Nonlinear Control and Servo Systems

Lecture 2

e Lyapunov theory contd.

e Storage function and dissipation

o Absolute stability

e The Kalman-Yakubovich-Popov lemma
e Circle Criterion

e Popov Criterion




Krasovskii’s method

Consider
x=f(x), f(0)=0, f(x)#0,Vx#0

and
_of
T Ox

{AzaT<o] vrro

thenuse V = f(x)T f(x) > 0, Vx # 0,

A

V=TT
=fT{A+AT}f<O, Vi # 0

See more general case in [Khalil, Exercise 4.10 ]



Invariant Sets

Definition A set M is called invariant if for the system
x = f(x),
x(0) € M implies that x(¢) € M for all ¢ > 0.




Invariant Set Theorem

Theorem Let Q € R” be a bounded and closed set that is
invariant with respect to

T =K
Let V : R* — R be a radially unbounded C! function such that
V(x) < 0forx € Q. Let E be the set of points in Q where
V(x) = 0. If M is the largest invariant set in E, then every

solution with x(0) € Q approaches M as t — oo (see proof in
textbook)

V(x)

X

=4

Common use is to try to show that the origin is the larges invariant set of E, (M = {0}).




Example — saturated control

Exercise - 5 min (revisited)

Find a bounded control signal © = sat(v), which globally
stabilizes the system

561 = X1X2
Xo=u (1)

u = sat (v(x1,x2))

Hint: Use the Lyapunov function candidate
Vo = In(1 + x%) + ax?

for some appropriate value of .



Vo = In(1 + x%) + ax3/2
- xlxl

Vo=2 + 20x0%
S > £«
2
= 2x9 L 5 tasat(v)
gl
———
0<<1

2
X1

Can use some part to cancel and some to add bounded

1+a?
negative damping in xo (like sigllz(xg) or sat(xg) or ...)




With this type of control law, we end up with
V =—q(x2) <0

for some q(-) which only depends on the state x,.

E = {x|q(x) =0}, i.e., E is the line xg = 0.

Can solutions stay on that line?

x9 = 0 only for also x; = 0 (insert control law and check) so the
solution curves will not stay on the line xo = 0 except for the
origin. Thus, the origin is the larges invariant set and
asymptotic stability follows from the invariant set theorem.




Invariant sets - nonautonomous systems

Problems with invariant sets for nonautonomous systems.

V= % + — i f(t,x) depends both on ¢ and x.




Barbalat’s Lemma - nonautonomous systems

Let ¢ : R — IR be a uniformly continuous function on [0, co).

Suppose that
t

lim / #(r)dr

t—00 0

exists and is finite. Then

#(t) =0 as t - o0




Barbalat’s Lemma - nonautonomous systems

Let ¢ : R — IR be a uniformly continuous function on [0, co).

Suppose that
t
lim / #(r)dr
t—00 0

exists and is finite. Then

#(t) =0 as t - o0

Common tool in adaptive control.

@ V(t,x) is lower bounded
o V(t,x) <0
@ V(¢,x) uniformly cont. in time

then V (¢,x) — 0 as t — oo



Remark: In many adaptive control cases we have a Lyapunov
function candidate depending on states and parameter errors,
while the time-derivative of the candidate function only depends

on the states.




Nonautonomous systems —-contd
[Khalil, Theorem 4.8 & 4.9]

Assume there exists V (¢, x) such that

Wilx) < V(t,x) < Wy(x)

— —
positive definite decrecent
: av. oV
< —
Vit x) = o S v o f(t,x) < —Ws(x)

W3 is a continuous positive semi-definite function.

Solutions to x = f(¢, x) starting in x(¢o) € {x € B,|...} are
bounded and satisfy

Ws(x(¢)) > 0 ¢ — o0

See example in Khalil.



An instability result - Chetaev’s Theorem

Idea: show that a solution arbitrarily close to the origin have to
leave.

Let f(0) =0andlet V: D — R be a continuously differentiable
function on a neighborhood D of x = 0, such that V(0) = 0.
Suppose that the set

U = {xeD: |x|]|<r,V(x)>0}

is nonempty forevery r > 0. If V> 0in U,thenx =0 is
unstable.




Exercise - 5 min [Slotine]
Consider the system
X1 = x% + xg

X9 = —X9 +x?

Use Chetaev’s theorem to show that the origin is an unstable
equilibrium point.

You may consider
V =2 —x2/2

for a certain region.



Dissipativity

Consider a nonlinear system

{x(t) > f(x(t)’u(t)’t), t>0
y(t) = h(x(t),u(t),?)

and a locally integrable function
r(t) = ru(?),y(?),t).

The system is said to be dissipative with respect to the supply
rate r if there exists a storage function S(t, x) such that for all
to, t1 and inputs u on [tg, #1]

S(to,x(to))+/tt1r(t)dt > S(t,x(t1)) > 0



Example—Capacitor

A capacitor

/ du
l—Ca

is dissipative with respect to the supply rate r(¢) = i(¢)u(?).

A storage function is

In fact




Example—Inductance

An inductance

=L —
“Eta

is dissipative with respect to the supply rate r(¢) = i(¢)u(z).

A storage function is

\ Li?
S(l) = 7

In fact

i 2 t1 i 2
% +/t0 i(t)u(t)dt = %



Memoryless Nonlinearity

The memoryless nonlinearity w = ¢(v, t) with sector condition
a<¢@t)v<p, VE=0,v#0

is dissipative with respect to the quadratic supply rate
r(t) = —w)—av(®)]w(t) — Bo(t)]

with storage function

S(,x) = 0




Linear System Dissipativity

The linear system
%(t) = Ax(t)+ Bu(t), t>0

is dissipative with respect to the supply rate

X {f X
A e
u u
and storage function x” Px if and only if

>0

T
M+[A P+ PA PB]_

BTpP 0



Storage function as Lyapunov function

For a system without input, suppose that
r(y) < —klx|°

for some k& > 0. Then the dissipation inequality implies

S(to.x(to)) — [ Elx(®)Fde > S(ty, x(21))

to

which is an integrated form of the Lyapunov inequality

d
3 = ®
= S(t,x(t) < —klal



Interconnection of dissipative systems

If the two systems
%1 = fi(x1,u1) %o = fa(xa,us)

are dissipative with supply rates rq(u1,x1) and rg(ug, x2) and
storage functions S(x1), S(x2), then their interconnection

{xl = f1(x1,ha(x2))
%9 = fo(x2,h1(x1))

is dissipative with respect to every supply rate of the form
717r1(he(%2), x1) + Tare(h1(x1), x2) 71,72 > 0
The corresponding supply rate is

7181 (xl) + T2S2(x2)



Global Sector Condition

Py

Let w(¢,y) € R be piecewise continuous in ¢ € [0, c0) and
locally Lipschitz in y € R.

Assume that v satisfies the global sector condition

a<y(ty)/y<pB, Vt>0,y#0 (2)



Absolute Stability

y

(*)—-E(4,B,C)

_l//(t7 )

The system

y = Cx (3)

{x = Ax+Bu, t>0

with sector condition (2) is called absolutely stable if the origin
is globally uniformly asymptotically stable for any nonlinearity v
satisfying (2).




The Circle Criterion

/>

The system (3) with sector condition (2) is absolutely stable if
the origin is asymptotically stable for v (¢,y) = oy and the
Nyquist plot

C(jol —A)'B+D, weR

does not intersect the closed disc with diameter [-1/c,—1/p].




Loop Transformation

y

O 66 O 6 y
Y K
==l
y
a+p

Common choices: K = o or K = =




Special Case: Positivity

Let M (jw) = C(jwI — A)~'B + D, where A is Hurwitz. The
system

y Cx + Du

{x = Ax+Bu, t>0

with sector condition
y(ty)y =2 0 Vt>0,y#0
is absolutely stable if
M(jo)+ M(jo)" >0, Vo € [0,00)

Note: For SISO systems this means that the Nyquist curve lies
strictly in the right half plane.



xTPx, P=PT >0

2xT Px
2x"P[A B x}<2TPAB[x} 2
Pla B)| % | <2TP(a B)| %] +am

il ] kel e

By the Kalman-Yakubovich-Popov Lemma, the inequality
M (jw) + M (jw)* > 0 guarantees that P can be chosen to
make the upper bound for V strictly negative for all

(x,¥) # (0,0).
Stability by Lyapunov’s theorem.



The Kalman-Yakubovich-Popov Lemma

@ Exists in numerous versions

@ |dea: Frequency dependence is replaced by matrix
equations/inequalities or vice versa




The Kalman-Yakubovich-Popov Lemma

@ Exists in numerous versions

@ |dea: Frequency dependence is replaced by matrix
equations/inequalities or vice versa '

"Yakubovich in Lund: —"Yesterday, UIf told me that nowadays we mostly
use it the other way round!”



The K-Y-P Lemma, version |

Let M (jw) = C(jwI — A)~'B + D, where A is Hurwitz. Then
the following statements are equivalent.

(i) M(ow)+M(jo) >0forallm e [0,00)

(i) 3P = PT > 0 such that

o 7fe 2] +[e 5] & <




Compare Khalil (5.10-12):
M is strictly positive real if and only if 3P, W, L, ¢ :

PA+ATP PB-CT| _ [eP+LTL LW
BTP—C D+DT ]| wiL  w'w

Mini-version a la [ Slotine& Li ]:
x = Ax + bu, A Hurwitz, (i.e., Re{1;(A) < 0}]
y=cx
The following statements are equivalent
@ Re{c(jowI — A)~1b} > 0,Vw € [0,0)
@ Thereexist P=PT > 0and @ = QT > 0 such that
ATP4+PA=-Q
Pb ="



The K-Y-P Lemma, version |l

For

3] [E]ex-arn-me[5].

with sA — A nonsingular for some s € C, the following two
statements are equivalent.




The K-Y-P Lemma, version Il - cont.

() ®(jo) ®(jo)+ P(jo)* ®(jo) <0foralw e R
with det(jwA — A) # 0.

(i) There exists a nonzero pair (p, P) € R x R"*"
such that p > 0, P = P* and

A B1'[P o A B
C D 0 pI C D
ABl'[P o1[A B
V6 D [o pIHCD]SO

The corresponding equivalence for strict inequalities holds with
p=1



Some Notation Helps

Introduce
M=[A B], M= 0],
N=[C D], N=[o I
Then
y = [C(joI—A)"'B+Dlu
if and only if

for some w € C"*t™ satisfying Mw = joMuw.



Given y,z € C", there exists an w € [0, c0) such that y = jwz, if
and only if yz* + zy* = 0.

Proof Necessity is obvious. For sufficiency, assume that
yz* +zy* = 0. Then

'y +2) =~ (y—2) = 20 (yz" +2y")v =0.

Hence y = Az for some 4 € C U {oo}. The equality
yz* 4+ zy* = 0 gives that A is purely imaginary.




Proof of the K-Y-P Lemma

See handout (Rantzer)




(i) and (ii) can be connected by the following sequence of
equivalent statements.

(a) w*(ﬁ*N + N*]V)w < 0 for w # 0 satisfying

Muw = joMw with € R.
(b) ® NP =, where

e =
{(w*(ﬁ*N+N*K/)w, Muww*M* +Mww*ﬁ*) :
w'w = 1}

P={(r,0): r>0}

(c) (conv@®)NP=0.

(d) There exists a hyperplane in R x R"*" separating
® from P, i.e. AP such that Vw # 0

0 > w (N*N +N*N + M*PM + M*PM) w



Time-invariant Nonlinearity

Let w(y) € R be locally Lipschitzin y € R.

Assume that v satisfies the global sector condition

a<y(y)/y<B, Vt>0,y#0



The Popov Criterion

Suppose that y : R — R is Lipschitz and 0 < yw(v)/v < B. Let
G(iw) = C(iwI — A)~!B with A Hurwitz and (A,B,C) minimal.
If there exists n € R such that

Re[(1 + ion)G(io)] > —% weR ()

then the differential equation x(¢) = Ax(t) — By (Cx(2)) is
exponentially stable.




Popov proof |

Set

Cx
V(x) = xTPx+2npB v(o)do
0

where P is an n x n positive definite matrix. Then
V = 2(TP+nkyC)x

= 2(x"P+nByC)[A B [—xy/}

< 2("P+npyC)[A B] [_xw} — 2y (y — By)
= 2B v [—ﬁCff}wCA -1 —PfﬁCB} [—xw]

By the K-Y-P Lemma there is a P that makes the upper bound
for V strictly negative for all (x,y) # (0,0).



Popov proof Il

Forn >0, V > 0 is obvious for x # 0.

Stability for linear v gives V.— 0 and V < 0, so V must be
positive also for n < 0.

Stability for nonlinear w from Lyapunov’s theorem.




The Kalman-Yakubovich-Popov lemma - lli

Given A € R™", B € RV, M = MT ¢ R(»+m)x(n+m) with
ioI — A nonsingular for ® € R and (A, B) controllable, the
following two statements are equivalent.

(2)

[ (iol —A)"'B }M [ (ioI — A)~'B

7 7 ]SOVwE

(z1) There exists a matrix P € R"*" such that P = P*
and

T
M+[AP+PA PB} < 0

BTP 0



Proof techniques

(z2) = (i) simple

T A1
Multiply from right and left by [ VA ¢ ]

I

(i) = (if) difficult

@ Spectral factorization (Anderson)
@ Linear quadratic optimization (Yakubovich)
@ Find (1, P) as separating hyperplane between the sets

{ ([i} D m x(Ax + Bu)* + (Ax + Bu)x*> ) € Cnm}
{(r,0):r >0}






