Synthesis, Nonlinear design

Introduction
Relative degree & zero-dynamics (rev.)
Exact Linearization (intro)
Control Lyapunov functions
Lyapunov redesign
Nonlinear damping
Backstepping
» Control Lyapunov functions (CLFs)
> passivity
» robust/adaptive
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Ch 13.1-13.2, 14.1-14.3 Nonlinear Systems, Khalil
The Joy of Feedback, P V Kokotovic

Relative degree

“ A system’s relative degree: How many times you need to take
the derivative of the output signal before the input shows up”

Note: A nonlinear system may have state-dependent relative
degree.

Example: The ball and beam process (see process homepage
for more information).

If nothing else stated we assume a fixed relative degree in the
sequel.

Using the same kind of coordinate transformations as for the
feedback linearizable systems above, we can introduce new
state space variables, &, where the first d coordinates are
chosen as

&1 =h()

&2 = Lsh(x)
) (3)

Example (Zero dynamics for linear systems)
Consider the linear system

s—1

y:s2+25+1u

with the following state-space description

X1 = —2x1+x9 +u
Xy = —x1 —u (6)
Yy =X

We have the relative degree =1
Find the zero-dynamics, by assigning y = 0.

Why nonlinear desigh methods?

Linear design degraded by nonlinearities (e.g. saturations)
Linearization not controllable (e.g. pocket parking)

Long state transitions (e.g. satellite orbits)

Inherently nonlinear...
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For a nonlinear system with relative degree d

%= f(x) +g(x)u

= h(x)
we have
o _d, . _Oh(x), _0oh oh
y o= ) ==k = o f(x) + 5oa(xu
= L¢h(x)+ Lgh(x) u
N—_——
=0if d>1
y® = Lkn(x) ifk<d @)
Y = L‘}ich(x)+LgL([pd71)h(x)u

Under some conditions on involutivity, the Frobenius theorem
guarantees the existence of another (n — d) functions to
provide a local state transformation of full rank. Such a
coordinate change transforms the system to the normal form

S1=6
Sar1=¢&q 4)
éd = L‘;h(é,z) + LgL?_lh((f,Z)u
Z= y/(ﬁ,z)
y=E&

where z = y(&, ) represent the zero dynamics of order n — d
[Byrnes+lIsidori 1991].

y=0=>x=0= %=0 =>x24+u=0
(7)
= Xg = —U = X3

The remaining dynamics is an unstable system corresponding
to the zero s = 1 in the transfer function (??).



Exact (feedback) Linearization

Idea: Transform the nonlinear system into a linear system by
means of feedback and/or a change of variables. After this, a
stabilizing state feedback is designed.

Inner feedback linearization and outer linear feedback control

State transformation

More difficult example, where we need a state transformation
%1 = asin(xg)
X9 = —x% +u

Can not cancel a sin(x3). Introduce

21 =Xx1

29 = a sin xg
so that
21 =2y
29 = (—22 + w)acos xy
Then feedback linearization is (locally) possible by

u =22 +v/(acos(z))

When to cancel nonlinearities?

X1 = —x‘;’ +u;

x2=x3+u2

Nonrobust and/or not necessary.
However, note the difference between tracking or regulation!!

Will see later how “optimal criteria” will give hints.

Achieving passivity by feedback ( Feedback passivation )
Need to have

» relative degree one
» weakly minimum phase

NOTE! (Nonlinear) relative degree and zero-dynamics invariant
under feedback!
Two major challenges:

» avoid non-robust cancellations
» make it constructive by finding matching input-output pairs

For general nonlinear systems feedback linearization
comprises

» state transformation
» inversion of nonlinearities
» linear feedback

Simple example

i=7 sin(x) + cos(x)u

l

Put 1 9
u= cos(x) (—7 sin(x) +v)

gives (locally)
i=v

Design linear controller v = —l;x + —lo%, etc

Feedback linearization (“nonlinear version of pole-zero
cancellation”)

Feedback linearization can be interpreted as a nonlinear
version of pole-zero cancellations which can not be used if the
zero-dynamics are unstable, i. e., for nonminimum-phase
system.

Linear systems: See paper [Middleton (1999) Automatica 35(5), "Slow stable
open-loop poles: to cancel or not to cancel"]

“Matching” uncertainties

X1 = X2
Xp—1 = Xq (9)
Xy = L”fzh(x,z) + LgL‘}_lh(x,z)u
z2=y(x,2)
y=x1

Integrator chain and nonlinearities (+ zero-dynamics)
Note that uncertainties due to parameters etc. are
“collected in”

L‘fch(x, z)+ LgL‘[iflh(x, 2)u

Exact Linearization

Often useful in simple cases

Important intuition may be lost

Nonlinear version of "pole-zero cancellations"
Related to “Lie brackets” and “flatness”
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From analysis to synthesis

Lyapunov criterion Search for (V,u) such that

ov
a[f"rgu] <0

IQC criterion Search for @(s) and 74,. .., 7, such that

[Ty + Tg?Tg](iw) ] [Xk: (i) [ T: + TzIQTa](iw)

<0

for w € [0, 0]

In both cases, the problem is non-convex and hard.
Heuristic idea: lterate between the arguments

Control Lyapunov Function (CLF)

A positive definite radially unbounded C? function V is called a
CLF for the system & = f(x,u) if for each x # 0, there exists u
such that

%(x)f(x, u) <0 (Notation: LV (x) < 0)

When f(x,u) = f(x) + g(x)u, V is a CLF if and only if

L;V(x) <0forall x # 0 such that |L,V(x)| =0

Sontag’s formula

If V is a CLF for the system & = f(x) + g(x)u, then a
continuous asymptotically stabilizing feedback is defined by

0 if LyV(x)=0
u\x) .= \/— .
(x) LV VPV L)) LV i LV (x) £0

TaV)(LyV)T

Note: Can cancel factor L,V # 0 if scalar.

0 if L,V (x) =
u(x) = L/V+\/W() i LyV(x) %0

motivation: Feedback Linearization

One of the drawbacks with feedback linearization is that exact
cancellation of nonlinear terms may not be possible due to
e.g., parameter uncertainties.

A suggested solution:
» stabilization via feedback linearization around a nominal

model

» consider known bounds on the uncertainties to provide an
additional term for stabilization ( Lyapunov redesign )

Convexity for state feedback

Problem Suppose a < ¢(v)/v < B. Given the system

x = fu(x) := Ax + E¢(Fx) + Bu

find u = —Lx and V (x) = «7 Px such that
G fu(x) <0

Solution Solve for P, L

(A+aEF -~ BL)"P+ P(A+aEF —-BL)<0
(A+BEF—-BL)"P+P(A+BEF—-BL)<0

or equivalently convex in (@, K) = (P~1,LP™!)

(AQ + ¢EFQ — BK)T

(

AQ + BEFQ — BK)T

Example

+(AQ + aEFQ — BK) <0

+(AQ + BEFQ — BK) <0

Check if V(x,y) =

X =xy
y=-y+u

[#2 + (y + x2)%]?/2 is a CLF for the system

LyV () = 2y + (v +2°) (= +2x)
LoV (x.9) = 20y +x°) & + (v + %)

LiV(x,9)=0 = y=-2> = L;V(xy)=-x*<0

Backstepping idea

if (x,7)

Problem
Given a CLF fi

find one for th

Idea

or the system
e extended system

x= f(x1y)

=h(x,y)+u

Use y to control the first system. Use u for the second.

Note potential

for recursivity

Lyapunov Redesign

Consider the nominal system

with the know!

x= f(x,t) + G(x
n control law

u=y(x,t)

,Hu

so that the system is uniformly asymptotically stable.

Assume that a Lyapunov function V (x,¢) is known s.t.

a1 ([lx|l) < V(x,2)

ov. oV

at

;o [F(E) + Gyl

<

<

o2([[[])

—as(|lx]])



Lyapunov Redesign — cont. Apply u = y(x,t) + v

¢ = f(x,t) + G(x, )y + G(x,)[v + 5 (¢, x, 11
Perturbed system &= f(x,t) + Gx, )y + G(x,t)[v + 5(t, %, +v)] (1)

= f(x,t) + G(x,t)[u + ] (10)
. 9V 9V ov v
disturbance & = 8(t, x,u) V=t g f6x) +Gyl+ 5 Gl + 8] < —as(ll«ll) + 5 -Glv-
Assume the disturbance satisfies the bound Introduce w = [4L G|

S(t,x, ¥ +0)|| < p(x,t) + xol|v .
16,y + )| < P, ) + Kollo] V < —aa(llel) 4 wTo + w78
If we know p and xy how do we design additional control v such

T TS <0
that u = y(x,) + v stabilizes (22)? Choose v such that w' v +w'é < 0:

Two alternatives presented in Khalil (]| - [|e-norm /|| - ||so-noOrm)

The matching condition: perturbation enters at same place as

) Note: v appears at same place as ¢ due to the matching
control signal u.

condition

Lyapunov Redesigh — cont.

Alternative 2:

If
wlv + w8 <whv + [[wl]|2]|8]l2 162, ¥ + V)|l < p(x,£) + Kol[v|loo, 0 <Ko <1
wlv +w's <wlv + [|wl]]1]16]]e take
v=—1(t,x)sgnw
Alternative 1: where 7 > p/(1 — ko)

i Restriction on ky < 1 but not on growth of p.

Alt 1 and alt 2 coincide for single-input systems.
[10(t, x, ¥ +v)||2 < p(x,¢) + Ko||v]]2, 0<Kko<1

take
w
v=-1(tx) Il Note: control laws are discontinues fcn of x (risk of chattering)
where 7 > p/(1 — ko)
Example: Matched uncertainty Example cont.
Example:
u /\ X
\'_U f Exponentially decaying disturbance A(t) = A(0)e*
linear feedback u = —cx, ¢>0
o(x) = «?
@ o() & = —cx + A(0)e Fix?
- Similar to peaking problem in the first lecture: Finite
A escape of solution to infinity if A(0)x(0) > c+ &
o A We want to guarantee that x(t) stay bounded for all initial values
E=u+o(x)Al) x(0) and all bounded disturbances A(t)
Nonlinear damping
Choose
, . . s(x) = k¢?(2)
Modify the control law in the previous example as:
to complete the squares!
u=—cx—s(x)x
where V = —cx? — x2s(x) + x9(x)A
—s(x)x 9
2 Az 2 Az
will be denoted nonlinear damping. =—cx" —K [N’ - ﬁ} +K- yPel < —ex +E
x2
Use the Lyapunov function candidate V = £l
) Note! V is negative whenever
V =xu + xp(x)A
A
= —cx® — x%s(x) + xp(x)A (0|2 5

How to proceed?



Can show that x(¢) converges to the set

R= {x 2 (0] < 2%/70}

i.e., X(t) stays bounded for all bounded disturbances A

Remark: The nonlinear damping —xx¢?(x) renders the system
Input-To-State Stable (ISS) with respect to the disturbance.

Backstepping idea

Problem
Given a CLF for the system

%= f(x,u)
find one for the extended system

%= f(x,9)
y=nh(x,y)+u

Idea

Use y to control the first system. Use u for the second.

Note: potential for recursivity

Backstepping Example

For the system

i=x2+4y
y=u

we can choose V,(x) = x% and ¢(x) = —x2 — x to get the
control law
u=¢'(x)f(x,y) —h(x,y) + ¢(x) -y
=—@2x+ D@2 +y) - —x—y

with Lyapunov function

V(x,5) = Ve(x) + [y — 9(x)]?/2
=22+ (y+a%+x)?/2

We can'’t expect to realize xg = a(x1) exactly, but we can
always try to get
the error — 0.

Introduce the error states

{21 -n (13)

29 = xg — 0r1(x1)

where al(xl) = —X1— x%
xg
—_——~
. . 2 _
=21 = x1_21+22+0{1(21)_
= z%+zz—z§—21:—21+22
known
. . . ~
29 = xg—alzu(x)— (251
. d,
oy = —(—21—21 =—2121—21
T2 —2)

= —21(—21 + 22) — (—21 + 22) =

= Z%—2122—22—21

Young’s inequality

Letp>1,9g>1st (p—1)(g—1) =1,
then for all ¢ > 0 and all (x, y) € |R?

eP 1
xy < —|xfP + —|y|?
p qed

Standard case: (p = ¢ = 2, €2/2 = k)
xy < klxf? + = |yl?
4K

Our example:

A%(t)

2p(x)A(t) < kx®p?(x) + = -

Backstepping

Let V, be a CLF for the system & = f(x) + g(x)y with
corresponding asymptotically stabilizing control law 5 = ¢(x).
Then V(x,y) = V(%) + [y — ¢(x)]2/2 is a CLF for the system’

%= f(x) +g(x)y
y="h(x,y)+u

with corresponding control law
_ 09 oV
u=SE[F(x) +9()y] — FEa(x) = h(x,9) +9(x) —y

Proof.

V = (V2 /0x)(f +gy) + (v = 9) [h + u — (99/0x) - (f + gv)]

= (0V/0x)(f + g9) + (v — 9)[(0V/0x)g — (09 /0x) - (f + gy) + ]

= (0V./0x)(f +90) — (y— ) <0

Example again (step by step)

. 2
X1 = X1° + x2

{ % = u(x) (12)
Find u(x) which stabilizes (??).

Idea : Try first to stabilize the x;-system with x¢ and then
stabilize the whole system with u.

We know that if xs = —x1 — &2
then x; — 0 asymptotically ( exponentially )
ast — oo.

Start with a Lyapunov for the first subsystem (z;-dynamics):

1

v, = §z% >0

Vl = 21281 = —2% + 2122
Note :
If z5 = 0 we would achieve V; = —z2 <0
with 0(1(.761)



Now look at the augmented Lyapunov fcn for the error system

1
Vy = V1+§z§20
V2 = V1+22.é2=

= —z% + 2122 + 22(u — z% + 2122)

= B +4zu—2+z120+20+21)

choose = —zg

= 22-22<0
soifu:z?—zlzz—zz—zl

= (z1,22) — 0 asymptotically (exponentially)
= (x1,x2) — 0 asymptotically

As z1 =x1andzg=x2—a1=x2+x%+x1 ,
we can express u as a ( nonlinear ) state feedback function of

X1 andxz.
| T
Lf+a

Move the control “backwards” through the integrator

X2

R I e
B

Z29=%x— O

—e—  —® J

—a\la/dt fia

Note the change of coordinates!

Lyapunov function : Vi = 3z,% + 162 where § = (9 — ) is the
parameter error

(Back-) Step 1:

X2
——

Zl(t) Zz(t) +a1(z1,é) +9)/(31(t))

Vi = 2121+99—21(22+(x1+97) 66 =
= zlze+ta1+0y 1+6(0— z17)
—_——— ~—
—21 T

Choose a; = —z; — Oy

= V1 = —Z% + 2129 +é(é—11)

Augmented Lyapunov function :

1
V2=V1+7222
2
29 = Xo—0O1=
x3
—— Oa; oaq A
= - 0
23+ az le( 2+ 07) — 7
V2 = V1+2222=...=
oo ooy 4
2 1 1
= - —(z1 — ——=0
zl+22[23+a2+21+821(21 29) 3 1+

—2y

Choose Qg = —29 — 21 — %21 (21 — 22) + S5 To

Backward propagation of desired control signal

X2

)

If we could use xy as control signal, we would like to assign it to
a(x1) to stabilize the x;1-dynamics.

Adaptive Backstepping

System :

X1 = x9 + 0y(x1)
Jbz = X3 (14)
Jbg = u(t)

where 7 is a known function of x; and

6 is an unknown parameter
Introduce new (error) coordinates

R (15)
Z2(t) = X2(t) — al(zl,e)

where a1 is used as a control to stabilize the z;- system w.r.t
a certain Lyapunov-function.

Note: If we used 8 = 7; as update law

andifzg = 0then Vi = —22 <0

Step 2: Introduce z3 = x3 — (21, 22, 0) and
use ag as control to stabilize the (21, z2)-system

Note : If 23 = 0 and we used § = 79 as update law we would get
V2 = _Zl - 22 <0

Resulting subsystem

2| _[-1 1] |a I =7
29 T -1 -1 29 %}/
—_——

Hurwitz

n=r —5ay| {Zj

V2 = —z% —Z% + 2329 + 9(6 - Tz) — Zzaal (9 — Tz)

6+

0
— %0 —12)

Step 3 :
23 = X3— g
o, Oy, Owy
0zy ' 0z 0 86 -



We now want to choose u = u(z1, 2, 6) such that the whole
system will be stabilized w.r.t V3
Just to simplify the expressions, introduce z, and choose

60(2 A 8062 3(12 A
= —zm—23+ 5 6 20
u 22 Z3+az1(22+0!2+ 7)+az2x3+ 20 +u
u = ?
Augmented Lyapunov function :
_ 1 5, 1, 90 1
Vs = V2+223 —2||Z|| +29
; 2 2 2 — 51D dap
Vs = —zf—2z5—25+23u+0[0 — (12 — z3—7)]
821
73
80(1 A
— zz—5(0—1
296 0 %)
=>é=(f3)=72—23%j/
Vi = —| 2 |® + 23(% + 220)
Choose &t = —z90
Finally :
Vs=—|z|*= GSofz=10,0 =6 and x — 0 ( by La Salle’s
Theorem)

Closed-loop system :

0 -1-0 -1 9oz

-1 1 0 A
t=|-1 -1 1+40|z+|527|6
roud

skew—symmetric — 1

_%ay,, _day

—13 = [7 oz Y 921 7-‘ 4
Backstepping applies to systems in strict-feedback form

%1 = f1(x1) +x2
% = fa(x1,%2) + 23

En = fu(X1,%2,... Xn_1, %) + U

Compare with
Strict-feedforward systems

%1 = X9 + f1(x2,%3,...,%, 1)
K2 = x3 + fa(x3,..., %, 1)

Xp—1=%p + fnfl(xny u)
Xn=1u

We are almost there :

-1 1 o0 —r o
d=|-1 -1 1]z+ %7 0+ | % (g5 — 6)
0 -1 -1 gz i

. 21
b=y —%2r —52y] |:22:|

23
Y 2 — day A
V3——||Z|| +Z3u+22ﬁ(72—9)
80{1 A 8a18a2
—(19—0) =z ——
oo 2O == e g
N——
knowndéftr
-1 1 0 0 'l
= |-1 -1 1+0|z+ |0 + |527|6
0 -1 -1 u dazy
z4

Observer backstepping

Observer backstepping is based on the following steps:

1. A (nonlinear) observer is designed which provides
(exponentially) convergent estimates.

2. Backstepping is applied to a system where the states have
been replaces by their estimates.
The observation errors are regarded as (bounded)
disturbances and handled by nonlinear damping.




