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Nonlinear Control Theory 2006

Lecture 1++, 2006

• Nonlinear Phenomena and Stability theory

◮ Nonlinear phenomena [Khalil Ch 3.1]
◮ existence and uniqueness
◮ finite escape time
◮ peaking

◮ Linear system theory revisited
◮ Second order systems [Khalil Ch 2.4, 2.6]

◮ periodic solutions / limit cycles
◮ Stability theory [Khalil Ch. 4]

◮ Lyapunov Theory revisited
◮ exponential stability
◮ quadratic stability
◮ time-varying systems
◮ invariant sets
◮ center manifold theorem

Existence problems of solutions

Example: The differential equation

dx

dt
= x2, x(0) = x0

has the solution

x(t) = x0

1− x0t
, 0 ≤ t < 1

x0

Finite escape time

t f =
1

x0

Finite Escape Time
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Finite escape time of dx/dt = x2

Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:

x(t) =
{

(t− C)2/4 t > C
0 t ≤ C
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Compare with water tank:

Previous problem is like the water-tank problem in backward
time

(Substitute τ = −t in differential equation).

dh/dt = −a
√
h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)

Existence and Uniqueness

Theorem

Let ΩR denote the ball

ΩR = {z; qz− aq ≤ R}

If f is Lipschitz-continuous:

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Ω

then ẋ(t) = f (x(t)), x(0) = a has a unique solution in

0 ≤ t < R/CR,

where CR = maxΩR q f (x)q

see [Khalil Ch. 3]

The peaking phenomenon

Example: Controlled linear system with right-half plane zero

Feedback can change location of poles but not location of zero
(unstable pole-zero cancellation not allowed).

Gcl(s) =
(−s+ 1)ω 2o
s2 + 2ω os+ω 2o

(1)

A step response will reveal a transient which grows in amplitude
for faster closed loop poles s = −ω o, see Figure on next slide.



2

The peaking phenomenon –cont.
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Step responses for the system in Eq. (1), ω o = 1, 2, and 5.
Faster poles gives shorter settling times, but the transients

grow significantly in amplitude, so called peaking.

The peaking phenomenon – cont.

Note!

◮ Linear case: Performance may be severely deteriorated by
peaking, but stability still guaranteed.

◮ Nonlinear case: Instability and even finite escape time
solutions may occur.

What bandwidth constraints does a non-minimum zero impose
for linear systems? See e. g., [2, 1, 3]

The peaking phenomenon – cont.

We will come back to the peaking phenomenon for

◮ cascaded systems [Kokotovic & Sussman ’91]
◮ "exact linearization"
◮ observers [observer backstepping]

Consider the linear system with relative degree r

G(s) = K ⋅
b0 + b1s+ b2s2 + ⋅ ⋅ ⋅+ sn−r
a0 + a1s+ a2s2 + ⋅ ⋅ ⋅+ sn

(Note: numbering has different notation than "standard" AK)

and a minimal realization

ẋ = Ax + Bu
y = Cx

with

(

A1 B1
C1 D1

)

=













0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 1 0

−a0 −a1 −a2 . . . −an−1 K

b0 . . . bn−r−1 1 . . . 0 0













Introduce the coordinate transformation:

z1 = y = Cx = b0x1 + b1x2 + ⋅ ⋅ ⋅+ xn−r+1
z2 = ẏ = CAx = b0x2 + b1x3 + ⋅ ⋅ ⋅+ xn−r+2
zr = y(r−1) = CAr−1x = b0xr + b1xr+1 + ⋅ ⋅ ⋅+ xn

+ freedom to introduce additional (n− r) states.

Simplest is to take

zr+1 = x1
zr+2 = x2
. . .

zn = xn−r

(Check that this is a valid coordinate change!))

Ends up with

ż1 = z2
ż2 = z3
. . .

żr−1 = zr
żr = Rζ + Sη + Ku
η̇ = Pζ + Qη

y = z1

where

ζ =
(

z1 z2 . . . zr
)T
, η =

(

zr+1 . . . zn
)T
,

The zero dynamics: “Remaining dynamics when you choose
control input to keep output y " 0 =[

η̇ = Qη

Exercise (HW): Show that

Q =















0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

−b0 −b1 −b2 . . . −bn−r−1















Example: LTV-system

Consider the linear time-varying (LTV) system

ẋ = −x + u
u = ure f − (2+ sin(t)) ⋅ x

0

ref

1

s+1

Transfer Fcn
(with initial states)

Sine Wave1

Scope1

Product1

2

Constant3

What happens when

◮ ure f = 0 ?
◮ ure f = 1 ?

(equilibrium, stability, etc.)
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Time-varying vs. autonomous systems

Example:

Transfer from first order time-varying system to second-order
autonomous system by introducing the states

x1 = x, x2 = t (i.e. time)

ẋ1 = −x1 + ure f − (2+ sin(x2)) ⋅ x1

ẋ2 = 1

Periodic Solutions: x(t + T) = x(t)

Example of an asymptotically stable periodic solution:

ẋ1 = x1 − x2 − x1(x21 + x22)
ẋ2 = x1 + x2 − x2(x21 + x22)

(2)

Periodic solution: Polar coordinates.

Let
x1 = r cosθ [ dx1 = cosθdr − r sinθdθ

x2 = r sinθ [ dx2 = sinθdr + r cosθdθ

[
(

ṙ

θ̇

)

= 1
r

(

r cosθ r sinθ
− sinθ cosθ

) (

ẋ1
ẋ2

)

Now
ẋ1 = r(1− r2) cosθ − r sinθ

ẋ2 = r(1− r2) sinθ + r cosθ

which gives
ṙ = r(1− r2)
θ̇ = 1

Only r = 1 is a stable equilibrium!

A system has a periodic solution if for some T > 0

x(t+ T) = x(t), ∀t ≥ 0

Note that a constant value for x(t) by convention not is regarded
as periodic.

◮ When does a periodic solution exist?
◮ When is it locally (asymptotically) stable? When is it

globally asymptotically stable?

2nd order systems - existence of periodic cycles

Poincaré-Bendixson Criterion

ẋ = f (x) (3)

Consider the system (3) and let M be a closed bounded subset
of the plane s.t.

(i) M contains no equilibrium, or only one equilibrium such
that the eigenvalues of the Jacobian [� f�x ]x=xo has ∈ RHP
(unstable node or unstable focus)

(ii) Every trajectory starting in M stays in M for all future time

Then, M contains a periodic orbit of (3)

Note: no uniqueness.

Checking condition (ii).
Find V (x) s.t.

V (x) = c2
W(x) = c1

f (x) ⋅∇V (x) = �V
�x1

(x) ⋅ f1(x) +
�V
�x2

(x) ⋅ f2(x) < 0

on V (x) = c2 (vector field pointing inwards, solutions can’t
escape outside...)

Exclude vicinity of unstable focus by finding region W(x) = c1
s.t.

f (x) ⋅∇W > 0

Remark: V,W s.t. "larger values of level sets outwards".

Geometric interpretation

x(t)
f (x)

V (x)=constant

�V
�x

Vector field points inwards (scalar product negative , angle > 90
deg)

Trajectories can only go to lower value of V (x)
In Lyapunov theory we want this to hold for all level sets, here
only necessary for one level set.

Bendixson Criterion

If, on a simple connected region D of the plane, the expression

� f1
�x1

+ � f2�x2

◮ is not identically zero
◮ does not change sign

then the system (3) has no periodic orbits lying entirely in D.



4

Bendixson Criterion — cont’d

Proof (sketch): On any closed orbit γ we have

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2) [ dx2/dx1 = f2/ f1

and
∫

γ
f2(x1, x2)dx1 − f1(x1, x2)dx2 = 0

Green’s theorem gives
∫ ∫

S

(� f1�x1
+ � f2�x2

)dx1dx2 = 0 (4)

where S is the interior area of the closed orbit γ

Now, if the expression is sign definite (> 0 or < 0) on D then
we can NOT find any area S such that Eq. (4) holds.

Poincare index

Useful for existence of limit cycles:

Poincare index:

◮ The index of a node, a focus or a center is +1
◮ The index of a saddle point is −1
◮ The index of a closed orbit is +1
◮ The index of a closed curve not encirling any equilibrium is
0

◮ The index of a closed curve equals the sum of indices of
the equilibria inside it

Equilibrium Points for Linear Systems

Re λ

Im λ

x1

x2
nodenode saddle

f ocusf ocus center

Poincare index, cont’d

Corollary: Inside any periodic orbit γ , there must be at least
one equilibrium point.

If the equilibria are hyperbolic (i.e., Re(λ J) ,= 0), it must be that

N − S = 1

where

N=# nodes and foci,

S=# saddles.

Used to rule out existence of periodic orbits in a region

Example:[Khalil]

ẋ1 = −x1 + x1x2
ẋ2 = x1 + x2 − 2x1x2

Equilibra: {(0, 0), (1, 1)}

[� f
�x

]

x=(0,0)
=

[

−1 0
1 1

]

(saddle)
[� f
�x

]

x=(1,1)
=

[

0 1

−1 −1

]

(stable focus)

Can be limit cycle around the single focus, but not a limit cycle
around both equilibra.

Alexandr Mihailovich Lyapunov (1857–1918)

Master thesis “On the stability of ellipsoidal forms of equilibrium
of rotating fluids,” St. Petersburg University, 1884.

Doctoral thesis “The general problem of the stability of motion,”
1892.

Lyapunov formalized the idea:

If the total energy is dissipated, the system must be stable.

Main benefit: By looking at an energy-like function ( a so called
Lyapunov function), we might conclude that a system is stable
or asymptotically stable without solving the nonlinear
differential equation.
Trades the difficulty of solving the differential equation to:

“How to find a Lyapunov function?”

Many cases covered in [5]

Stability Definitions

An equilibrium point x = 0 of ẋ = f (x) is

locally stable, if for every R > 0 there exists r > 0, such that

qx(0)q < r [ qx(t)q < R, t ≥ 0

locally asymptotically stable, if locally stable and

qx(0)q < r [ lim
t→∞
x(t) = 0

globally asymptotically stable, if asymptotically stable for all
x(0) ∈ Rn.
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Lyapunov Theorem for Local Stability

Theorem Let ẋ = f (x), f (0) = 0, and 0 ∈ Ω ⊂ Rn. Assume
that V : Ω → R is a C1 function. If

◮ V (0) = 0
◮ V (x) > 0, for all x ∈ Ω, x ,= 0
◮
d
dt
V (x) ≤ 0 along all trajectories in Ω

then x = 0 is locally stable. Furthermore, if also

◮
d
dt
V (x) < 0 for all x ∈ Ω, x ,= 0

then x = 0 is locally asymptotically stable.

Proof: Read proof in [Khalil] or [Slotine].

Lyapunov Functions (( Energy Functions)

A Lyapunov function fulfills V (x0) = 0, V (x) > 0 for x ∈ Ω,
x ,= x0, and

V̇(x) = d
dt
V (x) = �V�x ẋ =

�V
�x f (x) ≤ 0

V = constant

x1

x2

V

Lyapunov Theorem for Global Stability

Theorem Let ẋ = f (x) and f (0) = 0. Assume that V : Rn → R
is a C1 function. If

◮ V (0) = 0
◮ V (x) > 0, for all x ,= 0
◮ V̇(x) < 0 for all x ,= 0
◮ V (x) → ∞ as qxq → ∞ radially unbounded

then x = 0 is globally asymptotically stable.

Note! Can be only one equilibrium.

Radial Unboundedness is Necessary

If the condition V (x) → ∞ as qxq → ∞ is not fulfilled, then
global stability cannot be guaranteed.

Example Assume V (x) = x21/(1+ x21) + x22 is a Lyapunov
function for a system. Can have qxq → ∞ even if V̇(x) < 0.

Contour plot V (x) = C:
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See [Khalil, p.123] and Exc. 4.8

Example – saturated control

Exercise - 5 min

Find a bounded control signal u = sat(v), which globally
stabilizes the system

ẋ1 = x1x2
ẋ2 = u
u = sat (v(x1, x2))

(5)

What is the problem with using the ’standard candidate’

V1 = x21/2+ x22/2 ?

Hint: Use the Lyapunov function candidate

V2 = ln(1+ x21) +α x22

for some appropriate value of α .

Lyapunov Function for Linear System

Theorem The eigenvalues λ i of A satisfy Re λ i < 0 if and only
if: for every positive definite Q = QT there exists a positive
definite P = PT such that

PA+ ATP = −Q

Proof of ∃Q, P[ Reλ i(A) < 0: Consider ẋ = Ax and the
Lyapunov function candidate V (x) = xTPx.

V̇(x) = xTPẋ+ẋTPx = xT(PA+ATP)x = −xTQx < 0, ∀x ,= 0

[ ẋ = Ax asymptotically stable Z[ Re λ i < 0
Proof of Reλ i(A) < 0[ ∃Q, P: Choose P =

∫∞
0
eA
T tQeAtdt

Linear Systems – cont.

Discrete time linear system:

x(k+ 1) = Φx(k)

The following statements are equivalent

◮ x = 0 is asymptotically stable
◮ pλ ip < 1 for all eigenvalues of Φ

◮ Given any Q = QT > 0 there exists P = PT > 0, which is
the unique solution of the (discrete Lyapunov equation)

ΦTPΦ − P = −Q

Exponential Stability

The equilibrium point x = 0 of the system ẋ = f (x) is said to be
exponentially stable if there exist c, k,γ such that for every
t ≥ t0 ≥ 0, qx(t0)q ≤ c one has

qx(t)q ≤ kqx(t0)qe−γ (t−t0)

It is globally exponentially stable if the condition holds for
arbitrary initial states.

For linear systems asymptotic stability implies global
exponential stability.
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“Comparison functions– classK ”

The following two function classes are often used as lower or
upper bounds on growth condition of Lyapunov function
candidates and their derivatives.

Definition (ClassK functions [4])

A continuous function α : [0, a) → IR+ is said to belong to class
K if it is strictly increasing and α (0) = 0. It is said to belong to
classK∞ if a = ∞ and lim

r→∞
α (r) = ∞.

Common choice is α i(ppxpp) = kippxppc, k, c > 0

“Comparison functions– classK L”

Definition (ClassKL functions [4])

A continuous function β : [0, a) $ IR+ → IR+ is said to belong to
classKL if for each fixed s the mapping β (r, s) is a classK
function with respect to r, and for each fixed r the mapping

β (r, s) is decreasing with respect to s and lim
s→∞

β (r, s) = 0. The
function β (⋅, ⋅) is said to belong to classKL∞ if for each fixed s,
β (r, s) belongs to classK∞ with respect to r.

For exponential stability β (ppxpp, t) = .... (fill in)

Lyapunov Theorem for Exponential Stability

Let V : Rn → R be a continuously differentiable function and let
ki > 0, c > 0 be numbers such that

k1pxpc ≤ V (x) ≤ k2pxpc

�V
�x f (t, x) ≤ −k3pxpc

for t ≥ 0, qxq ≤ r. Then x = 0 is exponentially stable.

If r is arbitrary, then x = 0 is globally exponentially stable.

Proof

V̇ = �V
�x f (t, x) ≤ −k3pxp

c ≤ −k3
k2
V

V (x) ≤ V (x0)e−(k3/k2)(t−t0) ≤ k2px0pce−(k3/k2)(t−t0)

px(t)p ≤
(

V

k1

)1/c
≤

(

k2

k1

)1/c
px0pe−(k3/k2)(t−t0)/c

Quadratic Stability

Given A, B,C,∆1, . . . ,∆m, suppose there exists a P > 0 such
that

0 > (A+ B∆iC)′P+ P(A + B∆iC) for all i

Then the system

ẋ = [A+ B∆(x, t)C]x

is globally exponentially stable for all functions ∆ satisfying

∆(x, t) ∈ conv{∆1, . . . ,∆m}

for all x and t

Aircraft Example

2

K1

+

+

K

-

-n z

αlim

e1

e2

α

2δ

1

q,α

δ

max

r

δ

(Branicky, 1993)

Piecewise linear system

Consider the nonlinear differential equation

ẋ =
{

A1x if x1 < 0
A2x if x1 ≥ 0

with x = (x1, x2). If the inequalities

A∗
1P + PA1 < 0

A∗
2P + PA2 < 0

P > 0

can be solved simultaneously for the matrix P, then stability is
proved by the Lyapunov function x∗Px

Matlab Session

Copy /home/kursolin/matlab/lmiinit.m to the current
directory or download and install the IQCbeta toolbox from
http://www.ee.mu.oz.au/staff/cykao/

>> lmiinit

>> A1=[-5 -4;-1 -2];

>> A2=[-2 -1; 2 -2];

>> p=symmetric(2);

>> p>0;

>> A1’*p+p*A1<0;

>> A2’*p+p*A2<0;

>> lmi_mincx_tbx

>> P=value(p)

P =

0.0749 -0.0257

-0.0257 0.1580
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Trajectory Stability Theorem

Let f be differentiable along the trajectory x̂(t) of the system

ẋ = f (x, t)

Then, under some regularity conditions on x̂(t), exponential
stability of the linear system ẋ(t) = A(t)x(t) with

A(t) = � f
�x (x̂(t), t)

implies that

px(t) − x̂(t)p

decays exponentially for all x in a neighborhood of x̂.

Time-varying systems

Note that autonomous systems only depends on (t− t0) while
solutions for non-autonomous systems may depend on t0 and t
independently.

A second order autonomous system can never have
“non-simply intersecting” trajectories ( A limit cycle can never
be a ’figure eight’ )

Stability definitions for time-varying systems

An equilibrium point x = 0 of ẋ = f (x, t) is

locally stable at t0, if for every R > 0 there exists
r = r(R, t0) > 0, such that

qx(t0)q < r [ qx(t)q < R, t ≥ t0

locally asymptotically stable at time t0, if locally stable and

qx(t0)q < r(t0) [ lim
t→∞
x(t) = 0

globally asymptotically stable, if asymptotically stable for all
x(t0) ∈ Rn.

A system is said to be uniformly stable if r can be
independently chosen with respect to t0, i. e., r = r(R).
Example of non-uniform convergence [Slotine, p.105/Khalil p.134]

Consider
ẋ = −x/(1+ t)

which has the solution

x(t) = 1+ t0
1+ t x(t0) [ px(t)p ≤ px(t0)p ∀t ≥ t0

The solution x(t) → 0, but we can not get a ’decay rate estimate’
independently of t0.

Time-varying Lyapunov Functions

Let V : Rn+1 → R be a continuously differentiable function and
let ki > 0, c > 0 be numbers such that

k1pxpc ≤ V (t, x) ≤ k2pxpc
�V
�t (t, x) +

�V
�x (t, x) f (t, x) ≤ −k3pxpc

for t ≥ 0, qxq ≤ r. Then x = 0 is exponentially stable.

If r is arbitrary, then x = 0 is globally exponentially stable.

Time-varying Linear Systems

The following conditions are equivalent

◮ The system ẋ(t) = A(t)x(t) is exponentially stable
◮ There exists a symmetric matrix function P(t) > 0 such

that

−I ≥ Ṗ(t) + A(t)′P(t) + P(t)A(t)

for all t.

Proof

Given the second condition, let V (x, t) = x′P(t)x. Then

V̇ (x) = �V�t +
�V
�x Ax = x

′(Ṗ + A′P + PA)x < −pxp2

so exponential stability follows the Lyapunov theorem.

Conversely, given exponential stability, let Φ(t, s) be the
transition matrix for the system. Then the matrix
P(t) =

∫∞
t

Φ(t, s)′Φ(t, s)ds is well-defined and satisfies

−I = Ṗ(t) + A(t)′P(t) + P(t)A(t)

Lyapunov’s first theorem revisited

Suppose the time-varying system

ẋ = f (x, t)

has an equilibrium x = 0, where �2 f/�x2 is continuous and
uniformly bounded as a function of t.

Then the equilibrium is exponentially stable provided that this is
true for the linearization ẋ(t) = A(t)x(t) where

A(t) = � f
�x (0, t)
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Proof

The system can be written

ẋ(t) = f (x, t) = A(t)x(t) + o(x, t)

where po(x, t)p/pxp → 0 uniformly as pxp → 0. Choose P(t) > 0
with

Ṗ(t) + A(t)′P(t) + P(t)A(t) ≤ −I

and let V (x) = x′Px. Then

�V
�x f (x) = x

′(Ṗ + A′P + PA)x + 2x′P(t)o(x, t) < −pxp2/2

in a neighborhood of x = 0. Hence Lyapunov’s theorem proves
exponential stability.

Proof of Trajectory Stability Theorem

Let z(t) = x(t) − x̂(t). Then z = 0 is an equilibrium and the
system

ż(t) = f (z+ x̂) − f (x̂)

The desired implication follows by the time-varying version of
Lyapunov’s first theorem.

Lyapunov’s Linearization Method revisited

Recall from Lecture 2 (undergraduate course):

Theorem Consider
ẋ = f (x)

Assume that x = 0 is an equilibrium point and that

ẋ = Ax + �(x)

is a linearization.

(1) If Re λ i(A) < 0 for all i, then x = 0 is locally asymptotically
stable.

(2) If there exists i such that λ i(A) > 0, then x = 0 is unstable.

Proof of (1) in Lyapunov’s Linearization Method

Lyapunov function candidate V (x) = xTPx. V (0) = 0,
V (x) > 0 for x ,= 0, and

V̇(x) = xTP f (x) + f T (x)Px
= xTP[Ax + �(x)] + [xTA+ �T(x)]Px
= xT(PA + ATP)x + 2xTP�(x) = −xTQx + 2xTP�(x)

xTQx ≥ λmin(Q)qxq2

and for all γ > 0 there exists r > 0 such that

q�(x)q < γ qxq, ∀qxq < r

Thus, choosing γ sufficiently small gives

V̇(x) ≤ −
(

λmin(Q) − 2γ λmax(P)
)

qxq2 < 0

First glimpse of the Center Manifold Theorem

What can we do if the linearization A = � f
�x px=xo

has zeros on

the imaginary axis at the equilibrium x = xo?

The linearized system will have a center point at , but we cant
say about the nonlinear system without further investigations
(can be center point, stable focus or unstable focus at x = xo).

First glimpse of the Center Manifold Theorem

Partition

A = � f
�x px=xo

and assume

ż1 = A0z1 + f 0(z1, z2)
ż2 = A−z2 + f−(z1, z2)

A−: asymptotically stable

A0: eigenvalues on imaginary axis

f 0 and f− second order and higher terms.

Center Manifold Theorem Assume z = 0 is an equilibrium
point. For every k ≥ 2 there exists a Ck mapping ϕ such that
φ(0) = 0 and dφ(0) = 0 and the surface

z2 = φ(z1)

is invariant under the dynamics above.

Proof Idea: Construct a contraction with the center manifold as
fix-point.

(To be continued)

Usage

1) Determine z2 = φ(z1), at least approximately

2) The local stability for the entire system can be proved to be
the same as for the dynamics restricted to a center manifold:

ż1 = A0z1 + f 0(z1,φ(z1))
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