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1 Introduction

The basic system under study in the course is pictured in the block-diagram in Figure 1.
Here G is a stable linear system, A is an uncertainty, d is a disturbance input, and z is the
output. We will discuss

1. How to verify stability (of lower loop) for various uncertainty classes

(a) uncertain dynamics

(b) parametric uncertainty

(c) time-varying parameters

(d)
)

d) various nonlinearities

(e) structured uncertainty, for example, a combination of the above.
2. How to investigate the performance of the closed loop

(a) energy gain d — z
(b) energy to peak gain d — z

(c) exploit spectral characteristics of the disturbance d

3. The whole story from theory to software!!

z d
v G w
A

Figure 1: Basic system under consideration.



We will focus on a relatively new method for robust stability analysis, namely the frame-
work of Integral Quadratic Constraints (IQC). The IQC framework did not appear from
nowhere. In fact, it has its roots in at least three strong research fields: The input-output
theory developed by Zames, Sandberg, Willems and many others [41, 42, 43, 29, 28, 31,
4, 26], the absolute stability theory with extraordinary contributions from Yakubovich and
Popov [32, 33, 34, 35, 36, 37, 38, 24], and finally the robust control field with contribu-
tions from, for example, Doyle, Safonov, Zames, and many others [5, 22, 1, 6, 44, 27]. The
relationship is indicated in Figure 2

It was A. Megretski, originally from Yakubovich group at S.t Petersburg state university,
who first started to merge the western input/output tradition with the absolute stability
theory of Soviet Union into unified framework. Some of the early work was in fact published
as technical reports at KTH, where Megretski was a post-doc in 1992, see [14, 15, 17, 16, 20].
Further generalization was done in collaboration with A. Rantzer (alumni from KTH) and
we will use their paper [19, 25] as the basis for an important part of these lectures.

We should also note that Yakubovich, who have contributed to many of the main ideas
behind IQC framework, is a frequent visitor at KTH. Indeed, Yakubovich introduced the
notion of IQCs in stability theory [36, 38, 40], he pioneered the use of the S-procedure in
systems analysis [37, 39], and he developed the Kalman-Yakubovich-Popov Lemma [32],
which will be used later in the course when we discuss computational robust control. Still,
there are some conceptual as well as technical differences in the use of IQCs in these lecture
notes compared to [36, 38, 40]. For example, our development will be developed for an
operator representation of the system, and our well-posedness assumption is different from
the minimal stability assumption in [36, 38, 40]. These distinctions will not be addressed in
the course. The preliminary outline of the course is the following:

1. Introduce an abstract framework so that many different cases can be treated with one
theory. This involves

(a) a discussion of function spaces and operators

(b) introduce the concepts of extended space, causality, and well-posedness of sys-
tems.

Good references for this material can be found in [4, 31].
2. The small gain theorem and the passivity theorem.
3. Integral quadratic constraints

(a) definition and examples
(b) the IQC stability theorem
(c) examples

We base the discussion on [19, 17]. The first can be obtained at http://www.lib.kth.se/
(Go to E-tidskrifter i fulltext and then IEE/IEEE se IEL Online.)

4. The S-procedure. Here we discuss results in [20, 39].
5. Uncertain system models

(a) structured uncertainty
(b) linear fractional transformations

6. Performance analysis and signal characterizations
7. A useful formulation of the Kalman-Yakubovich-Popov lemma.

8. Optimization of IQCs and the IQCbeta toolbox.
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Figure 2: The IQC-theory that will be discussed in this course is essentially a unification
of ideas from three now classical and very important research fields: 1) The input-output
theory that was developed in the west in 1960-1970; 2) The abstract stability theory that
was developed in the Soviet Union during 1960-1975, and finally 3) the robust control field
in 1980-1990.



2 Function Spaces and Operators

In the input-output theory for stability analysis we represent the systems as operators and
their input and output signals as function from appropriate vector spaces. It is remarkable
that only the most basic concepts from operator theory are needed to develop a rich and
useful stability theory.

2.1 Normed Vector Spaces

A normed vector space L is a linear vector space equipped with a norm. We will consider
vector spaces consisting of functions that map an infinite “time axis” 7 into another vector
space V. We assume 7 C R. Examples are the integers Z = {...,-2,-1,0,1,2...},
Zy =4{0,1,2...}, or the real numbers R = (—00,00) or Ry =[0,00). V will always be R"
for a suitable dimension n. This means that we only consider vector spaces over the real
scalar field in the lecture notes.

Every pair of functions f, g € L satisfies the properties (linear vector space properties)

(f +9)@) = f(t) + 9(t)
(af)(t) = af(t)

where o € R.
The norm on £ is a function || -|| : £ — R4 (i.e. a nonnegative functional) that satisfies
the properties

@ lfl=0« f=0,
(@) MNafll = laf-[I£1
(@ii) [If +gll < I+ [lgll-

Every f € L is supposed to have finite norm, i.e. ||f|| < co. The norm measures the size of
the signal.

The most frequently appearing function spaces in control applications are the [, and L,
spaces, p > 1. The first consists of discrete time functions, i.e. they map from Z or Z, into
R. The functions in these discrete time spaces can be represented as infinite sequences of
numbers

(oo s S, f=1, fo, f1s for - 0), fieR (Z)
(fo, f1, f2,--2), fieR (Z1)

where f; represents the function value at time i. We will use notations as I,(Zy) or 1,(Z)
if we explicitly want to specify the time axis.
The norms are defined as follows

[e%s} 1/1’
I fllp = (Z |f¢|”> 1,(Z), p=1,2,3..
i=1
1 flleo = sup | fil loo(Z4)
i>0

The norms for the cases with bi-infinite time axis are defined correspondingly.
The continuous time spaces, L, consists of functions defined on the real axis. We use
notation as L,(—o00,00) and L,[0,00) to explicitly define what time axis is used. For our



means it is enough to know that the vector spaces Lp[0, 00) consists of functions f : R4 — R

with norms
S 1/p
il = ([ 1 ae) L,[0,00), p=1,2, ..
0

1 fllcc = ess supycr, | £(2)] Loo[0,00)

The norms for the cases with bi-infinite time axis are defined correspondingly.

We often need to use vector valued functions. We use the notation L;'[0,00) to denote
the functions f : Ry — R™ with norm defined as above where now the spatial norm is the
Euclidean norm |f| = (fTf)'/2.

Remark 1. All the normed vector spaces mentioned above are also complete, i.e., their
Cauchy sequences converge. Such normed vector spaces are called Banach spaces. We will
not exploit the completeness property.

2.2 Inner product Spaces

We often have additional structure on our vector space £ in terms of an inner product. The
inner product is a bilinear functional (-,-) : £x £ — R (a sesquilinear functional in complex
inner product spaces) satisfying the following properties (where f,g € £ and a € R)

(@) (fr9)=1{9,f)
(i7) (af,g9) =a(f g)
(@ii) (f1+ f2,9) = (f1,9) + (f2,9)

Vector spaces with an inner product are called inner product spaces and the norm on these
spaces can be defined in terms of the inner product as

1f1l = V(S f)-

There are several useful inequalities that hold for inner products. The following are partic-
ularly useful

(£:9) <IIf1l-llgll - (Cauchy Schwartz)

+2(f,9) < IfII* + llgll*
1f + gllI* < 21117 + lgl1*)

The last inequality holds for any normed vector space.

Notation: All inner product spaces considered below are complete, i.e., their Cauchy
sequences converge. Complete inner product spaces are called Hilbert spaces. We will de-
note Hilbert spaces by # in order to distinguish their special structure from the normed
vector spaces L.

Remark 2. We will only use the completeness in order to ensure existence of an adjoint
operator in the Hilbert space in a later section. Most results hold for any inner product
space, but we will not distinguish the two cases.

The Hilbert spaces {§*(Z) and LJ*[0,00) have inner products defined as

(F) =3 o= o [ FlGw)lw) do (2, 1)
=0 -
o = [ 107 gt =5 [~ Fiwyatie) as Loe) (@)



where the connection with the frequency domain integrals follows from the Plancherel for-
mula. Here f and g denote the Fourier transforms of f and g, defined as

N

Flw) = lim > fre 7, w e [-m,7]

N —o00
k=0

~

T
fljw) = lim /0 f(he e, weR

for the discrete and continuous time respectively. The above relations are defined in an
analogous way for the bi-infinite case.

2.3 Operators

An operator H is a mapping from one normed space into another. We will only consider

the case when both spaces are the same, i.e. H : £ — £. This means that H(f) € £ for all

f € L. We can think of the operators as mathematical objects that represent our system.
Any pair, Hy, Ho, of operators on L satisfy the following properties

(i) The composition Hy Hs is also an operator on £ defined by (Hy H»)(f) = H1(Hz(f))

(i2) The sum aHy + S H, for any a, € R is an operator on £ defined by (aH; +SH)(f) =
aH(f) + BH:(f)

An operator is linear if

H(af + Bg) = aH(f) + BH(g)

We often use the shorthand notation G(f) = G f for the mapping of a linear operator G.

We will always assume that our operators satisfy H(0) = 0. This is often not a restriction
and it will simplify the future development! An operator H : £ — L is called bounded if the
following “gain” is finite?

W)

H|| = sup 12N

11l = sup Sy
20

It satisfies the important submultiplicativity rule

|Hy Ha|| < ||Hyl| - || Hall

Examples of operators

Most of the systems we consider have a linear time invariant (LTT) part that is described in
terms of a transfer function G with poles strictly in the left half plane. If the system is finite
dimensional then the transfer function has realizations on the form G(s) = C(sI — A)~'B +
D. All continuous time LTI systems defines operators on L{*[0, c0), LT[0, c0) and L2 [0, co)
in terms of convolutions. Let g(t) = £L7'{G} be the weighting function corresponding to
G(s) (here £~ denotes the inverse Laplace transform). Then G is defined by the convolution

GH®) = (g H(t) = / ot - 1) f(r) dr

IThe assumption H(0) = 0 implies that the initial condition of operators with dynamics (such as operators
defined in terms of a state space equation) is assumed to be zero. Instead the transient due to the initial
condition is assumed to be part of the input signal.

2This is the induced norm in the case of linear operators.




It is well known from the linear systems course that G(s) must have all poles strictly in the
left half plane in order to be an operator on any of L;*[0,00) p > 1. At this point it may look
as if we have the same operator independently of which of these spaces we consider. This
is not the case since the induced norms (gains) are different and the norm is an important
measure of how the signal through the system is amplified.

Remark 3. To see that a transfer function with poles in the right half plane cannot be
bounded on L;'[0,00) (p = 1,2,00 (or any other p)) we consider an example. Let G(s) =
1/(s—1) and let

1, te]0,1
u(t) = [ .]
0, otherwise

We get

L. _Jet—1, t €10,1]
(Gu)(t)—/0 e U(T)dT_{et(l—e_l), o1

which has unbounded norm in any of the L*[0, co)-spaces.

For example, if G is an operator on L3*[0,c0) then the norm gives an exact measure of
the worst case energy gain in the system and it is given by

1G]] = sup omax(G(jw))
weER

On the other hand, if G instead is viewed as an operator on Ly [0,00) (SISO for sim-
plicity) then the norm is a exact measure of the worst case increase of the peak-value of the
signals and it is given by (the proof of this is a Homework problem)

G| = / o) di

It is interesting to note that if G has poles in the right half plane then it is not an operator
on L7*[0, 00) but an operator from either of LY*[0, co) or LJ*(—00, 00) into LY*(—o00, c0). The
operator is now defined in terms of a bi-infinite integral

@nw= [ T gt ) f(r)dr

but the norm is unchanged. We will discuss this in more detail later when we have discussed
the concept of causality.
Next follows two examples of nonlinear operators.

Example 1. Consider a nonlinear function ¢ : R — R with the property that |p(z)| <
k|z| for some positive constant k. The nonlinearity defines a bounded operator on any of
L,[0,00), since

| etopa s [T iwpa
0 0
55 51 [P F(O)] < 5 by 1O

which implies that ||| < k. The operator ¢ is often called memoryless nonlinearity or
static nonlinearity since its output at time ¢ only depends on the input at time ¢.
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Figure 3: Block diagram for the system (4).

Example 2. Consider the nonlinear dynamic operator defined by the input output relation

y=Hu) <& i = f(z) +g(x)u, z(0)=0
y = h(z)

where f, g, h are nonlinear functions of suitable dimension and such that f(0) = 0, and

h(0) = 0.

Assume there exists a continuously differentiable positive semi-definite function® V with
V(0) = 0 such that

dV (z)
dx

for all (z,u) € R™ x R™. Then the system is Ly-bounded with gain less that . To see this
let us integrate (3). This gives

(f(2) + g(@)u) < 7*|uf’ — |h(2)? (3)

V) < [ updr - / ha) P

where we used V(0) = 0. If u € L3[0,00) then we see that h(x) € Lo, since otherwise the
right hand side tends to —oo as t — oo, which contradicts the positive semi-definiteness of

V. It then follows that
| @ <? [ jupar,
0 0

which proves the gain bound.

3 The System under consideration
We will consider stability of the system

€1 =U1 —Hz(ez)
€ = U»s +H1(€1)

(4)

which is also illustrated in Figure 3. There are many important issues that must be resolved
before we can derive a reasonable stability theory for this system. For example,

e In many applications we want to consider inputs u; and u, that are unbounded in the
norm we want to consider. For example, f(t) = sin(¢) is not in L3[0, co) but it is in
L]0, 00). Does this mean that it is impossible to exploit the additional structure of
the inner product when analyzing systems with sinusoidal inputs?

3V is positive semi-definite if V(z) > 0 for all z.



e Even if the input u; and us are in some appropriate normed vector space £ there is no
way we can ensure a priori that the signals in the loop are bounded (has finite norm).
This would almost be the same as assuming stability before it is proven.

e Even if both H; and H, are reasonable models of a physical systems it need not mean
that the closed loop makes sense. Such systems are ill-posed and we will soon give
some examples of ill-posed systems.

e Physical systems are always causal in the sense that the systems response at a par-
ticular time instant is only dependent on the history of the input signal and not the
future of it. The concept of causality need to be formalized.

Example 3. Consider the feedback interconnection of Hy(s) = 1/(s + 1) and the nonlin-
earity Ho(z) = —z — 2. Let the injected signals be u; (t) = 0(t) and us = 0 (where 6 is the
unit step function). The closed loop system is described by the differential equation

t=az4+1, t>0

The solution arctan(z) =t for ¢ > 0 or equivalently z(t) = tan(t)8(t), t > 0 goes to infinity
as t — /2. Hence the system has finite escape time and we will consider it to be ill-posed.

The next two examples are taken from [31].

Example 4. Let H(s) = 1, Hy(s) = ¢™*T — 1 and us = 0. In this case we get the closed
loop system operator (I + Hy(s)Hs(s)) " H;(s) = e*T, and thus y(¢) = u;(t + T). Hence,
the system is not causal.

Example 5. Consider the case when H; = 1, Ho = k and us = 0. If ¥ = —1, then the
return ratio (I + H; H») is not invertible and the system is clearly ill-posed. For all other
cases of k we get (I + HiH>) 'H; = 1/(1 + k). However, even now it is questionable
whether the system is well-posed or not in the case |k| > 1. For example, if the system is
a model of two interconnected physical systems then there will always be some small delay
in the loop. In this case it can be shown that the step response for the physical system is
unstable, i.e., y(t) — oo as t — oo. This is in conflict with the expected solution from the
model y(t) = 1/(1 + k)8(t). Hence, for some applications this system should be regarded as
ill-posed.

Example 6. In systems with discontinuous nonlinearities there may appear chattering.
For example, we may have a relay that switch infinitely fast between its two output values.
Such a signal is not sufficiently regular to be integrable and it does not belong to any of the
function spaces above. There is a theory that deals with such problems but it is beyond the
scope of this course.

As we have seen, many strange things can happen in a closed loop system and the
methods we will develop are not able to detect some of the problems in the examples above.
In fact, all the methods to be presented rely on an assumption that the loop signals e;
and e, exist and are sufficiently regular over any finite time interval. This excludes the
first example from consideration. Another deficiency of the forthcoming results is that
they generally cannot detect if the loop signals depends causally on the inputs or not. In
order to make reasonable assumptions on system (4) we will introduce extended spaces, the
notion of causality, and well-posedness. In short well-posedness is just an assumption on
the mathematical model (4) to make sense as a model of a physical system.



Extended spaces

An extension of a normed vector space consists of signals that may not be bounded in the
norm of the vector space but where any truncation to a finite time intervals is bounded.
This leads us to the introduction of extended spaces. We will consider extended spaces only
for time-axes 7 C Ry. The reason is that we only consider causal systems starting at time
zero. To formalize the definition of extended space we introduce the truncation operator Pr
defined as follows. Let f: 7 — V. Then

(pr)(t):{gu), ST Te

Notation: We will often use the notation fr = Prf.

Definition 1. The extended space L, is then defined as
Le={f:T = V:|frll <oo, VI' > 0}
where || - || is the norm on £. We will assume that the norm || - || is such that
e For every f € L. we have ||fr,|| < ||fr| for all To > T .

e For all f € £ we have ||fr]| = ||f|| as T — oc.

These above conditions hold for the spaces lpe(Z4) and Lp.[0,00), p = 1,2,3,...,00
that will be considered in our applications.

Example 7. We have
1. sin(t) € Ly.[0, 00)
2. e € Ly[0,00)
3. 28 el,.(Z4)

Causality of operators on extended spaces

An operator H : L, — L, (or H : L — L) is said to be causal (nonanticipative) if
PrHPr = PrH, forallT eT.

This means that the value at a certain time instant does not depend on future values of
the argument. To see this we just note that the definition means that H(fr)(t) = H(f)(t)
when ¢ < T. In other words, it does not matter if we truncate the future of the input signal
when considering the output at a certain time instant. In other words the system is not a
“crystal ball”.

An operator* H : £ — L is said to be noncausal if it is not causal. The purest form of
noncausality is anticausality. H is said to be anticausal if (I — Pr)H = (I — Pp)H(I — Pr),
for all T > 0. This means that the value at a certain time does not depend on past values
of the argument. Figure 4 illustrates the concepts of causality and anti-causality.

4We will only consider noncausal operators on bi-infinite spaces as analysis filters in IQC analysis. That’s
the reason we do not discuss noncausality in connection with extended spaces.
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Causal operator Anti-causal operator

Figure 4: The left hand side illustrates the operation of an causal operator. Only the past
of the input affect the output at a certain time instant. The right hand side illustrates an
anti-causal operator.

Boundedness of a Causal Operator:
A causal operator H : £, — L, is bounded if the gain defined as®

] — sup 1D

S0 Al )
f#0

is finite. Note that the gain is defined in terms of functions in £ and not the corresponding
extended space. However, the definition in (5) implies boundedness on L., since

I1PrH ()| = |PrH(fo)ll < |1Prll - |HI -1 Prfll = 1HI - |1 Prfll

forall f € L. and all T € 7. It can be shown that ||H|| is the smallest such bound, see [31].

It is clear that a bounded causal operator on L. is also a well defined bounded causal
operator on L. This follows since if f € £ then ||PrH(f)|| < ||H||-||f]| for all T € T. We
also have the reverse implication: A bounded causal operator on £ is also a well defined
bounded causal operator on L., because PrH(u) = PrH(uy), and up € £. We have thus
shown that

H is causal and bounded on £, < H is causal and bounded on £

Examples

We will first introduce notation that will be used extensively in the lecture notes.

RLZ*™ The space consisting of proper real rational matrix functions with no poles on
the imaginary axis.

RHZ*™  The subspace of RLT*™ consisting of functions with no poles in the closed
right half plane.

5The definition implies that H(0) = 0, which means that operator (system) is assumed to have a zero
transient response. This is often a reasonable assumption since the initial condition often can be represented
as a input or output disturbance of the system.

11



Example 8. Each operator G € RH”*™ has a state space realization G(s) = C(sI —
A)~'B + D and corresponding weighting function g(t) = CeA*Bé(t) + D4 (t). The operation
on u € L;*[0, 00) is defined in terms of the convolution

y(t) = (Gu)(t) = (g *u)(t) = / CeAt=") Bu(r)dr + Duf(t),

which shows that GG is causal. Proposition 1 below shows that the operator is bounded on
all Ly [0, 00).

Example 9. An operator G € RL22*™ is generally noncausal. It can be split into a causal
term G, and an anticausal term G, such that G = G, + G4.. This is done using partial
fractions expansion in such a way that G, € RHT”*™ and G,.(—s) € RHZ*™, ie., G,
contains the stable poles and GG, contains the unstable poles. As an example, we have

2 -1 1
G = =
() (s+1)(s—1) s+1+s—1
Ge Gae

We have already seen in Remark 3 that 1/(s—1) cannot be bounded on L [0, 00). However,
it turns out that it is a bounded anticausal operator on L,(—00,00). In fact, any G(s) =
C(sI — A)™'B + D, with A unstable (all eigenvalues in the right half plane) defines an
anticausal operator on Ly (—o0, 00) by the convolution

(Gu)(t / Ce**=7) Bu(r)dr + Du(t).

In the general case an operator G € RLZ*™ is defined by convolution with its weighting
function g(t) = g.(t)+gac(t), where® we have g.(t) = L71{G.(s)} and gac(t) = L7H{Gac(s)}.
We get (the direct term can be included in either of g. and g,. as a dirac distribution)

(Gu)(t) = /_00 g(t — u(r)dr = /_ gc(t — T)u(r)dr + /too Gac(t — T)u(r)dr.

The next proposition can be used to show boundedness of the linear operators in the previous
two examples.

Proposition 1. The operator defined by the convolution
o0
(Hu)(t) = / h(t — T)u(r)dr

where h € Li(—00,00) is bounded on Ly(—o00,00), p > 1 with gain ||[H|| < ||h|l1 (end equal
to” ||hl|y for Le(—00,00)). Furthermore, if h( ) =0, fort <0, then H is also causal.

Remark 4. Note that the proposition is also valid when the operator is considered as a
mapping H : L,[0,00) = Ly(—00,00) (Note H : Lp[0,00) = L,[0, 00) if H is causal.)

6We are here considering one sided Laplace transforms. For G, = Ce(sI — Ac)_ch, where A. is stable,
we have gc(t) = Cce<!B. for t > 0 and zero otherwise. Then L(gc(t)) = [ e *tgc(t)dt with absolute
convergence for Re s > 0 (in fact, for Re s > Amax(A¢). For gac we use a one sided Laplace transform
defined over negative times

"This is what you prove in Homework set 1

12



Proof. We follow the proof in [4]. Let u € Ly(—00,00), and let & + & = 1. Then

< /Oo |h(t —T)|1/p|u(7—)| . |h(t_7—)|1/qd7_.

—00

‘KZhu—Tm@mT

We can now use Holders inequality || fglly < [|f[l,-[lglly with f(7) = |h(t = 7)["/?|u(7)| € L,
and g(7) = |h(t — 7)|'/7 € L,. This gives

< (e ([ e oar)

where we note that the last term is ||h||}/q. If we take L,-norms on both sides of this
inequality then we get

st ([ ([ ) )

<RI - I - Mlally = 1Al - [full,
where we used that ||h* f|l1 < ||hl|1 - ||f]]1 for any h, f € L. O

‘/Zh@—ﬂwﬂm

It now follows from Proposition 1 and the two examples above that
e Each G € RH is a bounded causal operator on L,[0, 00).
e Each G € RL is a bounded operator on Lj,(—00, 00).

Remark 5. We will only consider systems with casual operators. However, noncausal op-
erators will be used as “analysis filters” or “multipliers” in the discussion on IQCs. They
will only be used for analysis of norm bounded signals i.e., signals in ‘H for function spaces
where the time axis is bi-infinite, e.g. T = R.

The gain bound in Proposition 1 can be improved for Ly-spaces.
Proposition 2. We have
1. Let G € RLo, be an operator on Ly(—o00,00) then

IGll = max omax(G(jw))

we[0,00]
which often is denoted ||G||m_, -
2. Let G € RH, be an operator on Ly[0,00) then
1G] = max oma(Giw)).

w€[0,00]
Proof. See [44]. The idea is to consider the frequency domain representation of the operator
y(jw) = G(jw)u(jw)

If the input @ has a Dirac at the frequency where the optimization problem below takes in
maximum then it is possible to achieve the gain bound. |

Example 10. An operator defined by a nonlinearity ¢ : R — R as in Example 1 is both
causal and anti-causal. Such operators are called memoryless.

Example 11. A nonlinear operator defined by a state space representation as in Example 2
is causal since the integration is assumed to be done forward in time.

13



Well-posedness and Stability

In the system (4) we assume that H; and Hy are causal operators on £.. Well-posedness is
defined as follows:

Definition 2 (Well-posedness). The system in (4) is well-posed if for any u;,us € L.
there exist a solution ey, es € L.. Furthermore, the loop signals e;, e; depends causally on
uy and us.

Definition 3 (Stability). The system (4) is stable if it is well-posed and if there are pos-
itive constants ¢y, ¢2, c3, ¢4 such that

llerr |l < erlluarl] + coluzr|

lle2r|| < esllurr|| + calluar|
forall T € T.
Remark 6. If the system is stable and if u; and us are norm bounded, i.e., ui,us € £, then
er,es € L.

Remark 7. A well posed system is not the same as a stable system. In a system that is
well-posed but not stable, there may not be a (time) uniform gain as above definite. For
example, if we can have ||er|| = O(e??||ur||) then the system is not stable.

Remark 8. Well-posedness is a generic property for any good model of a physical system.
Conditions for well-posedness are discussed in detail in [31].

Let us truncate all terms on both sides of both equations in (4). We use the notation
Pre; = eyr and the fact that causality implies that PrH;(e1) = PrHi(e1r). We get

eir = w1t — PrHs(ear)
ear = Ut + PrHq(eir)

(6)

If the system (4) is well-posed then its truncated version is a well defined equation system
in the normed space £ for all T' € 7. This means that we can take norms on both sides of
the equations in (6). This will be used in the derivation of the small gain theorem.

4 The Small Gain Theorem

The small gain theorem is a fundamental result in stability theory. It generally gives con-
servative results but this can sometimes be alleviated by the use of loop transformations
and multipliers, as is discussed in Section 6.

Theorem 1. Assume that

(i) the system in (4) is well-posed,
(i2) || Hyll - | H2|| <1.

Then the system is stable.

Proof. Consider the truncated system equations in (6). Using esy = uor + PrHi(e1r) in
the first equation gives

eir = U1t — PrHy(usr + PrHy(eir)) (7)

eor = Usr — PrHy(e1r) (8)

14



If we take norms in (7) then we get
lexr|l < lluar|l + |2zl - [luarll + | Hall - [[Hy |l - llear]l
Hence,

1 [ H ||
levr|] < llurr [ + [[uar] 9)
L—[[Hy|l - [ Hal| L—[[Hy|l - [ H |l

Finally, take norms of (8) and use (9). We get

H 1
e +

e el (10)
1 H ol - (1]

learll € ——— 5
1—[[Hy| - [ Hal|

O

Example 12. Consider the system in (4) when H; is an LTT operator with transfer function
G(s) = C(sI — A)"'B + D and when ||H:|| < 1 (for both signal spaces considered below).
The small gain theorem ensures that the closed loop system is stable if ||G|| < 1. If we let
the signal space L, be Ly.[0, 00) then the stability condition becomes

IGlla., = sup |G(jw)| <1

w€[0,00]

If the signal space is Lo [0, 00) then the stability condition becomes
o0
G| = / |Ce?tB|dt + |D| < 1
0

We can now argue that the Lj-norm condition gives a more conservative condition for
stability than the H.,-norm. This follows since (the weighting function g(t) = Ce* Bf(t) +
Di(t))

G (jw)| = | / gty dt] < / (e Bl dt + |D)|
0 0

Hence, if ||G||1 < 1, then ||G|lg., < 1. So is there any point in using the function space
Loo[0,00)? There is an important point. The stability bounds (9) and (10) gives bounds on
the magnitudes of e;r, ear that hold at any time instant when we use Lo[0, 00) whereas
we get energy bounds when we use Ly, [0,00). The choice of signal space must reflect our
requirements on the real system.

Example 13. Let H; = G € RH, and a let Hy be a sector bounded nonlinearity Hy =
p(x) € sector[—k, k). If the signal space is Ly[0,00) then the system is stable if |G||u., <
1/k.

5 The Passivity Theorem

The passivity theorem is another fundamental result in stability theory. It has gained
widespread application in analysis of electric circuits, see [4], and mechanical systems, see [3].

The passivity theorem exploits the additional structure of the inner product in a Hilbert
space. We will assume that the inner product satisfies the following properties

(y>U>T = (yr,ur) = (y,ur) = (yr, u)

and, as before, ||ur]| is a nondecreasing function of 7" and if u € H then limr_, o |Juz|| = ||ull,
where ||u|| = 1/(u,u). These properties are satisfied in our standard spaces l2.(Z) and
LQE [0, OO)

15



Definition 4. A causal operator H : H, — H. is
e passive if (Hu,u),, >0 for all u € H., VT >0

e strictly output passive (SOP) if there exists an € > 0 such that

(Hu,u)p > €||PrH(u)||*, VYu € H, VT >0

Remark 9. Note that we do not require the operator to be bounded in the definition of
passivity, see Example 16 for a passive operator with infinite gain. However, a strictly
output passive operator is always bounded since

ellPrHW)|* < (Hu,u)p < [|PrH@)|| - [Jurl,
which implies that ||H|| < 1/e.
Example 14. An LTI system G(s) € RHZ*™ is
e passive if G(jw) + G(jw)* > 0 for all w,
e SOP if there exists ¢ > 0 such that 3(G(jw) + G(jw)*) > eG(jw)*G(jw), Vw,
We prove this in Example 20 in Section 7.

Example 15. In this example we consider the operator H defined by the input-output map
of the nonlinear system

& = f(z) + g(x)u, z(0)=0
y = h(x)

where f(0) = 0 and h(0) = 0. Then H is SOP if there exists a continuously differentiable
positive semidefinite function V' with V(0) = 0 such that

() = ~kh(x) h(z)
ov
o gl) = W)

where k > 0. The system is passive if the above holds with k£ = 0. The proof follows since
V(z) = ZX(f(z) + g(x)u) = —k|y|*> + yLu. Integration gives

T T
V() V) = [ yTua—k [ P

Since, V' (x(0)) = 0 and V(z(T)) > 0, we get (y, u)y > kllyr|*.

Example 16. Consider the following simplified version of the LuGre-friction model [21, 2]

dz |v] B
ik g(v)z’ z(0)=0
1 —(v/v.)”
9(v) = —(Fe + (Fs — Fo)e /")

F =o0yz (11)
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where F' denotes the friction force, v is the relative velocity of the surfaces, og is a stiffness
coefficient, Fs is the Stribeck friction, and F¢ is the Columb friction. It is assumed that
Fs > F¢ > 0 This friction model is passive as an operator H : v — F on Ly [0, 00) since

Integration gives

which proves passivity. It is easy to see that the friction operator is unbounded since a small
input pulse can make z stay at a nonzero value when the input has turned to zero. This
means that the Lo-norm of the output is infinity.

We will next prove one of the simpler formulations of the passivity theorem.
Theorem 2 (The Passivity Theorem). Assume that
(i) the system in (4) is well-posed, us =0
(i1) Hy:He — He is strictly output passive
(i5t) Hy : He — He is passive

Then the system is stable in the sense |lear|| < L||luyr||, for all T > 0, where € is from the
definition of strict output passivity.

Remark 10. The theorem shows that e, is bounded but note that e; may not be bounded
(in Lo-norm). However, if Hy is bounded then we also have |le;r|| < cl|uir]| for all T > 0
for some ¢ > 0.

Proof. The truncated system now becomes
eir = uir — PrH(e)
ear = PrHi(e)
We get
(1, Hi(e1))y = (er, Hi(er))y + (Ha(ea), e2)q > el| PrHi(ed) ||
This gives ||PrHy(ed)||” < Zlluir|l - [[PrHi(ed)]], ie., |[PrHi(er)l| < 2[lurrll. O

Example 17. Consider the system in Figure 5, which models position control of a servo
with friction. We assume that the friction can be modeled as the LuGre friction in Exam-
ple 16 and that the PD-controller has transfer function K(s) = ki + k2s, where ki, ke > 0.
The system can equivalently be represented as

e; =d— H(v)
v = Gey

where H denotes the LuGre friction model and G(s) = We know that H is

passive and we have

s
ms2+kos+ky *

Re {G(jw)} = k2| G(jw)[*,

i.e., G is strictly output passive. Hence, it follows from the Passivity theorem that ||vy|| <
c||dr|| for some ¢ > 0.
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Figure 5: Servo control system with friction.

Figure 6: A Loop Transformation

6 Loop Transformations and Multipliers

The small gain theorem and the passivity theorem generally give conservative stability
conditions. Loop transformations and the introduction of multipliers in the feedback loop
are means to reduce conservatism.

Loop Transformations

Figure 6 shows a loop transformation of the system in (4), which we assume to be well-
posed. Here K : L. — L. is a suitably chosen linear bounded and causal operator. The
loop transformation is well-posed if H; = (I + H; K)~'H; is a well defined operator on L..
Then the transformed system is well-posed and stability of the system (4) is equivalent to
stability of its transformed version.

18



Figure 7: Introduction of multipliers

Multipliers

Figure 7 shows how a multiplier and its inverse have been introduced in the feedback loop.
If both M and its inverse M ! are bounded causal operators on L. then stability of the
system in Figure 7 implies stability of the system in (4). It is also possible to consider
noncausal filters M but then several technical conditions need to be introduced.

The main point with the loop transformations and the multipliers is that it may be easier
to prove stability for the transformed system than the original system.

We will in the next section discuss the IQC framework for stability analysis in Hilbert
spaces. The introduction of multipliers and loop transformations is done implicitly and
with great simplicity in the IQC framework. This is very convenient in advanced systems
analysis. We will in a later section discuss the connection between the IQC technique and
the classical loop transformation and multiplier ideas discussed above.

Equivalence between Possitivity and Unity Gain

We will end this section with a peculiar little result which exemplifies that basic mathemat-
ical ideas often extends to much more general situations.

Proposition 3. Let H : H — H and assume that H + I is invertible on H. Define S :
H—HasS=(H—I)(H+1I)"t. Then we have the following property

(FLHf) >0, ¥feH & |S|<L.

Remark 11. The proposition is a generalization of the conformal mapping S(z) = jj& be-

tween the right half complex plane and the unic circle to nonlinear operators on a Hilbert
space.

Proof. Let g € H. Then f = (H + I)~!(g) satisfies
(1) S(g) = (H - I)(f)
(i) g = (H + I)(f)

If we use (i) and (i) respectively then we get

IS@II* = IH O + 1£17 = 2(H(f), f)
lgll* = IH O + NI + 2(H(F), f)

After subtraction we get

gl = IS(II* = 4CH(f), f)

which proves the claim. [l
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7 Adjoint operators and Quadratic Forms

The integral quadratic constraints, which we discuss in the next section, are defined in
terms of time-invariant quadratic forms. In order to introduce the time invariant quadratic
forms we need to discuss the Hilbert adjoint operator, self-adjoint operators, and positive-
definiteness of self-adjoint operators.

Definition 5. Let H : H — H be a bounded linear operator. Then the Hilbert adjoint H*
of H is the operator H* : H — H such that

(Hf,g)=(f,H"g) Vf,geH

Example 18. A matrix M € R™*" defines a bounded linear operator on the Hilbert space
R" equipped with the standard inner product (z,y) = #%y. The Hilbert adjoint M* is the
transpose of the matrix, i.e., M* = M7 (if the matrix is complex-valued then M* = MT).
This follows since

(Mz,yy = 2" M"y = (z, M"y).

Example 19. Let H € RH7”*™ be an operator on LJ*(—o0, 00) with state space realization
H(s) = C(sI — A)™'B + D, where A is a stable matrix. Then H has Hilbert adjoint
H*(s) = H(—s)T = —BY(sI + AT)"1C* + DT. We will derive this in the time-domain.
Let ho(t) = Ce*BO(t), then

T

o= [ ([ " holt - D) f()dr +DF0) a0t

-/ i o ([ tole =7 atryie + 074t ) ar = (1,179

which shows that the adjoint is an anti-causal operator with state space realization H*(s) =
H(-s)l' = -BY(s1 + AT)"1CT + DT.

More generally, the adjoint of an operator H € RL™*™ is H*(s) = H(—s)?. This can
be shown by spliting H into its causal and anticausal term and then compute the adjoint
of these two terms and finally add them to get the result. However, a more direct way is to
consider the frequency domain representation of the inner product

~

(Hs.g) = [ (GGl
-/ " Flw) (H(jw) 5(iw))dw = (f, H'g)

and use the fact H(jw)* = H(—jw)?.

We have now seen two examples where it was possible to construct the adjoint. Next we
state the reassuring fact that there always exists an Hilbert adjoint. Several useful properties
are also stated.

Theorem 3. The Hilbert adjoint H* in Definition 5 exists uniquely and it is a linear oper-
ator with ||H*|| = ||H||. Furthermore, for bounded linear operators H,Hy,Hy : H — H we
have the following properties

0) (aH)" = oH* b) (Hy + Ho)* = H; + Hy 0) (H") =H
d) (HiH)" = HyH;  e) ||T°T)| = |T77]| = |7 ) (H) = (Y

where in the last statement we assume that H is invertible.
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Proof. See [12] for a full proof. The existence and uniqueness is a consequence of the Riesz
representation theorem. The properties a) — f) are rather straightforward to derive. In fact,
the proof is completely analogous to the matrix case. O

We will next introduce the concept of self-adjoint operator and positive definiteness of
a self-adjoint operator.

Definition 6. A bounded linear operator H : H — H is self-adjoint if H* = H. A self-
adjoint operator is

Positive semi-definite, denoted H > 0 if and only if (H f, f) > 0 for all f € H.

Positive definite, denoted H > 0, if and only if there exists € > 0 such that
(Hf. f)>ellflI?, VfeH.

H is said to be negative semi-definite if —H is positive semi-definite and H is negative
definite if —H is positive definite.

The integral quadratic constraints in the next section are defined in terms of time-
invariant quadratic forms on a Hilbert space. A bounded self-adjoint operator & = &* :
‘H — H defines a (bounded) quadratic form o : X — R as o(f) = (®f, f). The quadratic
form is positive semi-definite if o(f) > 0 for all f € H and strictly positive definite if
there exists € > 0 such that o(f) > ¢||f||? for all f € H. Negative semi-definiteness and
negative definiteness are defined analogously. It follows from Definition 6 that o is positive
semi-definite (positive definite) if and only if ® > 0 (® > 0).

For a subspace H C H we also have that ® = & : H — H defines a quadratic form
o : H — R by the relation o(f) = (®f, f), f € H. It is obvious that ® > 0 in this case also
implies that o > 0. The reverse implication is not at all clear. However, it turns out that
the reverse implication holds when H = Lga(—o00,00) and H = L3[0,00). Here we use that
L;[0,00) C La(—00,00) if for each f € Ly[0,00) we define f(t) = 0 for ¢ < 0. We use this
assumption from now on.

Proposition 4. Let ® = ®* € RL*™ and define the quadratic form o(f) = (®f, f) on
L,[0,00). Then the following are equivalent

(1) o(f) >0 for all f € Ly[0,00)
(i7) ®(jw) >0 for all w > 0.

Proof. The proof is taken from [20]. The implication (i¢) = (i) is more or less obvious
since L3[0,00) C La(—00,00) and ® > 0 implies that ¢ > 0 on Ly(—o00,00). For the
other direction we use that the quadratic form is time-invariant on Ly(—00,00). Indeed, if
Sy Ly(—00,00) = Ly(—00,00) is the shift operator defined by (S;f)(t) = f(t — 7), then
we have

~ ~

(j)e™7)" @ (jw) Fjer)e ™" duo

o(5.0) = (@5,0.5.) = | o

-/ " ey (i) Fliw)de = (8F, f) = o (f).

Hence, if 0 > 0 on Ly[0,00) then o > 0 on La[1,00) for any 7 > —oco. Next, we use that
Urs—oolia[T,00) is dense in La(—00,00) and that o is continuous on Ly(—o00,00) to infer
that o > 0 on L[0, 00) implies o > 0 on La(—00,00). The later is equivalent to ®(jw) > 0
for all w > 0. O
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Example 20. We will here prove that G € RHT*™ is strictly output passive if (G (jw)+
G(jw)*) > eG(jw)*G(jw) for some £ > 0. This follows since

(Gu,u)p — z—:||PTCr’uT||2 = (Guyp,ur) — 5||PTGuT||2

1 .
> 3 (G + G*ur,ur) — ¢||Gur|?
= <(%(G +G") — 8G*G)UT,UT> >0,

where we used the above proposition in the last inequality.

8 Integral Quadratic Constraints

Integral Quadratic Constraints (IQCs) give useful characterizations of the structure of a
given operator on an Hilbert space. The IQCs are defined in terms of quadratic forms
which are defined in terms of self-adjoint operators. The resulting stability theory unifies
and extends the classical passivity based multiplier theory. The stability conditions are
computationally attractive and we will discuss a method for computing the multipliers that
appear in the stability criterion later.

We consider systems on the form (4) for the special case when H; is defined in terms of
a causal and bounded LTI transfer function GG, and when Hy = —A, where A is a bounded
and causal operator on H. The system equations become®

v=Gw+e
(12)
w = A(v)
We will be particularly interested in the case when the operators are defined on either of
the extended spaces H, = LJ%[0, 00) or H. = 152]0, 00).

Next we define the IQC for operators on #H.. It is important to notice that the IQC
is defined on the Hilbert space H and does not involve truncations of the signals. This is
makes it much easier to obtain general and flexible results compared to when multipliers and
loop transformations are used in the framework of the small gain theorem or the passivity
theorem. We will discuss this in the next section.

Definition 7 (IQC). Let II be a bounded and self-adjoint operator. Then A satisfies the
IQC defined by IT if

v

o1 (v, A(v)) = <[A1(’U)} I [A(U)D >0, YoeH (13)

We often call II the multiplier that defines the IQC. We will sometimes use the shorthand
notation A € IQC(II) to mean that A satisfies the IQC defined by II.

Remark 12. If H = LI*[0, 00), then II can be taken as a transfer function satisfying II(jw) =
II(jw)*. The condition in (13) reduces to

e[ et T dGw) .
UH(U,A(U))—/_OO K(v\)(jw)] W) | 5oy | 20 WELFD.00) (1)

8 A disturbance in the second equation can be included in e since G is linear and bounded.
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If H =130, 00) then II can be taken as a transfer function satisfying II(e*) = II(e/%)* for
all w € [—m,7]. The condition in (13) reduces to

on(v, A(v)) = /j K%SZ:J')‘“)] (&™) Kq(}\SZ:j)‘“)] >0, Yvell(zy)

Remark 13. The two simplest examples of multipliers are

I 0 0 I
H1—|:0 —I:|’ and H2—|:I 0:|

We see that II; defines a valid IQC for operators that have gain less than one. The multiplier
I, corresponds to passivity.

Let us consider a couple of examples.

Example 21. Let ¢ be a nonlinearity that satisfies the sector condition az? < ¢(z,t)r <
Ba?, for all (x,t) € R x RT. Then ¢ satisfies the IQC defined by

.y 208 fHa
H(Jw)_{ﬁﬁ—a —2}

To see this we notice that (this relation is in the time domain)

Lozjv)} ) I Loz}v)} = 2(Bv — ¢(v))(p(v) —av) >0,

where the inequality is an immediate consequence of the sector condition. Integration gives
the desired result.

Example 22. Let A correspond to multiplication with a real scalar § € [-1,1], i.e.,
(Av)(t) = ov(t). Then A satisfies the IQC defined by

L [X(w)  Y(jw)
“(J“)‘[mw)* ~X(jw),

where X (jw) = X (jw)* > 0 and Y (jw)* = =Y (jw). This follows since
{ﬁ(jw)]* [Xw'w) Y (jw) ] {mw)]
dv(jw)] [Y(w) —X(jw)] [60(jw)
= 0(jw)" (X (jw) — 6" X (jw) + 6(Y (jw) — ¥ (jw)))o(jw) 2 0.
Integration gives the result.

Example 23. Consider the saturation nonlinearity

olz) = {x a=s

sign(z), |z|>1
We will show that ¢ satisfies the IQC defined by

L 0 1+ H(jw)
(jw) = [1 + H(jw)* —2(1+Re ]H(jW))
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where H is the Fourier transform of a function h : R — R that satisfy the L;-norm
constraint

Inll = [ e <1
To see this we notice that (here % denotes convolution)
[v() = o (u(®))] - [p(v(D)) + (b * o(v))(B)]
2 [o(t) — @(v(®)] - [p(v(t)) — sign(v(t)) SIEIEMU)' IRl

> [o(t) — @(v(t))] - [(v(t)) — sign(v(t))] =0

Integration and use of Parsevals theorem gives the desired result:
o0
0< [ 20 g [o(0) + b plolde
0

= / " 2Re [3(ju) — 9(0) ()] [p0) () + H (j20) o (0) () o

o o~y .
- / {ﬂw’) } (jw) {ﬂﬂ‘{) } dw
—oo LP(V)(jw) p(v)(jw)
The multipliers in this example can actually be used to describe any nonlinearity with slope
restricted to the interval [0,1]. This is proved in the classical paper [43]. Note that H can

be viewed as a non-causal filter, i.e., the H can have poles both in the left half plane and
the right half plane.

We have the following stability result.
Theorem 4. Assume that
(i) for T €10,1], the interconnection (G,TA) is well-posed,
(i1) for T €]0,1], TA € IQC(II),

(iii) there exists € > 0 such that’
[G} I {G] < eI (15)

Then the system in (12) is stable.
Remark 14. When H = L3*[0,00) then (15) is equivalent to the condition

U e (9] < et voer

and when H = [J*[0, c0) then it is equivalent to the condition

9This means that the self-adjoint operator

vy

is negative semi-definite.
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Figure 8: The more IQCs we have the better characterization we get of the uncertainty
A. The grey area represents the set of uncertainties A and the shaded area represents the
complete set of causal bounded operators that satisfy the IQC.

Remark 15. If

II;;  ILs
I =
s, 1)

has II1; > 0 and Iy < 0, then the condition A € IQC(II) implies that 7A € IQC(II) for
all 7 € [0,1]. This is often the case in applications.

Remark 16. Assume that A € IQC(Il;), k = 1,...,N. Then it is easy to see that A €
IQC(Zle 71y ), where 7, > 0. The stability test now becomes the convex feasibility test:

Find 7, > 0 such that
* N
|:C[TY:| (Z Tka> |:?:| S —el
k=1

Remark 17. In the case when Il < 0 the class of uncertainties A € IQC(II) is convex and
we can look at the IQC as a way to cover A (which may belong to a set of uncertainties)
with a larger set of operators. The more IQCs we have the better characterization we have,
see Figure 8.

Proof. We will prove the theorem under a somewhat stronger well-posedness assumption
than necessary'®. We will assume that there exists a unique solution v,w € H,. in the
system (12) for every e € H, (we did not require uniqueness in the previous well-posedness
assumption). This means that I — GA has a causal inverse on H.. The proof follows if we
can show that (I — GA)™! is bounded. The idea for proving this is illustrated in Figure
9 and Figure 10. We need to show that stability of the interconnection of (G, 7A) implies
stability of the interconnection (G, (T 4+ 7a)A) for all |7a| < 7, where v is independent of 7.
We prove this in two steps below. The proof of the theorem then follows from the iterative
argument that is illustrated in Figure 10.

Step 1: There ezists co > 0, which is independent of T, such that ||v]| < co||[(I-TGA)(v)||, Yv €
H.

Let us prove this. Let w = 7A(v) and assume that all signals are in H. We have

os{(af]y- (-l
([l el (ol

< Ml - | = 7GA)Y@)|* + 2 || |IG]] + T2 DI = 7GA) @) - [lw]] — el ]

10A slight variation of this proof gives the proof under the weaker well-posedness assumption.
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Figure 9: Stability of the feedback interconnection (G, 7A) implies stability of the feedback
interconnection (G, (7 + 7a)A) for all |7a| < vy, where 7 is independent of 7. This means
that we can insert the dashed branch in the system without loosing stability. This allows
us to infer stability of (G, A) through an iterative argument, see Figure 10.

where the first inequality follows since 7A € IQC(II) and the last inequality follows from
standard use of Cauchys inequality and the stability condition (15). Use of the implication
(we assume a > 0, ¢ < 0)

2 2 2
ax® + 2bxy + cy® > 0 b b- . c .
{ I = = rv>--y+\/ 5y - -y
x>0 a a a

with @ = || [], b = [ || - |G| + [z, ¢ = =&,z = [[(I = 7GA)(v)]], and y = [|w]| gives
1
[Jwl| < aII(I—TGA)(v)II

where

On the other hand, when |[II;1]] = 0 we get the same inequality with ¢; = ¢/(2(||I14|| -
1G]l + [|II12]]))- Hence,

loll = llv = Gw + Gu|| < (1 + [|Gll/e)lI = 7GA) ()| = coll(I = TGA)()II,

ie., co = (1 +]|G||/c1). This proves the claim.
Step 2: Boundedness of (I — TGA)™L for some 7 € [0,1] implies boundedness of (I — (T +
TA)GA)Y for all |Ta| < 7, where v is independent of T

Before we prove this we need to remark again that we only know that the system is
bounded at 7 = 0. If we assume that (I — TGA)™! is bounded, then follows from step 1
that

(I = 7GA) | < co

We will make crucial use of this inequality when we prove step 2. It is important to note
that the inequality from step one by no means imply stability by itself unless we add some
extra condition. The extra condition is supplied in step two, which we prove now.

Now consider the factorization

(I — (1 +7a)GA) = (I —7GA)I — (I —TGA) *GTaA)
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Figure 10: The left hand system is stable since G is bounded. Iterative use of the result
illustrated in Figure 9 shows that all the systems in the figure are stable.

The first factor on the right hand side has a bounded inverse by assumption. To prove
boundedness of the second factor we use the small gain theorem on the system in Figure 9.
Due to our strong well-posedness assumption we have that (I — (I — TGA)~!GTAA) is
invertible if ||[Ta Al - [|(I —7GA) 7G| < 1, which holds if (here we use ||(I — TGA) || < ¢o)

1

_ 16
G TAT (16)

TA <77 =
Hence, the condition in (16) ensures boundedness of (I — (7 +7A)GA)~! and we see that 7y
is independent of 7. This proves the claim. O

Let us consider a simple example.

Example 24. Consider the system in Figure 11. Here G is a strictly proper SISO system
and ¢ is a nonlinearity that satisfies the sector condition az® < ¢(z,t)x < Bz?, where
we assume that @ < 0 < 8. Under reasonable regularity assumptions on ¢ (for example
continuity) we have well-posedness for all 7 € [0, 1]. We also have that T¢ € IQC(II) for all
7 € [0, 1] when

. 208 fHa
H(Jw)_{ﬁﬁ—a —2}

This follows from Example 21 since az? < 7¢(z,t)r < B2 for all 7 € [0,1] when o < 0 < 3.
The system in (12) is a positive feedback interconnection and we need to include the
minus sign in G. The stability condition becomes

P e

multiplying this inequality with —1/(28«) gives the stability condition

Re (G(jw) +1/8)(G(jw) + 1/a) <0, Yw € [0,x]

This is a version of the famous circle criterion. The stability condition is illustrated in
Figure 12.

9 Relation to the Classical Methods

1112 The use of multipliers in stability analysis with the small gain theorem or the passivity
theorem can generally reduce conservatism of the analysis extensively. We will here discuss

I This section is optional reading.
12The material is taken from [8].
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Figure 11: The feedback system for Example 24.

A

-1/ -1/a

Figure 12: Graphical illustration of the circle criterion. The system is stable if the Nyquist
curve of GG is within the shaded area.

the classical multiplier theory and relate it to the IQC approach for stability analysis. We
limit our discussion to the methodology that was introduced in [43], see also [31] and [4].
The theory is restricted to square systems for reasons that will become apparent. The main
tool in the derivation of the results is the passivity theorem.

Theorem 5 (Passivity Theorem). Assume that the feedback interconnection of G and
A in (12) is well-posed and that the following conditions hold

(ur, Gur) < —¢llurl?,
(ur, Aur) > 0,

for all w € L52[0,00). The system is then stable.

Proof. The proof is similar to the proof of Theorem 2. See, for example, [4] for a full
proof. O

We will next follow the arguments in [43] and [4] that lead to the multiplier theorem.
The idea is the following. Assume that we want to study stability of system S; in Figure
13. We introduce an invertible multiplier M into the system. This results in the system S,
in Figure 13. The multiplier is assumed to be a bounded linear operator.

The multiplier M and its inverse are assumed to be bounded but not necessarily causal.
The passivity theorem requires causal operators in the feedback interconnection and it can
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Figure 13: In the classical input—output theory a multiplier M is inserted in the loop
resulting in system S,. The passivity theorem cannot be applied if M or M ~! is noncausal.
In this case it is required that M can be factored into M = M_ M, where M*, My and their
inverses are causal and bounded. If such a factorization exists, stability of S; is equivalent
to stability of S3. The stability conditions can be stated in terms of IQCs involving the
multiplier M.
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therefore not be applied to system So if M or M ~! is noncausal. In this case it is required
that there exists a factorization M = M_M,, where My, M', M*, (M*)~! are bounded
and causal. If such a factorization exists we use the following lemma from [43].

Lemma 1. The following are equivalent:

(i) For somee >0,

(0, MGv) < —<llo, -
(v, M*A(v)) > 0,
for all v € LT[0, 00).
(i7) For somee > 0,
(ur, MyG(MZ) tur) < —ellurlf?, as)
(ur, MZA(M ur)) > 0,
for all w € LF1[0,00) and for all T > 0.
Proof. Let u € L3[0,00). Then,
(ur, My G(M*)tur) = (M*v, My Gv)
= (v, MGu) < —l|(M2) 7P [lur|]*.

This follows since v = (M*) tuy € L'[0,00) and from the first condition in (17). In the
same way we get

(up, M* A(M; ur)) = (Miv, M* A(v)) = (v, M*A(v)) > 0,
where v = M ur € L5*[0, 00). O

Consider now system Ss in Figure 13. Stability and well-posedness of system S; and
S3 are equivalent conditions. This follows since all the multipliers in S3 are bounded and
causal. We arrive at the multiplier theorem below by applying the passivity theorem to
system S3. The conditions in the passivity theorem follow from the assumptions in the
theorem statement and from Lemma 1.

Theorem 6 (Multiplier Theorem). Assume that
(i) the feedback interconnection of G and A is well-posed,
(i1) A satisfies the IQC defined by

0 M*} , (19)

i) = |y

(iit) M can be factored into M = M_M , where M, M* and their inverses are causal and
bounded,

(iv) there exists € > 0 such that

[G(gw)} ’ T(jw) {G(jw)] < —eI, VYweR.
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Figure 14: Loop transformations can be used to transform A into a new perturbation A
that is suitable for application of the multiplier theorem.

Then the interconnection of G and A is stable.

Remark 18. If we compare this result with the corresponding result obtained with Theorem
4 we see that the factorization condition is not needed in the IQC framework. The price
paid for this is that well-posedness is required for every feedback interconnection of G' and
TA, when 7 € [0,1]. This condition is in most applications weak. In fact, we have seen
in Remark 15 that if it holds at 7 = 1 then it often holds for all = € [0,1]. Note that 7A
satisfies the IQC defined by (19) for every 7 € [0, 1].

It is often necessary to transform the feedback loop in order to obtain a system that is
suitable for application of the multiplier theorem. Figure 14 shows such a loop transfor-
mation. Here H; and H, are bounded causal linear operators. We assume that the loop
transformation is well-posed in the sense that the operators

G=(G-H)I+HG™" and A= (A+H)I-HA)™"
are well-defined on L7:[0, 00). We can formulate the following loop transformation result.
Proposition 5 (Loop Transformation). Assume that

(i) the feedback interconnection of G and A is well-posed,
(i1) A satisfies the IQC defined by
[ —HET[0 M*][I —H
H_{Hl I]{M OHH1 1]7 (20)
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where the transformation operator
I -—-H,
H, 1
and (I — HyA) are invertible on L]0, 00),

11 lu can be acto? ed lnto lu — lu_lu » wh67e .ZM lu a?ld the“ nverses are Ca’usal a?ld
+ +>
bounded,

(iv) there exists € > 0 such that

[G(iw)} ' TI(jw) {G(}'w)] < —el, VYweR.

Then the feedback interconnection of G and A is stable.

Proof. We need to show that A and G satisfy condition (ii) and (iv) in Theorem 6. Let us
verify condition (7). We notice that

2=l 7 |at):

where the notation refers to Figure 14. The assumptions on the transformation operator
implies that A is well-defined. It remains to show that assumption (ii) in the proposition
implies (i¢) in Theorem 6. This follows since

~ e X _ v v
2(50730) = |af] 7 |afu] ) 20
for all v and hence for all ¥ in L7*[0,00). Condition (iv) is verified in a similar way. O

The invertibility condition on the transformation operator and the factorization condi-
tion on M is not needed for the corresponding result derived in the IQC framework. The
proposition also indicates a very fruitful approach to obtain multipliers for the IQC frame-
work. Loop transformations and multipliers from the classical theory can be used to obtain
the IQC multiplier in (20). Hence, it is possible to include loop transformations in the IQC
multipliers.

10 The S-Procedure Lossless Theorem

The S-procedure is frequently used in system theory to derive stability and performance
results for nonlinear and uncertain systems. In fact, the idea has been used in the former
Soviet Union since the work of Lure and Postnikov [13]. The idea has since then been
developed by many researchers. The most notable early results are due to Yakubovich,
who pioneered the use of the S-procedure in systems analysis and optimal control, see, for
example, [37, 39] and the references therein. The S-procedure became popular in the robust
control community during the 1990s, largely due to a new development by Megretski and
Treil [20]. We prove a version of Megretski and Treils result in this section and show how it
can be used to prove necessary conditions for stability.

The basic idea behind the S-procedure is simple. Define the quadratic forms oy, : H - R
as

Uk(f):<‘~1)kf,f), kZO,l,... ,N (21)

where @, are linear bounded self-adjoint operators on 7. Now consider the following two
problems
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Sy oo(f) <O0forall f € H such that oy (f) >0, k=1,... ,N.
So : There exists 7, >0, k=1,... , N such that

N
oo(f) + > mhon(f) <0, VfeH.
k=1

It is a obvious fact that Sy implies S;. The two conditions S; and Ss are in general not
equivalent. However, there are some special cases when S; < Ss and the S-procedure is then
called lossless. Yakubovich proved losslessness of the S-procedure in [37] for the following
two cases

1. H=R" and N = 1.
2. H=C" and N = 2.

Megretski and Treils losslessness result holds for the case of any finite number of time-
invariant quadratic forms on Ls.

Before stating a number of important lossless results for the S-procedure we supply some
remarks and give an application of the S-procedure in the finite dimensional case.

e Note that there generally is a massive computational advantage in using the S-procedure.
To understand this we notice that the constraint in S; generally is nonconvex. For
example, in the case when ‘H = R" we have

Uk(f) = fT(ikf7

where ®;, = ®F € R" " in general may be indefinite. The problem in S is then
equivalent to the linear matrix inequality

N
@y + Zqu)k <0,
k=1

which can be solved efficiently. The situation is similar for the robust control applica-
tions we consider.

e We often use the S-procedure in applications where it can be lossy. This will in appli-
cations for control system stability mean that we obtain sufficient but not necessary
conditions for stability. However, the computational advantage discussed in the pre-
vious remark justifies the potential conservatism.

Example 25. We will here derive a necessary and sufficient condition for quadratic stability
of the system

& = Az + Bw, z(0)=x
v="Cz

where the input and output satisfies the sector constraint

(o) = (0w a0 = 1[2] [ 727 [1] 2o

where a < § are real numbers. In order to have quadratic stability it is necessary and
sufficient that there exists P = PT > 0 such that the Lyapunov function V(z) = z? Px
satisfies

2T P(Az + Bw) < 0, ¥(z,w) # 0 such that o;(Cz,w) > 0.
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This is equivalently stated as

x} r {ATP +PA PB

oo(z, w) == [w BTp 0 ] m <0, Y(z,w) # 0 s.t. o1 (Cz,w) > 0.

It follows from [37] that the S-procedure is lossless for this case of two quadratic forms
(and strict/nonstrict inequality). Hence, the above criterion is equivalent to the existence of
7 > 0 such that o¢(x,w) + 701 (Cx,w) < 0 for all (x,w) # 0. It is easily seen that we need
7 > 0 for this to hold. We can then normalize such that 7 = 1 (and P/7 — P). We have
thus shown that quadratic stability of a linear system with sector uncertainty is equivalent
to feasibility of the linear matrix inequality: 3P = PT > 0 such that

ATP 4+ PA—-2BaCTC PB+ (B+a)CT

BTP +C(5 + ) 2 <0

We will next formulate the S-procedure lossless result for the case of time-invariant
quadratic forms on a Hilbert space. We state a somewhat more general result than in [20].
To do this we will use the following properties given in [39], where [20] was extended to a
more general case.

Assumption 1. Let the quadratic forms oy, : H — H be defined as in (21) and let S; : H —
‘H be the shift operator defined by (S;f)(t) = f(t — 7). We assume that the Hilbert space,
its inner product, and the self-adjoint operators ®; are such that the following properties
hold

(¢) if f € X then S, f € H forall 7 >0

(tia) (PpS:f1,f2) > 0as 7T — o0

(iib) (®rf1,S-f2) > 0as T — o0

(131) ok (Srf) =ok(f) forall 7 >0 and all f € H

Example 26. If & = &* € RL7Z*™ and ‘H = L2[0,00), and o(f) = (®f, f) then all the
above properties hold due to the time-invariance of ® and the standard properties of the Ly
integrals.

Theorem 7 (S-Procedure Lossless Theorem). Assume the quadratic form satisfies the
properties in Assumption 1 and that there exists f* € H such that o, (f*) > 0 for k =
1,...,N. Then the S-procedure is lossless, i.e., the following are equivalent

Sy o0(f) <0 for all f € H such that oy (f) >0, k=1,... ,N.

Sy : There exists T, > 0, k =1,... ,N such that
N
oo(f) + > mhor(f) <0, VfeH.
k=1

Proof. The direction Sy — S; is obvious so it remains to prove (S; = S2). Define

K ={(oo(f),;01(f),-.. ,on(f)) : f € H},
N ={(no,n1,...,nn) :np >0, k=0,1,... ,N}.

We will first prove that the closure of K is convex. Then S; implies that XN N = @ and we
can use the separating hyperplane theorem to prove that S, holds.
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Converity of K: Let fi, fo € H and define

k1 = ((o0(f1),01(f1),.-. ,on(f1)) €K
ky = ((00(f2),01(f2), ... ,on(f2)) €K

We have

ok (VAL + VI = XS, f2) = Aow (f1) + (1 = Now(f2) +

VAL =N (@ f1,S: f2) + (@S- fo, f1))
= Aog(f1) + (1 = Aok (f2),

as 7 — 0o0. Hence
(0o(VAfL + VI = XS+ f2), ..., on(VAfL + VI = XS f2)) = Ay + (1 — Nk,
as T — oo and it follows that A\k; + (1 — A\)ks € K. This proves the claim.

The separation argument: The statement in 57 implies that KNN = 0. Hence, since
K and N are convex and A is open there exists a separating hyperplane. In other words,

there exists a nonzero N + 1-tuple (co, c1, ... ,cn) such that
cong +ciny + ... +eyny >0, V(ng,ng,...,ny) €N (22)
coko + 1K1 + ... +enky <0, V(ko,K1,...,kn) EK (23)

Consider (22). For any given € > 0, we have (no,¢, ... ,&) € N, for all ng > 0. This implies
that ¢o > 0. We can in the same way show that ¢, > 0, k =1,... ,N. Let Ky = or(f*),
then by assumption £1,...,ky > 0. Using this in (23) shows that ¢y > 0. This shows that
Sy holds with 7, = ¢x/cp, for k=1,...,N. O

The next proposition shows that the condition in the IQC-theorem sometimes also can
be necessary and not only sufficient for stability.

Proposition 6. Consider the system

v=Gw+e
w = A(v)

where G € RHZ*™, e € LT*[0,00), and A is any bounded causal operator on LJ*[0, 00) such
that A € IQC(Ily), for k=1,... ,N. Here the IQCs are defined as usual

o, (v, w) = /oo EU.‘”)] "L (jw) F(j.“)} dw > 0, Y = A@), v € Lo[0,00).

oo [0(jw) w(jw)
Assume condition (i) and (ii) of Theorem j holds and that there ezists a pair (v*,w*) €
L2™[0,00) such that oy, (v*,w*) >0, for k=1,... ,N. Under these conditions a necessary

and sufficient condition for stability is that there exist T, > 0 such that

g:f’“ [G(ﬁ“’)} ) I (jw) [G(ﬁw)] dw <0,  Vw e [0,00]. 24)

35



Proof. Sufficiency follows from Theorem 4 and Remark 16. To prove necessity we introduce

H = {(v,w,e) € L3"[0,00) : v = Gw + e}
oo(v,w,e) = [|Gw|* + [lw|l* — vlel*

or(v,w,e) = om, (v,w)
Stability of the system means that
oo(v,w,e) <0, forall (v,w,e) € H such that oy(v,w,e) >0

This is by the S-procedure lossless theorem equivalent to the existence of 7, > 0 such that

N
oo(v,w,e) + Zrkak(v,w,e) <0, (v,w,e) € H.
k=1

On the subspace (v, w,0) € L3™[0,00) : v = Gw} C H this is equivalent to

N
IGwl* + [w|l® + Y mow(Gw, w,0)

k=1
A re1 e
_ <w,(§ T M 0, M +G*G+1)w> <0, VYweL"0,00)

This is by Proposition 4 equivalent to

N

> [999] e [79)] < @6 + ), ek

k=1

This proves that (24) is necessary for stability. O

11 Uncertain Systems

We will here discuss how to treat various forms of system uncertainty with IQCs. Both un-
certainty in the system model and various disturbance and noise signals will be considered.

System uncertainty System uncertainty can be due to approximations in the model-
ing of the system, errors during identification, change of parameters and nonlinearities due
to wear, change of operating conditions (for example in gain scheduled systems), etc. Next
follows a list of uncertainties with a short discussion of their scope of application. A list of
IQCs for these uncertainties can be found in, for example, [19, 17] and the toolbox [18].

LTI Dynamic Uncertainty: This type of uncertainty is used to represent unmodeled
dynamics or model error from identification. It is represented as a stable transfer
function with bounded Ho,-norm. It is common to normalize such that ||Allg,, =
sup,cr 0(A(jw)) < 1 and insert weights W (s) that are used to determine the fre-
quency distribution of the uncertainty, i.e., where it is large and small. One can
consider either additive or multiplicative uncertainty, see Figure 15.

Parametric Uncertainty Parametric uncertainty can be used to model uncertain gains
or uncertainty in the location of real poles or zeros of the system.
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Figure 15: The left block diagram illustrates multiplicative output uncertainty and the right
block diagram illustrates additive uncertainty.

General Ly-bounded uncertainty In situations when we do not have much knowledge
of the uncertainty then we use the least informative IQC possible

awWOZKfONm2—ﬂMﬂWﬁZO

Hence, the only thing we assume about the uncertainty is causality and a norm bound.
This can be used to characterize fast time-varying parameters or time-varying and/or
nonlinear operators.

Slowly Time-varying Parameters Slowly time-varying parameters can be used to rep-
resent a change in the operating conditions of the system. This can, for example, be
used for analysis of some gain-scheduled system.

Memoryless Nonlinearities The IQCs for memoryless nonlinearities in previous sections
are valid for a large class of sector bounded nonlinearities. This allows for uncertainty
in our knowledge of the true nonlinearity.

Disturbance Signals We can use IQCs to characterize the spectral contents of load dis-
turbances and measurement noise in the system. Early contributions along this line can be
found in [17, 23].

Definition 8. A signal set £ C LI[0,00) satisfies the IQC defined by ¥ = ¥* € RLLX?
(€ € IQC(W)) if

su(e) = [ alw) (iwetio)d > 0 (25)
for alle € £.
We give two examples.

Dominant Harmonics: Let e € L1[0,00) be a bandpass signal with supp € € [~b, —a] U
[a, b], where supp € denotes the support of the Fourier transform of e. Then we can
use

W(jw) = 0, |w| € [a, ],
—ool, otherwise.

n (25). Rational approximations of ¥ can easily be obtained.

Signals with Given Spectral Characteristic: Consider a signal with spectrum

_ el
B

[e(jw)[” |H (jw)]? (26)
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Figure 16: The LFT in (27).

where H is a given transfer function. Such signals can be used to model filtered
deterministic white noise or the initial conditions response of a linear system. If ¥
satisfies

/ " W) H(jw)P do > 0

— 00

then the IQC (25) holds for all signals with spectrum (26). This follows since

[ vt P = i [ eGolaGaR a2 0

—o A3 /oo

Linear Fractional Transformations

It is common in robust control to represent an uncertain system with disturbance signals
as a Linear Fractional Transformation (LFT). We will see later that this is not crucial for
the treatment of robust control systems. However, it is a convenient mathematical notation
and it has a crucial role in many robust control papers and toolboxes, see, for example [1].

If the transfer function G € RHT™*(0F™) }ag block structure

_|G11 Gz
G_{Gm G22}

then the (lower) LFT with respect to A is defined as
E(G, A) =G + G12A(I — GggA)ingl. (27)

This LFT corresponds to the block diagram in Figure 16. As an example consider the
feedback system in Figure 17. The system on LFT form is given in Figure 18 where ¢ is
the saturation nonlinearity and

P P 1
G=|-KP —-KP -K
P P 0

o 0
0 A
can eagsily be obtained from IQCs of the two diagonal elements. Indeed, if ¢ satisfies the

IQC defined by II; and A satisfies the IQC defined by II5, where the matrices has block
structure

An IQC for the diagonal operator

o — [Hi(u) Hi(12):|
’ H:(m) Wi(22) ] 7

38



V2 w2

U1 wy

Figure 17: Control system with saturation and uncertainty.

v G w

v 0
0 A

Figure 18: The system in Figure 17 on LFT form.

then the diagonal operator satisfies the IQC defined by

(12

Iy (1) Iy (12
(11

II =

HI(lZ) I (22)

H;(m) Iz (22)

This is easily seen by writing out the expression for the IQC.
Diagonal uncertainty structures are normally called structured uncertainty in the robust
control literature.

Robust Performance Analysis

ol =al:) &

w = A(v)

Consider now the system

see also Figure 16. Assume G € RHS.Z1 F0X M+ We want to investigate if the closed loop

system satisfies various performance objectives. The most common performance measure is
the Lo-gain of the system. This corresponds to the IQC

opzi0) = [ T2 =2 le(t))de < o.
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Other examples are the Ly — Lo, gain and various weighted sensitivity measures. Robust
performance is formally defined as follows.

Definition 9. Assume e € £ C L1[0, 00). Then the system in (28) has robust performance
with respect to the performance IQC op if

(1) the system is stable
(i1) op(z,e) <0 forall z = F(G,A)e, e € €.

To derive a condition for robust performance assume that we have the noise IQC

oy(e) = / e(jw)* P (jw)e(jw)dw >0, e (29)
and the IQC
or(v, A(v)) = /Oo U9 | oy | 299 s 0, weeLpn,,),  (30)
—o0 [A()(jw) A(v)(jw)
for the uncertainty. We assume that IT has the block structure
I I
In= .
[H’{z H22]

We can now prove the following robust La-performance result.

Proposition 7. Assume that € satisfies (29) and A satisfies (30). Then the system (28)
has robust Ls-gain v if

(1) 1t is stable

(i7) the frequency domain inequality

I 0 0 0

G(]W) * 0 Hll(jLU) ‘ 0 le(jLU) G(]LU)

[ 1 } 0 0 ‘—7ZI+\II(jw) 0 { I ]SO’
0 HIQ(J(A}) 0 sz(j&))

holds for all w € [0, o0].

Furthermore, if condition (i) and (i) in Theorem 4 hold and the frequency domain inequality
above holds strictly then the system is also stable.

Proof. The result follows from the trivial direction of the S-procedure. Let

H = {(z,v,e,w) € L2210, 00) : [j}’] =G ﬁ}

w
We need
op(z,e) <0, for all (z,v,w,e) € H such that og(e) (v,w) > 0.

Z 07 o1l
This is clearly the case if 0(z,v,e,w) := op(z,e) + ow(e) + on(v,w) < 0 for all (z,v,w,e) €
‘H. Using that (z,v) = G(e,w) gives the equivalent statement

I 0 0 0
> relt 1 0 Iy 0 My ¢
o(z,v,e,w) = / {E} {G] {G] [E} dw <0 (31)
—oo LW I 0 0 |—2I+T O I]|w
0 Iy, 0 1B}

for all (e,w) € LSH'I[O, 00). Application of Proposition 4 shows that the frequency domain
inequality in (i7) is equivalent to (31). The last claim is easy to verify. O
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12 The Kalman Yakubovich Popov Lemma

We will next show that the frequency domain criterion

{G(?W)]*H(jw) [G(}'w)} <0, Vwe 0,0l (32)

is equivalent to a number of conditions on the system matrices in the realization of the
transfer functions G and II. The discrete time case can be treated similarly.
We will first derive an LQ optimal control formulation of (32). Let IT have the realization

= [(j“I_f;l”)_lB’erﬁ [(j“I_f“)_lB”} , (33)

where B, = [Bm, Bmw] and A, is Hurwitz. Using (33) and G(s) = Cg(s] — Ag) 'Bg +
D¢ (where Ag is Hurwitz) shows that (32) can be formulated as'?

jwl — A)"'B]" S [(jwI — A)~'B
[ E
where
_ A7r BmvCG _ Bﬂ',vDG + Bﬂ,w
e e |
and
I ol o 1" I 0] 0
[?T g}:_ 0 Ce|De | ar. |0 Ce|De
0 0| I 0 0| I

From Proposition 4 it follows that (34) is equivalent to existence of € > 0 such that

o [ [ 5]

— 00

= /0 (7 Qz + 227 Sw + w” Rw)dt, (35)

for all pairs (z,w) € Ly[0,00) such that ¢ = Az + Bw, z(0) = 0, w € LJ*[0,00). This is
an L@ optimal control problem. The Kalman Yakubovich Popov Lemma shows that (34)
and the LQ optimal control problem above are equivalent to an LMI condition, a Riccati
equation condition, and an eigenvalue condition on the Hamiltonian matrix corresponding
to the LQ problem.

13Here we used the following rule for system composition: If

Ai | By
Gi(s) =C;(sI — Ai)ilBi + D; =
C; | D;
for ¢ = 1,2, then
B1D»

B>

A B1Cs
G1G2 — 0 A2

Ci DiCs | DiDs
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Theorem 8 (“KYP-Lemma”). Assume the pair of matrices (A, B) is stabilizable and A
has no eigenvalues on the imaginary azis'*. Then the following statements are equivalent:

(i) there exists € > 0 such that'®
o0 o0
/ (2" Qx + 227 Sw + w” Rw)dt > e/ (|z|* + |w|?)dt,
0 0

for all pairs (x,w) € L0, 00) such that & = Ax + Bw, z(0) = 0.

(i1) we have

{(jw[ —IA)_IB]* [gT Z] [Uw[ _[A)_lB} >0, Vwe[0,00]

(iii) there exists P = PT such that

{PA+ATP PB} {Q S

BTP 0T |sT R}>O'

(tv) R > 0, and the Riccati equation
Q+PA+ATP=(PB+S)RY(B'P+ 5T (36)
has a stabilizing solution P = PT, i.e., A=A- BR™Y(PB + S)T is Hurwitz.

(v) R >0, and the Hamiltonian matriz

- A—BR™'ST BR™'BT
T 1Q—-SR'ST AT + SR'BT
has no eigenvalues on the imaginary axis.

Proof. See, for example, [30]. O

Optimization of IQCs
Let us consider the feasibility problem: Find 7, > 0 such that

N

S {G(f‘”)rnk(jw) [G(}'w)} <0, Vwel0,00]. (37)

k=1

It is no loss of generality to assume that

émnmw) [l At g [ = A7)

where again B, = [Bmv Bmw], A, is Hurwitz, and M, is linear in the 7y, i.e.,

N
Mﬂ—(T) = ZTkMka
k=1

14The condition that A has no eigenvalues on the imaginary axis can be removed, but then condition (i)
needs to be slightly changed.

15This corresponds to (35) since there A was Hurwitz and then we have ||(s] — A)~! Bw|| < ¢||w]| for some
¢ > 0. Hence, we could use € = (¢ + 1)e in (35)
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where each Mj, is a real valued symmetric matrix. We can again use the state space real-
ization G(s) = Cg(sI — Ag)~'Bg + D¢ to formulate (37) as: Find 74 > 0 such that

Ki::lﬂc {(J’wl —IA)lB]* [géi g’,j [(ij _IA)lB} >0 (38)

where the matrices are defined in the same way as before. By the KYP lemma (38) is
equivalent to the following feasibility problem for linear matrix inequalities: Find P = PT
and 7 > 0 such that

PA+ATP PB] <~ [Qn Sk

Such problems can be solved using, for example, LMIlab [7].

The Bounded Real Lemma

As a special case of the equivalence (ii) < (i¢i) in Theorem 8 we consider the important
bounded real lemma.

Let G(s) = C(sI — A)"'B + D, where A is Hurwitz. Then the following are equivalent
statements

@ MGla. <1,
(i) G(jw)*G(jw) < I, Yw € [0, 0],

(iii) there exists P = PT > 0 such that

ATP+ PA PB} [CTC’ cTD <0

BTP o|*|prc —(1-D"D)

To see this we first note that the equivalence between (i) and (i¢) follows since ||G||oo =
SUD,,¢[0,00] Omax(G(jw)) and since the condition omax(G(jw)) < 1 is equivalent with the
condition G(jw)*G(jw) < I. The equivalence between (ii) and (iii) follows from the KYP
Lemma, since

G(jw)"G(jw) < I

o [T o))
S N O S B

crc CcTD
DTC —(I-DTD)

We finally note that P > 0 since A is Hurwitz and since C*'C' > 0. Another important
special case, the positive real lemma, will be proven as a homework problem.

13 IQC analysis of Complex Systems

In this section we consider IQC analysis of complex systermns, i.e., system of high complexity.
The section contains an alternative view of the development of the material in the previous
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sections. In fact, we show how the ideas in the previous sections can be used as a theoretical
foundation for a Matlab toolbox for systems analysis. One such Matlab toolbox is the
IQCbeta toolbox, which was developed at LIDS-MIT in 1997. The most current version of
the toolbox can be found at http://web.mit.edu/cykao/www/index.html.

The system under consideration can in general be written as, see also the block diagram
in Figure 19,

N
z = ZGijj + e

j=1

al (39)
Vi = Z Gijwj + e;

j=1
w; = Az(’Uz)

where the G;; are stable LTI transfer functions, A; are bounded causal operators, and the
disturbance signals e; belong to subsets & C Ly[0,00). We assume that we want to find an
upper bound on the Ls-gain of the closed loop system, i.e., an as small as possible v > 0
such that

/ (12 = +lel?)dt <0,
0

for all input output pairs of (39). We will show how this can be done in a way that can be
implemented in a software package as Matlab.

We next use IQCs to characterize the operators Ay and the signals e, £k =0,1,... ,N.
Assume that Ay, € IQC(IIx (A, )), where A;, € A;, is a parameterization of the IQCs. It
is assumed that Il is linear in A, and that A, is a convex cone. We further assume that
II; has the realization

_ jwl — Az, ) 'Br, | jwl — Ar,) ' By,
R Ry ] [P TRCWRY e ] T

where A, is Hurwitz, B,, = [B,r,mv B,Tk7w], and M, is linear in A,,. The IQC Ay €
IQC(IT; (Ax,)) can now be formulated in state space as

/ Qi (T s U, Wiy Ary )dt > 0, V(2r,,, vk, wg) € L]0, 00) such that
0

{:i?ﬂ-k = Ar %z, + Br, vVt + Br wWi, ,(0) =0,

wi, = Ay (vg) (41)
T
Ty Ty
where  Qu, (Trp, Uy Wey Ay, ) 1= | Uk M. (Ary) | vk
W Wy,

Similarly, we assume that the disturbance signals satisfies the IQCs & € IQC(¥(Ay,)) (see
Definition 8), where Ay, is a linear parameterization of the IQCs. Again we assume that
Ay, belongs to a convex cone Ay, and that the ¥; have state space realizations

. jwl — Ay, )" By, | jwl — Ay, ) 1By,
\I!k(.]w7>\wk) = (J }p ) v :| ka(Awk) |:(J }p ) v )
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Figure 19: A block diagram of the system in (39).
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where Ay, is Hurwitz and My, is affine in Ay, . Then the IQCs & € IQC(¥4(A)) can
equivalently can be formulated as

/ Qi (Tapy, €ky Ay )dt > 0, for all (xy,,ex) € L2[0,00) such that
0
Ly, = Ay Ty, + Byer, w4, (0) =0, ex € & (42)

T
T T
where  Qu, (Tyy,, €k, Ay, ) 1= {:]}:] My, (Aw) {eﬁk]

Examples of affine parameterization of IQCs can, for example, be found in the manual for
IQCbeta [18].

Let us define the set valued functions'® @y : L [0, 00) x Ay, — P(L5*[0,00)) defined
as wy, € Dg(vk, Ar, ), where

Dy, (v, Ary,) = {wy, € LT[0, 00) : / Qe Ty > Uk, Wiy Arry, )dE > 0;
0
Ery = Ar, Ty + Bry vk + By wWik; Try (0) =0}

Let us also introduce the sets

Gk(Awk) = {ek € Lglk [07 OO) : / ka ($¢k76k7 Awk)dt >0;
0
Ly, = Ay, Ty, + By,er; 2y, (0) = 0}.

We will initially assume that the closed loop system is stable, which means that all signals
in the loop belongs to Ly. The operators Ay in (39) can then be replaced by Dy and the
noise signals e can be replaced by arbitrary signals e, € €. This follows since

e every wi = A (vg) also belongs to Dy, due to the IQC constraint (41)
e every e € & also belongs to € due to the IQC constraint (42)

This implies that all possible solutions of the original system also are valid solutions of the
new system, which is illustrated in Figure 20.

Next we use state space realizations of the G;; to obtain a realization of the linear part
of the system on the form

N
g = Agrg + Z Bg rwr, zg(0)=0
k=1

N
z=Coxqg + ZDOJka + eg (43)
k=1

N
’l)i:CiiL“G—FZDi’k’wkﬂ-ei, i=1,...,N

k=1
An upper bound to our robust performance condition can now be obtained as (here w?! =
T T T
[wlT,... ,w%] Jol = [v?,... ,v%] , and finally e’ = [e{,... ,e%] )

I (22 = +2lef*)dt <0, V(z,v,w,e) € Ly s.t.
infy subj to (43), wi € Dy (vi, Arp), and ex € Ex(Ay,) (44)
v >0, >\7|'k c Aﬂk, )\wk c Aq;k, Vk.

16P(L5"* [0,00)) denotes the set of all subsets of Ly [0, 00)
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Figure 20: IQC relaxation of the system in (39).
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The above optimization problem is generally not convex since the IQC constraints wy €
Dk (vg, Ary ), and eg € E(Ay, ) are not convex in general. However, it is possible to use the
S-procedure to obtain a convex optimization problem. The following steps will do the job

e Combine the dynamics in (43) with the dynamics in D and €. The total state space
equation for the optimization problem (44) can now be written £ = Az + Byw + Bae,

T T
z(0) = 0, where 27 = [:cg,:czl,...xflv,xio,... ,:ciN] ,wh = [wf,...,wh] ", and
finally e = [eg, el ... ,e%]T. The matrix A will be Hurwitz.

e In order to define the IQCs in terms of the complete state space vector we introduce
the quadratic forms

Qﬂ'k (ZL“, w, e, /\ﬂ'k) L= Qﬂ'k (;Uﬂ'k y Uk, Wk, /\ﬂ'k)
ka (:U, w,e, )‘wk) = Ql//k (wwk )€k /\1/1k)
where vy, is defined as a function of z,w, e from the state space equation in (43).

e Define!” Q,(z,w,e,v) = |2|?> — v*|e|?>. Then the performance constraint in (44) can
equivalently be written
1 O (z,w,€, Ay, )dt > 0

yw,e,y)dt <0, V(z,w,e) € H s.t. {0
/0 Qp(z,w,e,v)dt < (z,w,e) s {fo Oo (20,0 Ao )l = 0

where H = {(x,w,e) € Ly[0,00) : ¢ = Ax + Byw + Bse}. This is by the S-procedure
implied by'® the condition: There exists 7r,, Ty, > 0 such that

| Qo) + Yl G w0 +
0 k

T éwk (T, w,e, A\, |)dt <0, V(r,w,e) € H. (45)

e Linearity of the quadratic form gives 7, @,Tk (x,w,e,A\r,) = é,rk (z,w, e, T, Ary, ), but
TexAm, € Ar,, since Ay, is a convex cone. The same holds for the other quadratic
forms. This means that we can remove all the 7 from the problem.

o If we replace (45) by its strict counter part then we also have robust stability (this
follows as in Proposition 7) given that the two technical conditions (i) and (i¢) in
Theorem 4 hold.

e Define A\ = (A, ... ,)\¢N), A= {()‘71'17--- ,)\QpN) A € Aﬂk,)\d,k € A¢k} and
N ~
Q(:c,w,e,)\,’y) = —Qp(:c,w,e,’y) - Z Qﬂ'k(xawaeaAﬂk) -
k=1

N ~
Z ka (xawaea)‘wk)'

k=0

1TWe just use that z = Cozg + €0 + Zgzl Dy pwy and that  has xg as its first component
18even equivalent if there exists (z*,w*,e*) € H such that [ Ox, (z*,w*,e*, Ar, )dt > e(||z* |2 +|lw*||>+
lle*[|?) and [5° Qu, (&, w*, %, Ay, )dt > e([la”]|? + [lw*||* + |le*]|?) for k =1,..., N
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Then it follows from the above that the optimization problem

infy subject to
Jo Qw,w,e, A, y)dt > e(|]|* + |lwl|* + [lell?)
& = Ax + Biw + Bae, z(0) =0
v>0,e>0, A€ A

gives an upper bound on the induced Lj-gain of the system in (39).

e We will have

1t so [
Qw,we AN =|"w | |t rvm| | @
e e

where all matrices @, S, R are affine in (\,7). It is now possible to use Theorem 8
(KYP lemma) to obtain an LMI optimization problem, which is equivalent to (46). It
can be formulated as

infy subject to
3P = PT 4 >0, € A such that

PA+ AP PB QA7) S(AY)

A
> 0.
BTP 0 ST R(A7)

We have now presented the theoretical background behind IQCbeta. More details are given
in the manual [18], which can be obtained from:
http://web.mit.edu/cykao/www/index.html. See also the transparencies for next lecture.

14 Applications

Applications of IQC analysis have been reported in the following publication
e Analysis of an antiwindup scheme was considered in [10].
e An selector system was analysed in [9]

e Robust stability analysis of the longitudinal control system of a tail-less aircraft was
discussed in [11]

During the course we discussed [9] in detail.
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