon}A_{21}P_{\epsilon} - P_{\epsilon}A_{22} = 0$$

has a unique solution $P_{\epsilon} = A_{12}A_{22}^{-1} + O(\epsilon)$.

The desired result now follows from the similarity transformation

$$\begin{bmatrix} I & -\epsilon P_{\epsilon} \\ 0 & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21}/\epsilon & A_{22}/\epsilon \end{bmatrix} \begin{bmatrix} I & \epsilon P_{\epsilon} \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} I & -\epsilon P_{\epsilon} \\ 0 & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} + \epsilon A_{11} P_{\epsilon} \\ A_{21}/\epsilon & A_{22}/\epsilon + A_{21} P_{\epsilon} \end{bmatrix}$$
$$= \begin{bmatrix} A_0 + O(\epsilon) & 0 \\ * & A_{22}/\epsilon + O(1) \end{bmatrix}$$

Example: DC Motor II

In the example

$$\begin{array}{rcl}
\dot{x} &=& z \\
\epsilon \dot{z} &=& -x - z + u \\
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} &=& \begin{bmatrix}
0 & 1 \\
-1 & -1
\end{bmatrix}$$

we have

$$A_{11} - A_{12} A_{22}^{-1} A_{21} = -1$$

so stability of the DC motor model for small

$$\epsilon = \frac{Lk^2}{JR^2}$$

is verified.

See Khalil for example where reduced system is stable but fast dynamics unstable.

The Boundary-Layer System

For fixed (t, x) the boundary layer system

$$\frac{d\hat{y}}{d\tau} = g(t, x, \hat{y} + h(t, x), 0), \quad \hat{y}(0) = z_0 - h(0, x_0)$$

describes the fast dynamics, disregarding variations in the slow variables t, x.

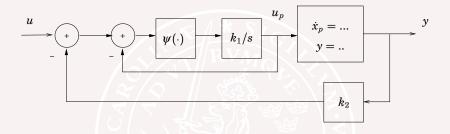
Tikhonov's Theorem

Consider a singular perturbation problem with $f, g, h, \partial g / \partial x \in C^1$. Assume that the reduced problem has a unique bounded solution \bar{x} on [0, T] and that the equilibrium $\hat{y} = 0$ of the boundary layer problem is exponentially stable uniformly in (t, x). Then

$$\begin{array}{lll} x(t,\epsilon) &=& \bar{x}(t) + O(\epsilon) \\ z(t,\epsilon) &=& h(t,\bar{x}(t)) + \hat{y}(t/\epsilon) + O(\epsilon) \end{array}$$

uniformly for $t \in [0, T]$.

Example: High Gain Feedback



Closed loop system

$$\dot{x}_p = Ax_p + Bu_p$$

$$\frac{1}{k_1} \dot{u}_p = \psi(u - u_p - k_2 C x_p)$$

Reduced model

$$\dot{x}_p = (A - Bk_2C)x_p + Bu$$

Replace f and g with F and G that are identical for |x| < r, but nicer for large x.

For small ϵ , $G(t, x, y, \epsilon)$ is close to G(t, x, y, 0).

y-bound for $G(\cdot, \cdot, \cdot, 0)$ -equation \Rightarrow y-bound for G-equation

 \Rightarrow x, y-bound for F, G-equations

For small $\epsilon > 0$, the *x*, *y*-solutions of the *F*, *G*-equations will satisfy |x| < r. Hence, they also solve the *f*, *g*-equations

The Slow Manifold

For small $\epsilon > 0$, the system

$$\dot{x} = f(x,z)$$

 $\epsilon \dot{z} = g(x,z)$

has the invariant manifold

$$z = H(x,\epsilon)$$

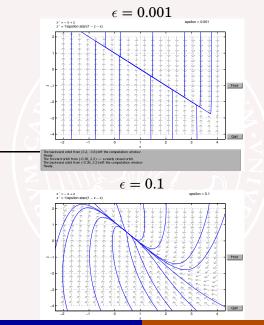
It can often be computed approximately by Taylor expansion

$$H(x,\epsilon) = H_0(x) + \epsilon H_1(x) + \epsilon^2 H_2(x) + \cdots$$

where H_0 satisfies

$$0 = g(x, H_0)$$

The Fast Manifold



lecture 9 Nonlinear Control Theory 2006

Example: Van der Pol Oscillator III

Consider

$$\frac{d^2v}{ds^2} - \mu(1-v^2)\frac{dv}{ds} + v = 0$$

With

$$x = -\frac{1}{\mu}\frac{dv}{ds} + v - \frac{1}{3}v^{3}$$

$$z = v$$

$$t = s/\mu$$

$$\epsilon = 1/\mu^{2}$$

we have the system

$$\dot{x} = z$$

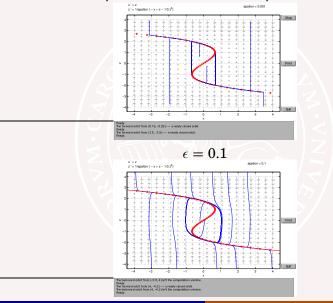
$$\epsilon \dot{z} = -x + z - \frac{1}{3}z^{3}$$

with slow manifold

$$x = z - \frac{1}{3}z^3$$

Illustration: Van der Pol III

Phase plot for van der Pol example $\epsilon = 0.001$



lecture 9 Nonlinear Control Theory 2006