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Synthesis, Nonlinear design

◮ Introduction

◮ Relative degree & zero-dynamics (rev.)

◮ Exact Linearization (intro)

◮ Control Lyapunov functions

◮ Lyapunov redesign

◮ Nonlinear damping

◮ Backstepping
◮ Control Lyapunov functions (CLFs)
◮ passivity
◮ robust/adaptive

Ch 13.1-13.2, 14.1-14.3 Nonlinear Systems, Khalil

The Joy of Feedback, P V Kokotovic

Why nonlinear design methods?

◮ Linear design degraded by nonlinearities (e.g. saturations)

◮ Linearization not controllable (e.g. pocket parking)

◮ Long state transitions (e.g. satellite orbits)

◮ Inherently nonlinear...

Relative degree

“ A system’s relative degree: How many times you need to take

the derivative of the output signal before the input shows up”

Note: A nonlinear system may have state-dependent relative

degree.

Example: The ball and beam process (see process homepage

for more information).

If nothing else stated we assume a fixed relative degree in the

sequel.

For a nonlinear system with relative degree d

ẋ = f (x) + �(x)u
y = h(x)

(1)

we have

ẏ = d

dt
h(x) = �h(x)

�x ẋ =
�h
�x f (x) +

�h
�x�(x)u

= L fh(x) + L�h(x)
︸ ︷︷ ︸

=0 i f d>1

u

...

y(k) = Lkfh(x) if k < d (2)

...

y(d) = Ldfh(x) + L�L
(d−1)
f
h(x)u

Using the same kind of coordinate transformations as for the

feedback linearizable systems above, we can introduce new

state space variables, ξ , where the first d coordinates are

chosen as 





ξ1 = h(x)
ξ2 = L f h(x)
...

ξd = L(d−1)
f
h(x)

(3)

Under some conditions on involutivity, the Frobenius theorem

guarantees the existence of another (n− d) functions to

provide a local state transformation of full rank. Such a

coordinate change transforms the system to the normal form

ξ̇1 = ξ2
...

ξ̇d−1 = ξd

ξ̇d = Ldf h(ξ , z) + L�Ld−1f h(ξ , z)u
ż =ψ (ξ , z)
y = ξ1

(4)

where ż =ψ (ξ , z) represent the zero dynamics of order n− d
[Byrnes+Isidori 1991].

Example (Zero dynamics for linear systems)

Consider the linear system

y = s− 1
s2 + 2s+ 1u (5)

with the following state-space description







ẋ1 = −2x1 + x2 +u
ẋ2 = −x1 −u
y = x1

(6)

We have the relative degree =1

Find the zero-dynamics, by assigning y " 0.

y " 0[ x1 " 0 [ ẋ1 " 0 [ x2 + u = 0

[ ẋ2 = −u = x2
(7)

The remaining dynamics is an unstable system corresponding

to the zero s = 1 in the transfer function (??).



2

Exact (feedback) Linearization

Idea: Transform the nonlinear system into a linear system by

means of feedback and/or a change of variables. After this, a

stabilizing state feedback is designed.

+

r v u y
Σu = β−1(⋅)

−L
x

z

x = T(z)

Inner feedback linearization and outer linear feedback control

For general nonlinear systems feedback linearization

comprises

◮ state transformation

◮ inversion of nonlinearities

◮ linear feedback

Simple example

ẍ = �
l
sin(x) + cos(x)u

Put

u = 1

cos(x)(−
�
l
sin(x) + v)

gives (locally)

ẍ = v
Design linear controller v = −l1x +−l2 ẋ, etc

State transformation

More difficult example, where we need a state transformation

ẋ1 = a sin(x2)
ẋ2 = −x21 + u

Can not cancel a sin(x2). Introduce

z1 = x1
z2 = a sin x2

so that

ż1 = z2
ż2 = (−z21 + u)a cos x2

Then feedback linearization is (locally) possible by

u = z21 + v/(a cos(z2))

Feedback linearization (“nonlinear version of pole-zero

cancellation”)

Feedback linearization can be interpreted as a nonlinear

version of pole-zero cancellations which can not be used if the

zero-dynamics are unstable, i. e., for nonminimum-phase

system.

Linear systems: See paper [Middleton (1999) Automatica 35(5), "Slow stable

open-loop poles: to cancel or not to cancel"]

When to cancel nonlinearities?

ẋ1 = −x31 + u1

ẋ2 = x32 + u2
(8)

Nonrobust and/or not necessary.

However, note the difference between tracking or regulation!!

Will see later how “optimal criteria” will give hints.

“Matching” uncertainties

ẋ1 = x2
...

ẋn−1 = xd
ẋn = Ldfh(x, z) + L�Ld−1f h(x, z)u
ż =ψ (x, z)
y = x1

(9)

Integrator chain and nonlinearities (+ zero-dynamics)

Note that uncertainties due to parameters etc. are

“collected in”

Ldfh(x, z) + L�Ld−1f h(x, z)u

Achieving passivity by feedback ( Feedback passivation )

Need to have

◮ relative degree one

◮ weakly minimum phase

NOTE! (Nonlinear) relative degree and zero-dynamics invariant

under feedback!

Two major challenges:

◮ avoid non-robust cancellations

◮ make it constructive by finding matching input-output pairs

Exact Linearization

◮ Often useful in simple cases

◮ Important intuition may be lost

◮ Nonlinear version of "pole-zero cancellations"

◮ Related to “Lie brackets” and “flatness”
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From analysis to synthesis

Lyapunov criterion Search for (V ,u) such that

�V
�x [ f + �u] < 0

IQC criterion Search for Q(s) and τ1, . . . ,τm such that

»

[T1 + T2QT3](iω )
I

–∗
"

X

k

τ kΠk(iω )
#

»

[T1 + T2QT3](iω )
I

–

< 0

for ω ∈ [0,∞]

In both cases, the problem is non-convex and hard.

Heuristic idea: Iterate between the arguments

Convexity for state feedback

Problem Suppose α ≤ φ(v)/v ≤ β . Given the system

ẋ = fu(x) := Ax + Eφ(Fx) + Bu

find u = −Lx and V (x) = xTPx such that
�V
�x fu(x) < 0

Solution Solve for P, L

(A+α EF − BL)TP+ P(A +α EF − BL) < 0
(A+ βEF − BL)TP + P(A+ βEF − BL) < 0

or equivalently convex in (Q, K ) = (P−1, LP−1)

(AQ +α EFQ − BK )T + (AQ +α EFQ − BK ) < 0
(AQ + βEFQ − BK )T + (AQ + βEFQ − BK ) < 0

Control Lyapunov Function (CLF)

A positive definite radially unbounded C1 function V is called a

CLF for the system ẋ = f (x,u) if for each x ,= 0, there exists u

such that

�V
�x (x) f (x,u) < 0 (Notation: L fV (x) < 0)

When f (x,u) = f (x) + �(x)u, V is a CLF if and only if

L fV (x) < 0 for all x ,= 0 such that pL�V (x)p = 0

Example

Check if V (x, y) = [x2 + (y+ x2)2]2/2 is a CLF for the system

{

ẋ = xy
ẏ = −y+ u

L fV (x, y) = x2y+ (y+ x2)(−y+ 2x2y)
L�V (x, y) = 2(y+ x2)[x2 + (y+ x2)2]

L�V (x, y) = 0 [ y = −x2 [ L fV (x, y) = −x4 < 0 if (x, y)

Sontag’s formula

If V is a CLF for the system ẋ = f (x) + �(x)u, then a

continuous asymptotically stabilizing feedback is defined by

u(x) :=







0 if L�V (x) = 0
− L f V+

√
(L f V)2+((L�V)(L�V)T )2
(L�V)(L�V)T [L�V ]T if L�V (x) ,= 0

Note: Can cancel factor L�V ,= 0 if scalar.

u(x) :=







0 if L�V (x) = 0
− L f V+

√
(L f V)2+(L�V)4
L�V

(x) if L�V (x) ,= 0

Backstepping idea

Problem

Given a CLF for the system

ẋ = f (x,u)

find one for the extended system

ẋ = f (x, y)
ẏ = h(x, y) + u

Idea

Use y to control the first system. Use u for the second.

Note potential for recursivity

motivation: Feedback Linearization

One of the drawbacks with feedback linearization is that exact

cancellation of nonlinear terms may not be possible due to

e. g., parameter uncertainties.

A suggested solution:

◮ stabilization via feedback linearization around a nominal

model

◮ consider known bounds on the uncertainties to provide an

additional term for stabilization ( Lyapunov redesign )

Lyapunov Redesign

Consider the nominal system

ẋ = f (x, t) + G(x, t)u

with the known control law

u =ψ (x, t)

so that the system is uniformly asymptotically stable.

Assume that a Lyapunov function V (x, t) is known s.t.

α 1(ppxpp) ≤ V (x, t) ≤ α 2(ppxpp)
�V
�t +

�V
�x [ f (t, x) + Gψ ] ≤ −α 3(ppxpp)
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Lyapunov Redesign — cont.

Perturbed system

ẋ = f (x, t) + G(x, t)[u + δ ] (10)

disturbance δ = δ (t, x,u)

Assume the disturbance satisfies the bound

ppδ (t, x,ψ + v)pp ≤ ρ(x, t) + κ0ppvpp

If we know ρ and κ0 how do we design additional control v such

that u =ψ (x, t) + v stabilizes (??)?

The matching condition: perturbation enters at same place as

control signal u.

Apply u =ψ (x, t) + v

ẋ = f (x, t) + G(x, t)ψ + G(x, t)[v+ δ (t, x,ψ + v)] (11)

V̇ = �V
�t +

�V
�x [ f (t, x) + Gψ ] + �V�x G[v+ δ ] ≤ −α 3(ppxpp) +

�V
�x G[v+

Introduce w = [�V�x G]

V̇ ≤ −α 3(ppxpp) +wTv+wTδ

Choose v such that wTv+wTδ ≤ 0:
Two alternatives presented in Khalil (pp ⋅ pp2-norm / pp ⋅ pp∞-norm)

Note: v appears at same place as δ due to the matching

condition

Lyapunov Redesign — cont.

wTv+wTδ ≤ wTv+ ppwT pp2ppδ pp2
wTv+wTδ ≤ wTv+ ppwT pp1ppδ pp∞

Alternative 1:

If

ppδ (t, x,ψ + v)pp2 ≤ ρ(x, t) + κ0ppvpp2, 0 ≤ κ0 < 1

take

v = −η(t, x) wppwpp2
where η ≥ ρ/(1 −κ0)

Alternative 2:

If

ppδ (t, x,ψ + v)pp∞ ≤ ρ(x, t) + κ0ppvpp∞, 0 ≤ κ0 < 1
take

v = −η(t, x) sgnw
where η ≥ ρ/(1 −κ0)
Restriction on κ0 < 1 but not on growth of ρ.

Alt 1 and alt 2 coincide for single-input systems.

Note: control laws are discontinues fcn of x (risk of chattering)

Example: Matched uncertainty

u
+

$

x

∆

∫

ϕ(⋅)

ẋ = u+ϕ(x)∆(t)

Example cont.

Example:

Exponentially decaying disturbance ∆(t) = ∆(0)e−kt

linear feedback u = −cx, c > 0
ϕ(x) = x2

ẋ = −cx + ∆(0)e−ktx2

Similar to peaking problem in the first lecture: Finite

escape of solution to infinity if ∆(0)x(0) > c+ k

We want to guarantee that x(t) stay bounded for all initial values

x(0) and all bounded disturbances ∆(t)

Nonlinear damping

Modify the control law in the previous example as:

u = −cx − s(x)x

where

−s(x)x
will be denoted nonlinear damping.

Use the Lyapunov function candidate V = x
2

2

V̇ = xu+ xϕ(x)∆
= −cx2 − x2s(x) + xϕ(x)∆

How to proceed?

Choose

s(x) = κϕ2(x)
to complete the squares!

V̇ = −cx2 − x2s(x) + xϕ(x)∆

= −cx2 − κ

[

xϕ − ∆

2κ

]2

+κ ⋅
∆2

4κ 2
≤ −cx2+∆2

4κ

Note! V̇ is negative whenever

px(t)p ≥ ∆

2
√

κ c



5

Can show that x(t) converges to the set

R =
{

x : px(t)p ≤ ∆

2
√

κ c

}

i. e., x(t) stays bounded for all bounded disturbances ∆

Remark: The nonlinear damping −κ xϕ2(x) renders the system

Input-To-State Stable (ISS) with respect to the disturbance.

Young’s inequality

Let p > 1, q> 1 s.t. (p− 1)(q− 1) = 1,
then for all ǫ > 0 and all (x, y) ∈ pR2

xy< ǫ
p

p
pxpp + 1

qǫq
pypq

Standard case: (p = q= 2, ǫ2/2 = κ )

xy< κ pxp2 + 1

4κ
pyp2

Our example:

xϕ(x)∆(t) < κ x2ϕ2(x) + ∆2(t)
4κ

Backstepping idea

Problem

Given a CLF for the system

ẋ = f (x,u)

find one for the extended system

ẋ = f (x, y)
ẏ = h(x, y) + u

Idea

Use y to control the first system. Use u for the second.

Note: potential for recursivity

Backstepping

Let Vx be a CLF for the system ẋ = f (x) + �(x)ȳ with

corresponding asymptotically stabilizing control law ȳ = φ(x).
Then V (x, y) = Vx(x) + [y− φ(x)]2/2 is a CLF for the system’

ẋ = f (x) + �(x)y
ẏ = h(x, y) + u

with corresponding control law

u = �φ
�x [ f (x) + �(x)y] −

�Vx
�x �(x) − h(x, y) + φ(x) − y

Proof.

V̇ = (�Vx/�x)( f + �y) + (y− φ) [h+ u− (�φ/�x) ⋅ ( f + �y)]
= (�Vx/�x)( f + �φ) + (y− φ)[(�Vx/�x)� − (�φ/�x) ⋅ ( f + �y) + h
= (�Vx/�x)( f + �φ) − (y− φ)2 < 0

Backstepping Example

For the system

{

ẋ = x2 + y
ẏ = u

we can choose Vx(x) = x2 and φ(x) = −x2 − x to get the

control law

u = φ ′(x) f (x, y) − h(x, y) + φ(x) − y
= −(2x + 1)(x2 + y) − x2 − x − y

with Lyapunov function

V (x, y) = Vx(x) + [y− φ(x)]2/2
= x2 + (y+ x2 + x)2/2

Example again (step by step)

{
ẋ1 = x12 + x2
ẋ2 = u(x)

(12)

Find u(x) which stabilizes (??).

Idea : Try first to stabilize the x1-system with x2 and then

stabilize the whole system with u.

We know that if x2 = −x1 − x21
then x1 → 0 asymptotically ( exponentially )

as t→∞.

We can’t expect to realize x2 = α (x1) exactly, but we can

always try to get

the error → 0.
Introduce the error states

{

z1 = x1
z2 = x2 −α 1(x1)

(13)

where α 1(x1) = −x1 − x21

[ ż1 = ẋ1 = z21 +
x2

︷ ︸︸ ︷

z2 +α 1(z1) =
= z21 + z2 − z21 − z1 = −z1 + z2

ż2 = ẋ2 − α̇ 1 = u(x) −
known
︷︸︸︷

α̇ 1

α̇ 1 = d

dt
(−z21 − z1) = −z1 ż1 − ż1

= −z1(−z1 + z2) − (−z1 + z2) =
= z21 − z1z2 − z2 − z1

Start with a Lyapunov for the first subsystem (z1-dynamics):

V1 = 1

2
z21 ≥ 0

V̇1 = z1 ż1 = −z21 + z1z2

Note :

If z2 = 0 we would achieve V1 = −z21 ≤ 0
with α 1(x1)
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Now look at the augmented Lyapunov fcn for the error system

V2 = V1 +
1

2
z22 ≥ 0

V̇2 = V̇1 + z2 ż2 =
= −z21 + z1z2 + z2(u − z21 + z1z2)
= −z21 + z2 (u− z21 + z1z2 + z2 + z1)

︸ ︷︷ ︸

choose = −z2

= −z21 − z22 ≤ 0

so if u = z21 − z1z2 − z2 − z1
[ (z1, z2) → 0 asymptotically (exponentially)

[ (x1, x2) → 0 asymptotically

As z1 = x1 and z2 = x2 −α 1 = x2 + x21 + x1 ,

we can express u as a ( nonlinear ) state feedback function of

x1 and x2.

Backward propagation of desired control signal

ts

u
+

x1

x2
∫∫

f (⋅)

If we could use x2 as control signal, we would like to assign it to

α (x1) to stabilize the x1-dynamics.

u
+ +

x2

f +α
−α

x1∫ ∫

Move the control “backwards” through the integrator

u
+ +

f +α
−dα /dt

x1

z2= x2 −α

∫ ∫

Note the change of coordinates!

Adaptive Backstepping

System :







ẋ1 = x2 + θγ (x1)
ẋ2 = x3
ẋ3 = u(t)

(14)

where γ is a known function of x1 and

θ is an unknown parameter

Introduce new (error) coordinates

{

z1(t) = x1(t)
z2(t) = x2(t) −α 1(z1, θ̂ )

(15)

where α 1 is used as a control to stabilize the z1- system w.r.t

a certain Lyapunov-function.

Lyapunov function : V1 = 1
2
z1
2 + 1

2
θ̃ 2 where θ̃ = (θ̂ − θ ) is the

parameter error

(Back-) Step 1:

ż1(t) =
x2

︷ ︸︸ ︷

z2(t) +α 1(z1, θ̂ )+θγ (z1(t))

V̇1 = z1 ż1 + θ̃ ˙̂θ = z1(z2 +α 1 + θγ ) + θ̃ ˙̂θ =
= z1[ z2 +α 1 + θ̂γ

︸ ︷︷ ︸

−z1

] + θ̃ ( ˙̂θ − z1γ
︸︷︷︸

τ1

)

Choose α 1 = −z1 − θ̂γ

[ V̇1 = −z21 + z1z2 + θ̃ ( ˙̂θ − τ1)

Note: If we used ˙̂θ = τ1 as update law

and if z2 = 0 then V̇1 = −z21 ≤ 0
Step 2: Introduce z3 = x3 −α 2(z1, z2, θ̂ ) and

use α 2 as control to stabilize the (z1, z2)-system

Augmented Lyapunov function :

V2 = V1 +
1

2
z2
2

ż2 = ẋ2 − α̇ 1 =

=
x3

︷ ︸︸ ︷

z3 +α 2−
�α 1
�z1

(x2 + θγ ) − �α 1
�θ̂
˙̂θ

V̇2 = V̇1 + z2 ż2 = . . . =

= −z21 + z2[ z3 +α 2 + z1 +
�α 1
�z1

(z1 − z2) −
�α 1
�θ̂
˙̂θ

︸ ︷︷ ︸

−z2

] +

+ θ̃ [ ˙̂θ − (τ1 + z2
�α 1
�z1

γ )
︸ ︷︷ ︸

τ2

]

Choose α 2 = −z2 − z1 − �α 1
�z1 (z1 − z2) +

�α 1
�θ̂

W
τ2

Note : If z3 = 0 and we used ˙̂θ = τ2 as update law we would get

V̇2 = −z21 − z22 ≤ 0

Resulting subsystem

[
ż1
ż2

]

=
[
−1 1

−1 −1

]

︸ ︷︷ ︸

Hurwitz

[
z1
z2

]

+
[

−γ
�α 1
�z1 γ

]

θ̃ +
[

0

z3 − �α 1
�θ̂
( ˙̂θ − τ2)

]

τ2 =
[

γ −�α 1
�x1 γ

] [
z1
z2

]

V̇2 = −z21 − z22 + z3z2 + θ̃ ( ˙̂θ − τ2) − z2 �α 1
�θ̂
( ˙̂θ − τ2)

Step 3 :

ż3 = ẋ3 − α̇ 2

= u− �α 2�z1
ż1 −

�α 2
�z2
ż2 −

�α 2
�θ̂
˙̂θ = . . . =

= puh...
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We now want to choose u = u(z1, z2, θ̂ ) such that the whole

system will be stabilized w.r.t V3
Just to simplify the expressions, introduce u, and choose

u = −z2 − z3 +
�α 2
�z1

(z2 +α 2 + θ̂γ ) + �α 2�z2
x3 +

�α 2
�θ̂
˙̂θ + u

u = ?

Augmented Lyapunov function :

V3 = V2 +
1

2
z3
2 = 1
2
q z q2 + 1

2
θ̃ 2

V̇3 = −z21 − z22 − z23 + z3u+ θ̃ [ ˙̂θ − (τ2 − z3
�α 2
�z1

γ
︸ ︷︷ ︸

τ3

)]

− z2
�α 1
�θ̂
( ˙̂θ − τ2)

[ ˙̂θ = (τ3) = τ2 − z3 �α 2
�z1 γ

We are almost there :

ż =





−1 1 0

−1 −1 1

0 −1 −1



 z+






−γ
�α 1
�z1 γ
�α 2
�z1 γ




 θ̃ +






0
�α 1
�θ̂
(τ2 − ˙̂θ )
u






˙̂θ =
[

γ −�α 1
�z1 γ −�α 2

�z1 γ
]





z1
z2
z3





V̇3 = −q z q2 + z3u+ z2 �α 1
�θ̂
(τ2 − ˙̂θ )

Crucial :
�α 1
�θ̂
(τ2 − ˙̂θ ) = z3

�α 1
�θ̂

�α 2
�z1

γ
︸ ︷︷ ︸

known
def=σ

ż =





−1 1 0

−1 −1 1+σ
0 −1 −1



 z+





0

0

u



+






−γ
�α 1
�z1 γ
�α 2
�z1 γ




 θ̃

V̇3 = −q z q2 + z3(u+ z2σ )

Choose u = −z2σ
Finally :

V̇3 = −q z q2 [ GS of z = 0, θ̂ = θ and x→ 0 ( by La Salle’s

Theorem )

Closed-loop system :

ż =





−1 1 0

−1 −1 1+σ
0 −1−σ −1





︸ ︷︷ ︸

skew−symmetric − I

z+






−γ
�α 1
�z1 γ
�α 2
�z1 γ




 θ̃

−τ3 =
[

γ −�α 1
�z1 γ −�α 2

�z1 γ
]

z

Observer backstepping

Observer backstepping is based on the following steps:

1. A (nonlinear) observer is designed which provides

(exponentially) convergent estimates.

2. Backstepping is applied to a system where the states have

been replaces by their estimates.

The observation errors are regarded as (bounded)

disturbances and handled by nonlinear damping.

Backstepping applies to systems in strict-feedback form

ẋ1 = f1(x1) + x2
ẋ2 = f2(x1, x2) + x3

...

ẋn = fn(x1, x2, . . . xn−1, xn) + u

Compare with

Strict-feedforward systems

ẋ1 = x2 + f1(x2, x3, . . . , xn,u)
ẋ2 = x3 + f2(x3, . . . , xn,u)

...

ẋn−1 = xn + fn−1(xn,u)
ẋn = u


