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Le
tures on Input-Output Stability and IntegralQuadrati
 ConstraintsUlf J�onssonDivision of Optimization and Systems TheoryRoyal Institute of Te
hnology10044 Sto
kholm, SwedenMay 24, 20011 Introdu
tionThe basi
 system under study in the 
ourse is pi
tured in the blo
k-diagram in Figure 1.Here G is a stable linear system, � is an un
ertainty, d is a disturban
e input, and z is theoutput. We will dis
uss1. How to verify stability (of lower loop) for various un
ertainty 
lasses(a) un
ertain dynami
s(b) parametri
 un
ertainty(
) time-varying parameters(d) various nonlinearities(e) stru
tured un
ertainty, for example, a 
ombination of the above.2. How to investigate the performan
e of the 
losed loop(a) energy gain d! z(b) energy to peak gain d! z(
) exploit spe
tral 
hara
teristi
s of the disturban
e d3. The whole story from theory to software!!z dv wG�Figure 1: Basi
 system under 
onsideration.1



We will fo
us on a relatively new method for robust stability analysis, namely the frame-work of Integral Quadrati
 Constraints (IQC). The IQC framework did not appear fromnowhere. In fa
t, it has its roots in at least three strong resear
h �elds: The input-outputtheory developed by Zames, Sandberg, Willems and many others [41, 42, 43, 29, 28, 31,4, 26℄, the absolute stability theory with extraordinary 
ontributions from Yakubovi
h andPopov [32, 33, 34, 35, 36, 37, 38, 24℄, and �nally the robust 
ontrol �eld with 
ontribu-tions from, for example, Doyle, Safonov, Zames, and many others [5, 22, 1, 6, 44, 27℄. Therelationship is indi
ated in Figure 2It was A. Megretski, originally from Yakubovi
h group at S.t Petersburg state university,who �rst started to merge the western input/output tradition with the absolute stabilitytheory of Soviet Union into uni�ed framework. Some of the early work was in fa
t publishedas te
hni
al reports at KTH, where Megretski was a post-do
 in 1992, see [14, 15, 17, 16, 20℄.Further generalization was done in 
ollaboration with A. Rantzer (alumni from KTH) andwe will use their paper [19, 25℄ as the basis for an important part of these le
tures.We should also note that Yakubovi
h, who have 
ontributed to many of the main ideasbehind IQC framework, is a frequent visitor at KTH. Indeed, Yakubovi
h introdu
ed thenotion of IQCs in stability theory [36, 38, 40℄, he pioneered the use of the S-pro
edure insystems analysis [37, 39℄, and he developed the Kalman-Yakubovi
h-Popov Lemma [32℄,whi
h will be used later in the 
ourse when we dis
uss 
omputational robust 
ontrol. Still,there are some 
on
eptual as well as te
hni
al di�eren
es in the use of IQCs in these le
turenotes 
ompared to [36, 38, 40℄. For example, our development will be developed for anoperator representation of the system, and our well-posedness assumption is di�erent fromthe minimal stability assumption in [36, 38, 40℄. These distin
tions will not be addressed inthe 
ourse. The preliminary outline of the 
ourse is the following:1. Introdu
e an abstra
t framework so that many di�erent 
ases 
an be treated with onetheory. This involves(a) a dis
ussion of fun
tion spa
es and operators(b) introdu
e the 
on
epts of extended spa
e, 
ausality, and well-posedness of sys-tems.Good referen
es for this material 
an be found in [4, 31℄.2. The small gain theorem and the passivity theorem.3. Integral quadrati
 
onstraints(a) de�nition and examples(b) the IQC stability theorem(
) examplesWe base the dis
ussion on [19, 17℄. The �rst 
an be obtained at http://www.lib.kth.se/(Go to E-tidskrifter i fulltext and then IEE/IEEE se IEL Online.)4. The S-pro
edure. Here we dis
uss results in [20, 39℄.5. Un
ertain system models(a) stru
tured un
ertainty(b) linear fra
tional transformations6. Performan
e analysis and signal 
hara
terizations7. A useful formulation of the Kalman-Yakubovi
h-Popov lemma.8. Optimization of IQCs and the IQCbeta toolbox.2
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Input-Output Theory

Small gain/Passivity

Conditions on Multipliers

Absolute Stability Theory

Yakubovich

Quadratic Forms

S-Procedure

Robust Control

Multipliers

Abstract Theory

KYP Lemma

Extended spaces

Well-posedness Structured Uncertainty

Computations

Performance

Software

IQC-Theory

IQC-beta

Prototype of Software

Influenced by all three fields

Figure 2: The IQC-theory that will be dis
ussed in this 
ourse is essentially a uni�
ationof ideas from three now 
lassi
al and very important resear
h �elds: 1) The input-outputtheory that was developed in the west in 1960-1970; 2) The abstra
t stability theory thatwas developed in the Soviet Union during 1960-1975, and �nally 3) the robust 
ontrol �eldin 1980-1990.
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2 Fun
tion Spa
es and OperatorsIn the input-output theory for stability analysis we represent the systems as operators andtheir input and output signals as fun
tion from appropriate ve
tor spa
es. It is remarkablethat only the most basi
 
on
epts from operator theory are needed to develop a ri
h anduseful stability theory.2.1 Normed Ve
tor Spa
esA normed ve
tor spa
e L is a linear ve
tor spa
e equipped with a norm. We will 
onsiderve
tor spa
es 
onsisting of fun
tions that map an in�nite \time axis" T into another ve
torspa
e V . We assume T � R. Examples are the integers Z = f: : : ;�2;�1; 0; 1; 2 : : :g,Z+ = f0; 1; 2 : : :g, or the real numbers R = (�1;1) or R+ = [0;1). V will always be Rnfor a suitable dimension n. This means that we only 
onsider ve
tor spa
es over the reals
alar �eld in the le
ture notes.Every pair of fun
tions f; g 2 L satis�es the properties (linear ve
tor spa
e properties)(f + g)(t) = f(t) + g(t)(�f)(t) = �f(t)where � 2 R.The norm on L is a fun
tion k � k : L ! R+ (i.e. a nonnegative fun
tional) that satis�esthe properties(i) kfk = 0 , f � 0,(ii) k�fk = j�j � kfk,(iii) kf + gk � kfk+ kgk.Every f 2 L is supposed to have �nite norm, i.e. kfk <1. The norm measures the size ofthe signal.The most frequently appearing fun
tion spa
es in 
ontrol appli
ations are the lp and Lpspa
es, p � 1. The �rst 
onsists of dis
rete time fun
tions, i.e. they map from Z or Z+ intoR. The fun
tions in these dis
rete time spa
es 
an be represented as in�nite sequen
es ofnumbers (: : : ; f�2; f�1; f0; f1; f2; : : : ); fi 2 R (Z)(f0; f1; f2; : : : ); fi 2 R (Z+)where fi represents the fun
tion value at time i. We will use notations as lp(Z+) or lp(Z)if we expli
itly want to spe
ify the time axis.The norms are de�ned as followskfkp =  1Xi=1 jfijp!1=p lp(Z+); p = 1; 2; 3::kfk1 = supi�0 jfij l1(Z+)The norms for the 
ases with bi-in�nite time axis are de�ned 
orrespondingly.The 
ontinuous time spa
es, Lp, 
onsists of fun
tions de�ned on the real axis. We usenotation as Lp(�1;1) and Lp[0;1) to expli
itly de�ne what time axis is used. For our4



means it is enough to know that the ve
tor spa
es Lp[0;1) 
onsists of fun
tions f : R+ ! Rwith norms kfkp = �Z 10 jf jp dt�1=p Lp[0;1); p = 1; 2; :::kfk1 = ess supt2R+ jf(t)j L1[0;1)The norms for the 
ases with bi-in�nite time axis are de�ned 
orrespondingly.We often need to use ve
tor valued fun
tions. We use the notation Lmp [0;1) to denotethe fun
tions f : R+ ! Rm with norm de�ned as above where now the spatial norm is theEu
lidean norm jf j = (fT f)1=2.Remark 1. All the normed ve
tor spa
es mentioned above are also 
omplete, i.e., theirCau
hy sequen
es 
onverge. Su
h normed ve
tor spa
es are 
alled Bana
h spa
es. We willnot exploit the 
ompleteness property.2.2 Inner produ
t Spa
esWe often have additional stru
ture on our ve
tor spa
e L in terms of an inner produ
t. Theinner produ
t is a bilinear fun
tional h�; �i : L�L ! R (a sesquilinear fun
tional in 
omplexinner produ
t spa
es) satisfying the following properties (where f; g 2 L and � 2 R)(i) hf; gi = hg; fi(ii) h�f; gi = � hf; gi(iii) hf1 + f2; gi = hf1; gi+ hf2; giVe
tor spa
es with an inner produ
t are 
alled inner produ
t spa
es and the norm on thesespa
es 
an be de�ned in terms of the inner produ
t askfk =phf; fi:There are several useful inequalities that hold for inner produ
ts. The following are parti
-ularly useful hf; gi � kfk � kgk (Cau
hy S
hwartz)� 2 hf; gi � kfk2 + kgk2kf + gk2 � 2(kfk2 + kgk2)The last inequality holds for any normed ve
tor spa
e.Notation: All inner produ
t spa
es 
onsidered below are 
omplete, i.e., their Cau
hysequen
es 
onverge. Complete inner produ
t spa
es are 
alled Hilbert spa
es. We will de-note Hilbert spa
es by H in order to distinguish their spe
ial stru
ture from the normedve
tor spa
es L.Remark 2. We will only use the 
ompleteness in order to ensure existen
e of an adjointoperator in the Hilbert spa
e in a later se
tion. Most results hold for any inner produ
tspa
e, but we will not distinguish the two 
ases.The Hilbert spa
es lm2 (Z+) and Lm2 [0;1) have inner produ
ts de�ned ashf; gi = 1Xi=0 fTi gi = 12� Z ��� bf(j!)�bg(j!) d! lm2 (Z+) (1)hf; gi = Z 10 f(t)T g(t)dt = 12� Z 1�1 bf(j!)�bg(j!) d! Lm2 [0;1) (2)5



where the 
onne
tion with the frequen
y domain integrals follows from the Plan
herel for-mula. Here bf and bg denote the Fourier transforms of f and g, de�ned asbf(j!) = limN!1 NXk=0 fke�j!k; ! 2 [��; �℄bf(j!) = limT!1 Z T0 f(t)e�j!tdt; ! 2 Rfor the dis
rete and 
ontinuous time respe
tively. The above relations are de�ned in ananalogous way for the bi-in�nite 
ase.2.3 OperatorsAn operator H is a mapping from one normed spa
e into another. We will only 
onsiderthe 
ase when both spa
es are the same, i.e. H : L ! L. This means that H(f) 2 L for allf 2 L. We 
an think of the operators as mathemati
al obje
ts that represent our system.Any pair, H1; H2, of operators on L satisfy the following properties(i) The 
omposition H1H2 is also an operator on L de�ned by (H1H2)(f) = H1(H2(f))(ii) The sum �H1+�H2 for any �; � 2 R is an operator on L de�ned by (�H1+�H2)(f) =�H1(f) + �H2(f)An operator is linear if H(�f + �g) = �H(f) + �H(g)We often use the shorthand notation G(f) = Gf for the mapping of a linear operator G.We will always assume that our operators satisfyH(0) = 0. This is often not a restri
tionand it will simplify the future development1 An operator H : L ! L is 
alled bounded if thefollowing \gain" is �nite2 kHk = supf2Lf 6=0 kH(f)kkfkIt satis�es the important submultipli
ativity rulekH1H2k � kH1k � kH2kExamples of operatorsMost of the systems we 
onsider have a linear time invariant (LTI) part that is des
ribed interms of a transfer fun
tion G with poles stri
tly in the left half plane. If the system is �nitedimensional then the transfer fun
tion has realizations on the form G(s) = C(sI�A)�1B+D. All 
ontinuous time LTI systems de�nes operators on Lm1 [0;1);Lm2 [0;1) and Lm1[0;1)in terms of 
onvolutions. Let g(t) = L�1fGg be the weighting fun
tion 
orresponding toG(s) (here L�1 denotes the inverse Lapla
e transform). Then G is de�ned by the 
onvolution(Gf)(t) = (g � f)(t) = Z t0 g(t� �)f(�) d�1The assumptionH(0) = 0 implies that the initial 
ondition of operators with dynami
s (su
h as operatorsde�ned in terms of a state spa
e equation) is assumed to be zero. Instead the transient due to the initial
ondition is assumed to be part of the input signal.2This is the indu
ed norm in the 
ase of linear operators.6



It is well known from the linear systems 
ourse that G(s) must have all poles stri
tly in theleft half plane in order to be an operator on any of Lmp [0;1) p � 1. At this point it may lookas if we have the same operator independently of whi
h of these spa
es we 
onsider. Thisis not the 
ase sin
e the indu
ed norms (gains) are di�erent and the norm is an importantmeasure of how the signal through the system is ampli�ed.Remark 3. To see that a transfer fun
tion with poles in the right half plane 
annot bebounded on Lmp [0;1) (p = 1; 2;1 (or any other p)) we 
onsider an example. Let G(s) =1=(s� 1) and let u(t) = (1; t 2 [0; 1℄0; otherwiseWe get (Gu)(t) = Z t0 et��u(�)d� = (et � 1; t 2 [0; 1℄et(1� e�1); t > 1whi
h has unbounded norm in any of the Lmp [0;1)-spa
es.For example, if G is an operator on Lm2 [0;1) then the norm gives an exa
t measure ofthe worst 
ase energy gain in the system and it is given bykGk = sup!2R�max(G(j!))On the other hand, if G instead is viewed as an operator on L1[0;1) (SISO for sim-pli
ity) then the norm is a exa
t measure of the worst 
ase in
rease of the peak-value of thesignals and it is given by (the proof of this is a Homework problem)kGk = Z 10 jg(t)j dtIt is interesting to note that if G has poles in the right half plane then it is not an operatoron Lm2 [0;1) but an operator from either of Lm2 [0;1) or Lm2 (�1;1) into Lm2 (�1;1). Theoperator is now de�ned in terms of a bi-in�nite integral(Gf)(t) = Z 1�1 g(t� �)f(�) d�but the norm is un
hanged. We will dis
uss this in more detail later when we have dis
ussedthe 
on
ept of 
ausality.Next follows two examples of nonlinear operators.Example 1. Consider a nonlinear fun
tion ' : R ! R with the property that j'(x)j �kjxj for some positive 
onstant k. The nonlinearity de�nes a bounded operator on any ofLp[0;1), sin
e Z 10 j'(f(t))jpdt � kp Z 10 jf(t)jpdtess supt2[0;1)j'(f(t))j � k � ess supt2[0;1)jf(t)jwhi
h implies that k'k � k. The operator ' is often 
alled memoryless nonlinearity orstati
 nonlinearity sin
e its output at time t only depends on the input at time t.7



H1u1 e1 y� H2 e2 u2Figure 3: Blo
k diagram for the system (4).Example 2. Consider the nonlinear dynami
 operator de�ned by the input output relationy = H(u) , ( _x = f(x) + g(x)u; x(0) = 0y = h(x)where f; g; h are nonlinear fun
tions of suitable dimension and su
h that f(0) = 0, andh(0) = 0.Assume there exists a 
ontinuously di�erentiable positive semi-de�nite fun
tion3 V withV (0) = 0 su
h that dV (x)dx (f(x) + g(x)u) � 
2juj2 � jh(x)j2 (3)for all (x; u) 2 Rn�Rm. Then the system is L2-bounded with gain less that 
. To see thislet us integrate (3). This givesV (x(t)) � 
2 Z t0 juj2d� � Z t0 jh(x)j2d�:where we used V (0) = 0. If u 2 L2[0;1) then we see that h(x) 2 L2, sin
e otherwise theright hand side tends to �1 as t ! 1, whi
h 
ontradi
ts the positive semi-de�niteness ofV . It then follows that Z 10 jh(x)j2d� � 
2 Z 10 juj2d�;whi
h proves the gain bound.3 The System under 
onsiderationWe will 
onsider stability of the systeme1 = u1 �H2(e2)e2 = u2 +H1(e1) (4)whi
h is also illustrated in Figure 3. There are many important issues that must be resolvedbefore we 
an derive a reasonable stability theory for this system. For example,� In many appli
ations we want to 
onsider inputs u1 and u2 that are unbounded in thenorm we want to 
onsider. For example, f(t) = sin(t) is not in L2[0;1) but it is inL1[0;1). Does this mean that it is impossible to exploit the additional stru
ture ofthe inner produ
t when analyzing systems with sinusoidal inputs?3V is positive semi-de�nite if V (x) � 0 for all x. 8



� Even if the input u1 and u2 are in some appropriate normed ve
tor spa
e L there is noway we 
an ensure a priori that the signals in the loop are bounded (has �nite norm).This would almost be the same as assuming stability before it is proven.� Even if both H1 and H2 are reasonable models of a physi
al systems it need not meanthat the 
losed loop makes sense. Su
h systems are ill-posed and we will soon givesome examples of ill-posed systems.� Physi
al systems are always 
ausal in the sense that the systems response at a par-ti
ular time instant is only dependent on the history of the input signal and not thefuture of it. The 
on
ept of 
ausality need to be formalized.Example 3. Consider the feedba
k inter
onne
tion of H1(s) = 1=(s + 1) and the nonlin-earity H2(x) = �x�x2. Let the inje
ted signals be u1(t) = �(t) and u2 = 0 (where � is theunit step fun
tion). The 
losed loop system is des
ribed by the di�erential equation_x = x2 + 1; t � 0The solution ar
tan(x) = t for t � 0 or equivalently x(t) = tan(t)�(t), t � 0 goes to in�nityas t! �=2. Hen
e the system has �nite es
ape time and we will 
onsider it to be ill-posed.The next two examples are taken from [31℄.Example 4. Let H1(s) = 1; H2(s) = e�sT � 1 and u2 � 0. In this 
ase we get the 
losedloop system operator (I +H1(s)H2(s))�1H1(s) = esT , and thus y(t) = u1(t + T ). Hen
e,the system is not 
ausal.Example 5. Consider the 
ase when H1 = 1, H2 = k and u2 = 0. If k = �1, then thereturn ratio (I +H1H2) is not invertible and the system is 
learly ill-posed. For all other
ases of k we get (I + H1H2)�1H1 = 1=(1 + k). However, even now it is questionablewhether the system is well-posed or not in the 
ase jkj > 1. For example, if the system isa model of two inter
onne
ted physi
al systems then there will always be some small delayin the loop. In this 
ase it 
an be shown that the step response for the physi
al system isunstable, i.e., y(t) ! 1 as t ! 1. This is in 
on
i
t with the expe
ted solution from themodel y(t) = 1=(1+ k)�(t). Hen
e, for some appli
ations this system should be regarded asill-posed.Example 6. In systems with dis
ontinuous nonlinearities there may appear 
hattering.For example, we may have a relay that swit
h in�nitely fast between its two output values.Su
h a signal is not suÆ
iently regular to be integrable and it does not belong to any of thefun
tion spa
es above. There is a theory that deals with su
h problems but it is beyond thes
ope of this 
ourse.As we have seen, many strange things 
an happen in a 
losed loop system and themethods we will develop are not able to dete
t some of the problems in the examples above.In fa
t, all the methods to be presented rely on an assumption that the loop signals e1and e2 exist and are suÆ
iently regular over any �nite time interval. This ex
ludes the�rst example from 
onsideration. Another de�
ien
y of the forth
oming results is thatthey generally 
annot dete
t if the loop signals depends 
ausally on the inputs or not. Inorder to make reasonable assumptions on system (4) we will introdu
e extended spa
es, thenotion of 
ausality, and well-posedness. In short well-posedness is just an assumption onthe mathemati
al model (4) to make sense as a model of a physi
al system.9



Extended spa
esAn extension of a normed ve
tor spa
e 
onsists of signals that may not be bounded in thenorm of the ve
tor spa
e but where any trun
ation to a �nite time intervals is bounded.This leads us to the introdu
tion of extended spa
es. We will 
onsider extended spa
es onlyfor time-axes T � R+. The reason is that we only 
onsider 
ausal systems starting at timezero. To formalize the de�nition of extended spa
e we introdu
e the trun
ation operator PTde�ned as follows. Let f : T ! V . Then(PT f)(t) = (f(t); t � T (t; T 2 T )0; t > TNotation: We will often use the notation fT = PT f .De�nition 1. The extended spa
e Le is then de�ned asLe = ff : T ! V : kfTk <1; 8T � 0gwhere k � k is the norm on L. We will assume that the norm k � k is su
h that� For every f 2 Le we have kfT1k � kfT2k for all T2 � T1 .� For all f 2 L we have kfT k ! kfk as T !1.These above 
onditions hold for the spa
es lpe(Z+) and Lpe[0;1), p = 1; 2; 3; : : : ;1that will be 
onsidered in our appli
ations.Example 7. We have1. sin(t) 2 Lpe[0;1)2. et 2 Lpe[0;1)3. 2k 2 lpe(Z+)Causality of operators on extended spa
esAn operator H : Le ! Le (or H : L ! L) is said to be 
ausal (nonanti
ipative) ifPTHPT = PTH; for all T 2 T .This means that the value at a 
ertain time instant does not depend on future values ofthe argument. To see this we just note that the de�nition means that H(fT )(t) = H(f)(t)when t � T . In other words, it does not matter if we trun
ate the future of the input signalwhen 
onsidering the output at a 
ertain time instant. In other words the system is not a\
rystal ball".An operator4 H : L ! L is said to be non
ausal if it is not 
ausal. The purest form ofnon
ausality is anti
ausality. H is said to be anti
ausal if (I �PT )H = (I �PT )H(I �PT ),for all T � 0. This means that the value at a 
ertain time does not depend on past valuesof the argument. Figure 4 illustrates the 
on
epts of 
ausality and anti-
ausality.4We will only 
onsider non
ausal operators on bi-in�nite spa
es as analysis �lters in IQC analysis. That'sthe reason we do not dis
uss non
ausality in 
onne
tion with extended spa
es.
10



Anti-causal operatorCausal operator

u
H(u)

u
H(u)

Figure 4: The left hand side illustrates the operation of an 
ausal operator. Only the pastof the input a�e
t the output at a 
ertain time instant. The right hand side illustrates ananti-
ausal operator.Boundedness of a Causal Operator:A 
ausal operator H : Le ! Le is bounded if the gain de�ned as5kHk = supf2Lf 6=0 kH(f)kkfk (5)is �nite. Note that the gain is de�ned in terms of fun
tions in L and not the 
orrespondingextended spa
e. However, the de�nition in (5) implies boundedness on Le, sin
ekPTH(f)k = kPTH(fT )k � kPT k � kHk � kPT fk = kHk � kPT fkfor all f 2 Le and all T 2 T . It 
an be shown that kHk is the smallest su
h bound, see [31℄.It is 
lear that a bounded 
ausal operator on Le is also a well de�ned bounded 
ausaloperator on L. This follows sin
e if f 2 L then kPTH(f)k � kHk � kfk for all T 2 T . Wealso have the reverse impli
ation: A bounded 
ausal operator on L is also a well de�nedbounded 
ausal operator on Le, be
ause PTH(u) = PTH(uT ), and uT 2 L. We have thusshown that H is 
ausal and bounded on Le , H is 
ausal and bounded on LExamplesWe will �rst introdu
e notation that will be used extensively in the le
ture notes.RLm�m1 The spa
e 
onsisting of proper real rational matrix fun
tions with no poles onthe imaginary axis.RHm�m1 The subspa
e of RLm�m1 
onsisting of fun
tions with no poles in the 
losedright half plane.5The de�nition implies that H(0) = 0, whi
h means that operator (system) is assumed to have a zerotransient response. This is often a reasonable assumption sin
e the initial 
ondition often 
an be representedas a input or output disturban
e of the system. 11



Example 8. Ea
h operator G 2 RHm�m1 has a state spa
e realization G(s) = C(sI �A)�1B+D and 
orresponding weighting fun
tion g(t) = CeAtB�(t)+DÆ(t). The operationon u 2 Lmp [0;1) is de�ned in terms of the 
onvolutiony(t) = (Gu)(t) = (g � u)(t) = Z t0 CeA(t��)Bu(�)d� +Du(t);whi
h shows that G is 
ausal. Proposition 1 below shows that the operator is bounded onall Lmpe[0;1).Example 9. An operator G 2 RLm�m1 is generally non
ausal. It 
an be split into a 
ausalterm G
 and an anti
ausal term Ga
, su
h that G = G
 + Ga
. This is done using partialfra
tions expansion in su
h a way that G
 2 RHm�m1 and Ga
(�s) 2 RHm�m1 , i.e., G

ontains the stable poles and Ga
 
ontains the unstable poles. As an example, we haveG(s) = 2(s+ 1)(s� 1) = �1s+ 1| {z }G
 + 1s� 1| {z }Ga
We have already seen in Remark 3 that 1=(s�1) 
annot be bounded on Lpe[0;1). However,it turns out that it is a bounded anti
ausal operator on Lp(�1;1). In fa
t, any G(s) =C(sI � A)�1B + D, with A unstable (all eigenvalues in the right half plane) de�nes ananti
ausal operator on Lp(�1;1) by the 
onvolution(Gu)(t) = Z 1t CeA(t��)Bu(�)d� +Du(t):In the general 
ase an operator G 2 RLm�m1 is de�ned by 
onvolution with its weightingfun
tion g(t) = g
(t)+ga
(t), where6 we have g
(t) = L�1fG
(s)g and ga
(t) = L�1fGa
(s)g.We get (the dire
t term 
an be in
luded in either of g
 and ga
 as a dira
 distribution)(Gu)(t) = Z 1�1 g(t� �)u(�)d� = Z t�1 g
(t� �)u(�)d� + Z 1t ga
(t� �)u(�)d�:The next proposition 
an be used to show boundedness of the linear operators in the previoustwo examples.Proposition 1. The operator de�ned by the 
onvolution(Hu)(t) = Z 1�1 h(t� �)u(�)d�where h 2 L1(�1;1) is bounded on Lp(�1;1), p � 1 with gain kHk � khk1 (and equalto7 khk1 for L1(�1;1)). Furthermore, if h(t) = 0, for t � 0, then H is also 
ausal.Remark 4. Note that the proposition is also valid when the operator is 
onsidered as amapping H : Lp[0;1)! Lp(�1;1) (Note H : Lp[0;1)! Lp[0;1) if H is 
ausal.)6We are here 
onsidering one sided Lapla
e transforms. For G
 = C
(sI �A
)�1B
, where A
 is stable,we have g
(t) = C
eA
tB
 for t � 0 and zero otherwise. Then L(g
(t)) = R10 e�stg
(t)dt with absolute
onvergen
e for Re s � 0 (in fa
t, for Re s > �max(A
). For ga
 we use a one sided Lapla
e transformde�ned over negative times7This is what you prove in Homework set 1 12



Proof. We follow the proof in [4℄. Let u 2 Lp(�1;1), and let 1p + 1q = 1. Then����Z 1�1 h(t� �)u(�)d� ���� � Z 1�1 jh(t� �)j1=pju(�)j � jh(t� �)j1=qd�:We 
an now use H�olders inequality kfgk1 � kfkp � kgkq with f(�) = jh(t� �)j1=pju(�)j 2 Lpand g(�) = jh(t� �)j1=q 2 Lq . This gives����Z 1�1 h(t� �)u(�)d� ���� � �Z 1�1 jh(t� �)j � ju(�)jpd��1=p�Z 1�1 jh(t� �)jd��1=q ;where we note that the last term is khk1=q1 . If we take Lp-norms on both sides of thisinequality then we getkh � ukp � khk1=q1 �Z 1�1�Z 1�1 jh(t� �)jju(�)jpd�� dt�1=p� khk1=q1 � khk1=p1 � kukp = khk1 � kukpwhere we used that kh � fk1 � khk1 � kfk1 for any h; f 2 L1.It now follows from Proposition 1 and the two examples above that� Ea
h G 2 RH1 is a bounded 
ausal operator on Lp[0;1).� Ea
h G 2 RL1 is a bounded operator on Lp(�1;1).Remark 5. We will only 
onsider systems with 
asual operators. However, non
ausal op-erators will be used as \analysis �lters" or \multipliers" in the dis
ussion on IQCs. Theywill only be used for analysis of norm bounded signals i.e., signals in H for fun
tion spa
eswhere the time axis is bi-in�nite, e.g. T = R.The gain bound in Proposition 1 
an be improved for L2-spa
es.Proposition 2. We have1. Let G 2 RL1 be an operator on L2(�1;1) thenkGk = max!2[0;1℄�max(G(j!))whi
h often is denoted kGkH1.2. Let G 2 RH1 be an operator on L2[0;1) thenkGk = max!2[0;1℄�max(G(j!)):Proof. See [44℄. The idea is to 
onsider the frequen
y domain representation of the operatorby(j!) = G(j!)bu(j!)If the input bu has a Dira
 at the frequen
y where the optimization problem below takes inmaximum then it is possible to a
hieve the gain bound.Example 10. An operator de�ned by a nonlinearity ' : R ! R as in Example 1 is both
ausal and anti-
ausal. Su
h operators are 
alled memoryless.Example 11. A nonlinear operator de�ned by a state spa
e representation as in Example 2is 
ausal sin
e the integration is assumed to be done forward in time.13



Well-posedness and StabilityIn the system (4) we assume that H1 and H2 are 
ausal operators on Le. Well-posedness isde�ned as follows:De�nition 2 (Well-posedness). The system in (4) is well-posed if for any u1; u2 2 Lethere exist a solution e1; e2 2 Le. Furthermore, the loop signals e1; e2 depends 
ausally onu1 and u2.De�nition 3 (Stability). The system (4) is stable if it is well-posed and if there are pos-itive 
onstants 
1; 
2; 
3; 
4 su
h thatke1T k � 
1ku1Tk+ 
2ku2Tkke2T k � 
3ku1Tk+ 
4ku2Tkfor all T 2 T .Remark 6. If the system is stable and if u1 and u2 are norm bounded, i.e., u1; u2 2 L, thene1; e2 2 L.Remark 7. A well posed system is not the same as a stable system. In a system that iswell-posed but not stable, there may not be a (time) uniform gain as above de�nite. Forexample, if we 
an have keTk = O(e
T kuTk) then the system is not stable.Remark 8. Well-posedness is a generi
 property for any good model of a physi
al system.Conditions for well-posedness are dis
ussed in detail in [31℄.Let us trun
ate all terms on both sides of both equations in (4). We use the notationPT e1 = e1T and the fa
t that 
ausality implies that PTH1(e1) = PTH1(e1T ). We gete1T = u1T � PTH2(e2T )e2T = u2T + PTH1(e1T ) (6)If the system (4) is well-posed then its trun
ated version is a well de�ned equation systemin the normed spa
e L for all T 2 T . This means that we 
an take norms on both sides ofthe equations in (6). This will be used in the derivation of the small gain theorem.4 The Small Gain TheoremThe small gain theorem is a fundamental result in stability theory. It generally gives 
on-servative results but this 
an sometimes be alleviated by the use of loop transformationsand multipliers, as is dis
ussed in Se
tion 6.Theorem 1. Assume that(i) the system in (4) is well-posed,(ii) kH1k � kH2k < 1.Then the system is stable.Proof. Consider the trun
ated system equations in (6). Using e2T = u2T + PTH1(e1T ) inthe �rst equation gives e1T = u1T � PTH2(u2T + PTH1(e1T )) (7)e2T = u2T � PTH1(e1T ) (8)14



If we take norms in (7) then we getke1T k � ku1Tk+ kH2k � ku2T k+ kH2k � kH1k � ke1T kHen
e, ke1Tk � 11� kH1k � kH2kku1Tk+ kH2k1� kH1k � kH2kku2Tk (9)Finally, take norms of (8) and use (9). We getke2Tk � kH1k1� kH1k � kH2kku1Tk+ 11� kH1k � kH2kku2Tk (10)Example 12. Consider the system in (4) whenH1 is an LTI operator with transfer fun
tionG(s) = C(sI � A)�1B +D and when kH2k � 1 (for both signal spa
es 
onsidered below).The small gain theorem ensures that the 
losed loop system is stable if kGk < 1. If we letthe signal spa
e Le be L2e[0;1) then the stability 
ondition be
omeskGkH1 = sup!2[0;1℄ jG(j!)j < 1If the signal spa
e is L1e[0;1) then the stability 
ondition be
omeskGk1 = Z 10 jCeAtBj dt+ jDj < 1We 
an now argue that the L1-norm 
ondition gives a more 
onservative 
ondition forstability than the H1-norm. This follows sin
e (the weighting fun
tion g(t) = CeAtB�(t)+DÆ(t)) jG(j!)j = j Z 10 g(t)e�i!t dtj � Z 10 jCeAtBj dt+ jDjHen
e, if kGk1 < 1, then kGkH1 < 1. So is there any point in using the fun
tion spa
eL1[0;1)? There is an important point. The stability bounds (9) and (10) gives bounds onthe magnitudes of e1T ; e2T that hold at any time instant when we use L1e[0;1) whereaswe get energy bounds when we use L2e[0;1). The 
hoi
e of signal spa
e must re
e
t ourrequirements on the real system.Example 13. Let H1 = G 2 RH1 and a let H2 be a se
tor bounded nonlinearity H2 ='(x) 2 se
tor[�k; k). If the signal spa
e is L2[0;1) then the system is stable if kGkH1 <1=k.5 The Passivity TheoremThe passivity theorem is another fundamental result in stability theory. It has gainedwidespread appli
ation in analysis of ele
tri
 
ir
uits, see [4℄, and me
hani
al systems, see [3℄.The passivity theorem exploits the additional stru
ture of the inner produ
t in a Hilbertspa
e. We will assume that the inner produ
t satis�es the following propertieshy; uiT := hyT ; uT i = hy; uT i = hyT ; uiand, as before, kuT k is a nonde
reasing fun
tion of T and if u 2 H then limT!1 kuTk = kuk,where kuk = phu; ui. These properties are satis�ed in our standard spa
es l2e(Z+) andL2e[0;1). 15



De�nition 4. A 
ausal operator H : He ! He is� passive if hHu; uiT � 0 for all u 2 He, 8T � 0� stri
tly output passive (SOP) if there exists an " > 0 su
h thathHu; uiT � "kPTH(u)k2; 8u 2 He; 8T � 0Remark 9. Note that we do not require the operator to be bounded in the de�nition ofpassivity, see Example 16 for a passive operator with in�nite gain. However, a stri
tlyoutput passive operator is always bounded sin
e"kPTH(u)k2 � hHu; uiT � kPTH(u)k � kuT k;whi
h implies that kHk � 1=".Example 14. An LTI system G(s) 2 RHm�m1 is� passive if G(j!) +G(j!)� � 0 for all !,� SOP if there exists " > 0 su
h that 12 (G(j!) +G(j!)�) � "G(j!)�G(j!); 8!,We prove this in Example 20 in Se
tion 7.Example 15. In this example we 
onsider the operatorH de�ned by the input-output mapof the nonlinear system _x = f(x) + g(x)u; x(0) = 0y = h(x)where f(0) = 0 and h(0) = 0. Then H is SOP if there exists a 
ontinuously di�erentiablepositive semide�nite fun
tion V with V (0) = 0 su
h that�V�x f(x) = �kh(x)Th(x);�V�x g(x) = hT (x)where k > 0. The system is passive if the above holds with k = 0. The proof follows sin
e_V (x) = �V�x (f(x) + g(x)u) = �kjyj2 + yTu. Integration givesV (x(T ))� V (x(0)) = Z T0 yTu dt� k Z T0 jyj2 dtSin
e, V (x(0)) = 0 and V (x(T )) � 0, we get hy; uiT � kkyTk2.Example 16. Consider the following simpli�ed version of the LuGre-fri
tion model [21, 2℄dzdt = v � jvjg(v)z; z(0) = 0g(v) = 1�0 (FC + (FS � FC)e�(v=vs)2)F = �0z (11)16



where F denotes the fri
tion for
e, v is the relative velo
ity of the surfa
es, �0 is a sti�ness
oeÆ
ient, FS is the Stribe
k fri
tion, and FC is the Columb fri
tion. It is assumed thatFS � FC > 0 This fri
tion model is passive as an operator H : v 7! F on L2e[0;1) sin
eFv = �0(z dzdt + jvjg(v)z2) � �0z dzdt :Integration gives hF; viT � 12�0z(T )2 � 0;whi
h proves passivity. It is easy to see that the fri
tion operator is unbounded sin
e a smallinput pulse 
an make z stay at a nonzero value when the input has turned to zero. Thismeans that the L2-norm of the output is in�nity.We will next prove one of the simpler formulations of the passivity theorem.Theorem 2 (The Passivity Theorem). Assume that(i) the system in (4) is well-posed, u2 = 0(ii) H1 : He ! He is stri
tly output passive(iii) H2 : He ! He is passiveThen the system is stable in the sense ke2Tk � 1"ku1Tk, for all T � 0, where " is from thede�nition of stri
t output passivity.Remark 10. The theorem shows that e2 is bounded but note that e1 may not be bounded(in L2-norm). However, if H2 is bounded then we also have ke1T k � 
ku1T k for all T � 0for some 
 > 0.Proof. The trun
ated system now be
omese1T = u1T � PTH2(e2)e2T = PTH1(e1)We get hu1; H1(e1)iT = he1; H1(e1)iT + hH2(e2); e2iT � "kPTH1(e1)k2This gives kPTH1(e1)k2 � 1"ku1Tk � kPTH1(e1)k, i.e., kPTH1(e1)k � 1"ku1Tk.Example 17. Consider the system in Figure 5, whi
h models position 
ontrol of a servowith fri
tion. We assume that the fri
tion 
an be modeled as the LuGre fri
tion in Exam-ple 16 and that the PD-
ontroller has transfer fun
tion K(s) = k1 + k2s, where k1; k2 > 0.The system 
an equivalently be represented ase1 = d�H(v)v = Ge1where H denotes the LuGre fri
tion model and G(s) = sms2+k2s+k1 . We know that H ispassive and we have Re fG(j!)g = k2jG(j!)j2;i.e., G is stri
tly output passive. Hen
e, it follows from the Passivity theorem that kvT k �
kdT k for some 
 > 0. 17
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Figure 6: A Loop Transformation6 Loop Transformations and MultipliersThe small gain theorem and the passivity theorem generally give 
onservative stability
onditions. Loop transformations and the introdu
tion of multipliers in the feedba
k loopare means to redu
e 
onservatism.Loop TransformationsFigure 6 shows a loop transformation of the system in (4), whi
h we assume to be well-posed. Here K : Le ! Le is a suitably 
hosen linear bounded and 
ausal operator. Theloop transformation is well-posed if fH1 = (I +H1K)�1H1 is a well de�ned operator on Le.Then the transformed system is well-posed and stability of the system (4) is equivalent tostability of its transformed version.
18
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Figure 7: Introdu
tion of multipliersMultipliersFigure 7 shows how a multiplier and its inverse have been introdu
ed in the feedba
k loop.If both M and its inverse M�1 are bounded 
ausal operators on Le then stability of thesystem in Figure 7 implies stability of the system in (4). It is also possible to 
onsidernon
ausal �lters M but then several te
hni
al 
onditions need to be introdu
ed.The main point with the loop transformations and the multipliers is that it may be easierto prove stability for the transformed system than the original system.We will in the next se
tion dis
uss the IQC framework for stability analysis in Hilbertspa
es. The introdu
tion of multipliers and loop transformations is done impli
itly andwith great simpli
ity in the IQC framework. This is very 
onvenient in advan
ed systemsanalysis. We will in a later se
tion dis
uss the 
onne
tion between the IQC te
hnique andthe 
lassi
al loop transformation and multiplier ideas dis
ussed above.Equivalen
e between Possitivity and Unity GainWe will end this se
tion with a pe
uliar little result whi
h exempli�es that basi
 mathemat-i
al ideas often extends to mu
h more general situations.Proposition 3. Let H : H ! H and assume that H + I is invertible on H. De�ne S :H ! H as S = (H � I)(H + I)�1. Then we have the following propertyhf;Hfi � 0; 8f 2 H , kSk � 1:Remark 11. The proposition is a generalization of the 
onformal mapping S(z) = z�1z+1 be-tween the right half 
omplex plane and the uni
 
ir
le to nonlinear operators on a Hilbertspa
e.Proof. Let g 2 H. Then f = (H + I)�1(g) satis�es(i) S(g) = (H � I)(f)(ii) g = (H + I)(f)If we use (i) and (ii) respe
tively then we getkS(g)k2 = kH(f)k2 + kfk2 � 2 hH(f); fikgk2 = kH(f)k2 + kfk2 + 2 hH(f); fiAfter subtra
tion we get kgk2 � kS(g)k2 = 4 hH(f); fiwhi
h proves the 
laim. 19



7 Adjoint operators and Quadrati
 FormsThe integral quadrati
 
onstraints, whi
h we dis
uss in the next se
tion, are de�ned interms of time-invariant quadrati
 forms. In order to introdu
e the time invariant quadrati
forms we need to dis
uss the Hilbert adjoint operator, self-adjoint operators, and positive-de�niteness of self-adjoint operators.De�nition 5. Let H : H ! H be a bounded linear operator. Then the Hilbert adjoint H�of H is the operator H� : H ! H su
h thathHf; gi = hf;H�gi 8f; g 2 HExample 18. A matrix M 2 Rn�n de�nes a bounded linear operator on the Hilbert spa
eRn equipped with the standard inner produ
t hx; yi = xT y. The Hilbert adjoint M� is thetranspose of the matrix, i.e., M� = MT (if the matrix is 
omplex-valued then M� = MT ).This follows sin
e hMx; yi = xTMT y = 
x;MT y� :Example 19. LetH 2 RHm�m1 be an operator on Lm2 (�1;1) with state spa
e realizationH(s) = C(sI � A)�1B + D, where A is a stable matrix. Then H has Hilbert adjointH�(s) = H(�s)T = �BT (sI + AT )�1CT + DT . We will derive this in the time-domain.Let h0(t) = CeAtB�(t), thenhHf; gi = Z 1�1�Z t�1 h0(t� �)f(�)d� +Df(t)�T g(t)dt= Z 1�1 f(�)T �Z 1� h0(t� �)T g(�)dt+DT g(t)� d� = hf;H�giwhi
h shows that the adjoint is an anti-
ausal operator with state spa
e realization H�(s) =H(�s)T = �BT (sI +AT )�1CT +DT .More generally, the adjoint of an operator H 2 RLm�m1 is H�(s) = H(�s)T . This 
anbe shown by spliting H into its 
ausal and anti
ausal term and then 
ompute the adjointof these two terms and �nally add them to get the result. However, a more dire
t way is to
onsider the frequen
y domain representation of the inner produ
thHf; gi = Z 1�1(H(j!) bf(j!))�bg(j!)d!= Z 1�1 bf(j!)�(H(j!)�bg(j!))d! = hf;H�giand use the fa
t H(j!)� = H(�j!)T .We have now seen two examples where it was possible to 
onstru
t the adjoint. Next westate the reassuring fa
t that there always exists an Hilbert adjoint. Several useful propertiesare also stated.Theorem 3. The Hilbert adjoint H� in De�nition 5 exists uniquely and it is a linear oper-ator with kH�k = kHk. Furthermore, for bounded linear operators H;H1; H2 : H ! H wehave the following propertiesa) (�H)� = �H� b) (H1 +H2)� = H�1 +H�2 
) (H�)� = Hd) (H1H2)� = H�2H�1 e) kT �Tk = kTT �k = kTk2 f) (H�)�1 = (H�1)�where in the last statement we assume that H is invertible.20



Proof. See [12℄ for a full proof. The existen
e and uniqueness is a 
onsequen
e of the Rieszrepresentation theorem. The properties a)�f) are rather straightforward to derive. In fa
t,the proof is 
ompletely analogous to the matrix 
ase.We will next introdu
e the 
on
ept of self-adjoint operator and positive de�niteness ofa self-adjoint operator.De�nition 6. A bounded linear operator H : H ! H is self-adjoint if H� = H . A self-adjoint operator isPositive semi-de�nite, denoted H � 0 if and only if hHf; fi � 0 for all f 2 H.Positive de�nite, denoted H > 0, if and only if there exists " > 0 su
h thathHf; fi � "kfk2; 8f 2 H:H is said to be negative semi-de�nite if �H is positive semi-de�nite and H is negativede�nite if �H is positive de�nite.The integral quadrati
 
onstraints in the next se
tion are de�ned in terms of time-invariant quadrati
 forms on a Hilbert spa
e. A bounded self-adjoint operator � = �� :H ! H de�nes a (bounded) quadrati
 form � : H ! R as �(f) = h�f; fi. The quadrati
form is positive semi-de�nite if �(f) � 0 for all f 2 H and stri
tly positive de�nite ifthere exists " > 0 su
h that �(f) � "kfk2, for all f 2 H. Negative semi-de�niteness andnegative de�niteness are de�ned analogously. It follows from De�nition 6 that � is positivesemi-de�nite (positive de�nite) if and only if � � 0 (� > 0).For a subspa
e eH � H we also have that � = �� : H ! H de�nes a quadrati
 form� : eH ! R by the relation �(f) = h�f; fi, f 2 eH. It is obvious that � � 0 in this 
ase alsoimplies that � � 0. The reverse impli
ation is not at all 
lear. However, it turns out thatthe reverse impli
ation holds when H = L2(�1;1) and eH = L2[0;1). Here we use thatL2[0;1) � L2(�1;1) if for ea
h f 2 L2[0;1) we de�ne f(t) = 0 for t � 0. We use thisassumption from now on.Proposition 4. Let � = �� 2 RLm�m1 and de�ne the quadrati
 form �(f) = h�f; fi onL2[0;1). Then the following are equivalent(i) �(f) � 0 for all f 2 L2[0;1)(ii) �(j!) � 0 for all ! � 0.Proof. The proof is taken from [20℄. The impli
ation (ii) ) (i) is more or less obvioussin
e L2[0;1) � L2(�1;1) and � � 0 implies that � � 0 on L2(�1;1). For theother dire
tion we use that the quadrati
 form is time-invariant on L2(�1;1). Indeed, ifS� : L2(�1;1) ! L2(�1;1) is the shift operator de�ned by (S�f)(t) = f(t � �), thenwe have �(S�f) = h�S�f; S�fi = Z 1�1( bf(j!)e�j!� )��(j!) bf(j!)e�j!�d!= Z 1�1 bf(j!)��(j!) bf(j!)d! = h�f; fi = �(f):Hen
e, if � � 0 on L2[0;1) then � � 0 on L2[�;1) for any � > �1. Next, we use that[�>�1L2[�;1) is dense in L2(�1;1) and that � is 
ontinuous on L2(�1;1) to inferthat � � 0 on L2[0;1) implies � � 0 on L2(�1;1). The later is equivalent to �(j!) � 0for all ! � 0. 21



Example 20. We will here prove that G 2 RHm�m1 is stri
tly output passive if 12 (G(j!)+G(j!)�) � "G(j!)�G(j!) for some " > 0. This follows sin
ehGu; uiT � "kPTGuT k2 = hGuT ; uT i � "kPTGuT k2� 12 h(G+G�)uT ; uT i � "kGuT k2= �(12(G+G�)� "G�G)uT ; uT� � 0;where we used the above proposition in the last inequality.8 Integral Quadrati
 ConstraintsIntegral Quadrati
 Constraints (IQCs) give useful 
hara
terizations of the stru
ture of agiven operator on an Hilbert spa
e. The IQCs are de�ned in terms of quadrati
 formswhi
h are de�ned in terms of self-adjoint operators. The resulting stability theory uni�esand extends the 
lassi
al passivity based multiplier theory. The stability 
onditions are
omputationally attra
tive and we will dis
uss a method for 
omputing the multipliers thatappear in the stability 
riterion later.We 
onsider systems on the form (4) for the spe
ial 
ase when H1 is de�ned in terms ofa 
ausal and bounded LTI transfer fun
tion G, and when H2 = ��, where � is a boundedand 
ausal operator on H. The system equations be
ome8v = Gw + ew = �(v) (12)We will be parti
ularly interested in the 
ase when the operators are de�ned on either ofthe extended spa
es He = Lm2e[0;1) or He = lm2e[0;1).Next we de�ne the IQC for operators on He. It is important to noti
e that the IQCis de�ned on the Hilbert spa
e H and does not involve trun
ations of the signals. This ismakes it mu
h easier to obtain general and 
exible results 
ompared to when multipliers andloop transformations are used in the framework of the small gain theorem or the passivitytheorem. We will dis
uss this in the next se
tion.De�nition 7 (IQC). Let � be a bounded and self-adjoint operator. Then � satis�es theIQC de�ned by � if��(v;�(v)) = �� v�(v)�;� � v�(v)�� � 0; 8v 2 H (13)We often 
all � the multiplier that de�nes the IQC. We will sometimes use the shorthandnotation � 2 IQC(�) to mean that � satis�es the IQC de�ned by �.Remark 12. If H = Lm2 [0;1), then � 
an be taken as a transfer fun
tion satisfying �(j!) =�(j!)�. The 
ondition in (13) redu
es to��(v;�(v)) = Z 1�1 " bv(j!)[�(v)(j!)#��(j!)" bv(j!)[�(v)(j!)# � 0; 8v 2 Lm2 [0;1) (14)8A disturban
e in the se
ond equation 
an be in
luded in e sin
e G is linear and bounded.22



If H = lm2 [0;1) then � 
an be taken as a transfer fun
tion satisfying �(ej!) = �(ej!)� forall ! 2 [��; �℄. The 
ondition in (13) redu
es to��(v;�(v)) = Z ��� " bv(ej!)[�(v)(ej!)#��(ej!)" bv(ej!)[�(v)(ej!)# � 0; 8v 2 lm2 (Z+)Remark 13. The two simplest examples of multipliers are�1 = �I 00 �I� ; and �2 = �0 II 0�We see that �1 de�nes a valid IQC for operators that have gain less than one. The multiplier�2 
orresponds to passivity.Let us 
onsider a 
ouple of examples.Example 21. Let ' be a nonlinearity that satis�es the se
tor 
ondition �x2 � '(x; t)x ��x2, for all (x; t) 2 R�R+. Then ' satis�es the IQC de�ned by�(j!) = ��2�� � + �� + � �2 �To see this we noti
e that (this relation is in the time domain)� v'(v)�T � � v'(v)� = 2(�v � '(v))('(v) � �v) � 0;where the inequality is an immediate 
onsequen
e of the se
tor 
ondition. Integration givesthe desired result.Example 22. Let � 
orrespond to multipli
ation with a real s
alar Æ 2 [�1; 1℄, i.e.,(�v)(t) = Æv(t). Then � satis�es the IQC de�ned by�(j!) = �X(j!) Y (j!)Y (j!)� �X(j!);�where X(j!) = X(j!)� � 0 and Y (j!)� = �Y (j!). This follows sin
e� bv(j!)Æbv(j!)�� �X(j!) Y (j!)Y (j!)� �X(j!)�� bv(j!)Æbv(j!)�= bv(j!)�(X(j!)� Æ2X(j!) + Æ(Y (j!)� Y (j!)))bv(j!) � 0:Integration gives the result.Example 23. Consider the saturation nonlinearity'(x) = (x; jxj � 1sign(x); jxj > 1We will show that ' satis�es the IQC de�ned by�(j!) = � 0 1 +H(j!)1 +H(j!)� �2(1 + Re H(j!))�23



where H is the Fourier transform of a fun
tion h : R ! R that satisfy the L1-norm
onstraint khk1 = Z 1�1 jh(t)jdt � 1To see this we noti
e that (here � denotes 
onvolution)[v(t)� '(v(t))℄ � ['(v(t)) + (h � '(v))(t)℄� [v(t)� '(v(t))℄ � ['(v(t)) � sign(v(t)) supv2R j'(v)j � khk1℄� [v(t)� '(v(t))℄ � ['(v(t)) � sign(v(t))℄ = 0Integration and use of Parsevals theorem gives the desired result:0 � Z 10 2[v � '(v)℄ � ['(v) + h � '(v)℄dt= Z 1�1 2Re [bv(j!)� d'(v)(j!)℄�[d'(v)(j!) +H(j!)d'(v)(j!)℄d!= Z 1�1 � bv(j!)d'(v)(j!)���(j!) � bv(j!)d'(v)(j!)� d!The multipliers in this example 
an a
tually be used to des
ribe any nonlinearity with sloperestri
ted to the interval [0; 1℄. This is proved in the 
lassi
al paper [43℄. Note that H 
anbe viewed as a non-
ausal �lter, i.e., the H 
an have poles both in the left half plane andthe right half plane.We have the following stability result.Theorem 4. Assume that(i) for � 2 [0; 1℄, the inter
onne
tion (G; ��) is well-posed,(ii) for � 2 [0; 1℄, �� 2 IQC(�),(iii) there exists " > 0 su
h that9 �GI ��� �GI � � �"I (15)Then the system in (12) is stable.Remark 14. When H = Lm2 [0;1) then (15) is equivalent to the 
ondition�G(j!)I ���(j!) �G(j!)I � � �"I; 8! 2 Rand when H = lm2 [0;1) then it is equivalent to the 
ondition�G(ej!)I ���(ej!) �G(ej!)I � � �"I; 8! 2 [��; �℄9This means that the self-adjoint operator"I + �GI �� ��GI �is negative semi-de�nite. 24
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� IQC(�1)IQC(�2)Figure 8: The more IQCs we have the better 
hara
terization we get of the un
ertainty�. The grey area represents the set of un
ertainties � and the shaded area represents the
omplete set of 
ausal bounded operators that satisfy the IQC.Remark 15. If � = ��11 �12��12 �22�has �11 � 0 and �22 � 0, then the 
ondition � 2 IQC(�) implies that �� 2 IQC(�) forall � 2 [0; 1℄. This is often the 
ase in appli
ations.Remark 16. Assume that � 2 IQC(�k), k = 1; : : : ; N . Then it is easy to see that � 2IQC(PNk=1 �k�k), where �k � 0. The stability test now be
omes the 
onvex feasibility test:Find �k � 0 su
h that �GI �� NXk=1 �k�k!�GI � � �"IRemark 17. In the 
ase when �22 � 0 the 
lass of un
ertainties � 2 IQC(�) is 
onvex andwe 
an look at the IQC as a way to 
over � (whi
h may belong to a set of un
ertainties)with a larger set of operators. The more IQCs we have the better 
hara
terization we have,see Figure 8.Proof. We will prove the theorem under a somewhat stronger well-posedness assumptionthan ne
essary10. We will assume that there exists a unique solution v; w 2 He in thesystem (12) for every e 2 He (we did not require uniqueness in the previous well-posednessassumption). This means that I �G� has a 
ausal inverse on He. The proof follows if we
an show that (I � G�)�1 is bounded. The idea for proving this is illustrated in Figure9 and Figure 10. We need to show that stability of the inter
onne
tion of (G; ��) impliesstability of the inter
onne
tion (G; (� + ��)�) for all j��j � 
, where 
 is independent of � .We prove this in two steps below. The proof of the theorem then follows from the iterativeargument that is illustrated in Figure 10.Step 1: There exists 
0 > 0, whi
h is independent of � , su
h that kvk � 
0k(I��G�)(v)k; 8v 2H. Let us prove this. Let w = ��(v) and assume that all signals are in H. We have0 � ��vw�;� �vw�� = ��v �Gw +Gww �;� �v �Gw +Gww ��= ��v �Gw0 �;� �v �Gw0 ��+ 2��v �Gw0 �;� �Gww ��+��Gww �;� �Gww ��� k�11k � k(I � �G�)(v)k2 + 2(k�11k � kGk+ k�12k)k(I � �G�)(v)k � kwk � "kwk210A slight variation of this proof gives the proof under the weaker well-posedness assumption.25



G�����
(I � �G�)�1G

Figure 9: Stability of the feedba
k inter
onne
tion (G; ��) implies stability of the feedba
kinter
onne
tion (G; (� + ��)�) for all j��j � 
, where 
 is independent of � . This meansthat we 
an insert the dashed bran
h in the system without loosing stability. This allowsus to infer stability of (G;�) through an iterative argument, see Figure 10.where the �rst inequality follows sin
e �� 2 IQC(�) and the last inequality follows fromstandard use of Cau
hys inequality and the stability 
ondition (15). Use of the impli
ation(we assume a > 0, 
 < 0)(ax2 + 2bxy + 
y2 � 0x � 0 ) x � � bay +r b2a2 y2 � 
ay2with a = k�11k; b = k�11k � kGk+ k�12k; 
 = �"; x = k(I � �G�)(v)k, and y = kwk giveskwk � 1
1 k(I � �G�)(v)kwhere 
1 = � ba +r b2a2 + "a :On the other hand, when k�11k = 0 we get the same inequality with 
1 = "=(2(k�11k �kGk+ k�12k)). Hen
e,kvk = kv � Gw + Gwk � (1 + kGk=
1)k(I � �G�)(v)k = 
0k(I � �G�)(v)k;i.e., 
0 = (1 + kGk=
1). This proves the 
laim.Step 2: Boundedness of (I � �G�)�1 for some � 2 [0; 1℄ implies boundedness of (I � (� +��)G�)�1 for all j��j � 
, where 
 is independent of �Before we prove this we need to remark again that we only know that the system isbounded at � = 0. If we assume that (I � �G�)�1 is bounded, then follows from step 1that k(I � �G�)�1k � 
0We will make 
ru
ial use of this inequality when we prove step 2. It is important to notethat the inequality from step one by no means imply stability by itself unless we add someextra 
ondition. The extra 
ondition is supplied in step two, whi
h we prove now.Now 
onsider the fa
torization(I � (� + ��)G�) = (I � �G�)(I � (I � �G�)�1G���)26



) ) ) ): : :stable stable stable stable0 
� 2
� �G G G G
Figure 10: The left hand system is stable sin
e G is bounded. Iterative use of the resultillustrated in Figure 9 shows that all the systems in the �gure are stable.The �rst fa
tor on the right hand side has a bounded inverse by assumption. To proveboundedness of the se
ond fa
tor we use the small gain theorem on the system in Figure 9.Due to our strong well-posedness assumption we have that (I � (I � �G�)�1G���) isinvertible if k���k � k(I� �G�)�1Gk < 1, whi
h holds if (here we use k(I� �G�)�1k � 
0)�� < 
 = 1
0kGk � k�k (16)Hen
e, the 
ondition in (16) ensures boundedness of (I � (� + ��)G�)�1 and we see that 
is independent of � . This proves the 
laim.Let us 
onsider a simple example.Example 24. Consider the system in Figure 11. Here G is a stri
tly proper SISO systemand ' is a nonlinearity that satis�es the se
tor 
ondition �x2 � '(x; t)x � �x2, wherewe assume that � � 0 � �. Under reasonable regularity assumptions on ' (for example
ontinuity) we have well-posedness for all � 2 [0; 1℄. We also have that �' 2 IQC(�) for all� 2 [0; 1℄ when �(j!) = ��2�� � + �� + � �2 �This follows from Example 21 sin
e �x2 � �'(x; t)x � �x2 for all � 2 [0; 1℄ when � < 0 < �.The system in (12) is a positive feedba
k inter
onne
tion and we need to in
lude theminus sign in G. The stability 
ondition be
omes��G(j!)I �� ��2�� � + �� + � �2 � ��G(j!)I � = �2Re (G� + 1)�(G� + 1) < 0multiplying this inequality with �1=(2��) gives the stability 
onditionRe (G(j!) + 1=�)(G(j!) + 1=�) < 0; 8! 2 [0;1℄This is a version of the famous 
ir
le 
riterion. The stability 
ondition is illustrated inFigure 12.9 Relation to the Classi
al Methods1112 The use of multipliers in stability analysis with the small gain theorem or the passivitytheorem 
an generally redu
e 
onservatism of the analysis extensively. We will here dis
uss11This se
tion is optional reading.12The material is taken from [8℄. 27



G�'w v eFigure 11: The feedba
k system for Example 24.
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stable�1=� �1=�
Figure 12: Graphi
al illustration of the 
ir
le 
riterion. The system is stable if the Nyquist
urve of G is within the shaded area.the 
lassi
al multiplier theory and relate it to the IQC approa
h for stability analysis. Welimit our dis
ussion to the methodology that was introdu
ed in [43℄, see also [31℄ and [4℄.The theory is restri
ted to square systems for reasons that will be
ome apparent. The maintool in the derivation of the results is the passivity theorem.Theorem 5 (Passivity Theorem). Assume that the feedba
k inter
onne
tion of G and� in (12) is well-posed and that the following 
onditions holdhuT ; GuT i � �"kuTk2;huT ;�uT i � 0;for all u 2 Lm2e[0;1). The system is then stable.Proof. The proof is similar to the proof of Theorem 2. See, for example, [4℄ for a fullproof.We will next follow the arguments in [43℄ and [4℄ that lead to the multiplier theorem.The idea is the following. Assume that we want to study stability of system S1 in Figure13. We introdu
e an invertible multiplier M into the system. This results in the system S2in Figure 13. The multiplier is assumed to be a bounded linear operator.The multiplier M and its inverse are assumed to be bounded but not ne
essarily 
ausal.The passivity theorem requires 
ausal operators in the feedba
k inter
onne
tion and it 
an28



g fu yG� S1g Mfu yG MM�1� S2
M��g M+fu y(M��)�1 G M+M�� � M�1+ S3Figure 13: In the 
lassi
al input{output theory a multiplier M is inserted in the loopresulting in system S2. The passivity theorem 
annot be applied if M or M�1 is non
ausal.In this 
ase it is required thatM 
an be fa
tored intoM =M�M+, whereM��,M+ and theirinverses are 
ausal and bounded. If su
h a fa
torization exists, stability of S1 is equivalentto stability of S3. The stability 
onditions 
an be stated in terms of IQCs involving themultiplier M .

29



therefore not be applied to system S2 if M or M�1 is non
ausal. In this 
ase it is requiredthat there exists a fa
torization M = M�M+, where M+;M�1+ ;M��; (M��)�1 are boundedand 
ausal. If su
h a fa
torization exists we use the following lemma from [43℄.Lemma 1. The following are equivalent:(i) For some " > 0, hv;MGvi � �"kvk2;hv;M��(v)i � 0; (17)for all v 2 Lm2 [0;1).(ii) For some " > 0, 
uT ;M+G(M��)�1uT � � �"kuTk2;
uT ;M���(M�1+ uT )� � 0; (18)for all u 2 Lm2e[0;1) and for all T � 0.Proof. Let u 2 Lm2e[0;1). Then,
uT ;M+G(M��)�1uT � = 
M��v;M+Gv�= hv;MGvi � �"k(M��)�1k2kuT k2:This follows sin
e v = (M��)�1uT 2 Lm2 [0;1) and from the �rst 
ondition in (17). In thesame way we get
uT ;M���(M�1+ uT )� = 
M+v;M���(v)� = hv;M��(v)i � 0;where v =M�1+ uT 2 Lm2 [0;1).Consider now system S3 in Figure 13. Stability and well-posedness of system S1 andS3 are equivalent 
onditions. This follows sin
e all the multipliers in S3 are bounded and
ausal. We arrive at the multiplier theorem below by applying the passivity theorem tosystem S3. The 
onditions in the passivity theorem follow from the assumptions in thetheorem statement and from Lemma 1.Theorem 6 (Multiplier Theorem). Assume that(i) the feedba
k inter
onne
tion of G and � is well-posed,(ii) � satis�es the IQC de�ned by �(j!) = � 0 M�M 0 � ; (19)(iii) M 
an be fa
tored into M =M�M+, where M+;M�� and their inverses are 
ausal andbounded,(iv) there exists " > 0 su
h that�G(j!)I ���(j!) �G(j!)I � � �"I; 8! 2 R:30



�H2G�H1 M
M�1H2�H1e�(ev) �(v) v eve�

eG

Figure 14: Loop transformations 
an be used to transform � into a new perturbation e�that is suitable for appli
ation of the multiplier theorem.Then the inter
onne
tion of G and � is stable.Remark 18. If we 
ompare this result with the 
orresponding result obtained with Theorem4 we see that the fa
torization 
ondition is not needed in the IQC framework. The pri
epaid for this is that well-posedness is required for every feedba
k inter
onne
tion of G and��, when � 2 [0; 1℄. This 
ondition is in most appli
ations weak. In fa
t, we have seenin Remark 15 that if it holds at � = 1 then it often holds for all � 2 [0; 1℄. Note that ��satis�es the IQC de�ned by (19) for every � 2 [0; 1℄.It is often ne
essary to transform the feedba
k loop in order to obtain a system that issuitable for appli
ation of the multiplier theorem. Figure 14 shows su
h a loop transfor-mation. Here H1 and H2 are bounded 
ausal linear operators. We assume that the looptransformation is well-posed in the sense that the operatorseG = (G�H2)(I +H1G)�1 and e� = (� +H1)(I �H2�)�1are well-de�ned on Lm2e[0;1). We 
an formulate the following loop transformation result.Proposition 5 (Loop Transformation). Assume that(i) the feedba
k inter
onne
tion of G and � is well-posed,(ii) � satis�es the IQC de�ned by� = � I �H2H1 I �� � 0 M�M 0 � � I �H2H1 I � ; (20)31



where the transformation operator � I �H2H1 I �and (I �H2�) are invertible on Lm2 [0;1),(iii) M 
an be fa
tored into M =M�M+, where M+;M�� and their inverses are 
ausal andbounded,(iv) there exists " > 0 su
h that�G(j!)I ���(j!) �G(j!)I � � �"I; 8! 2 R:Then the feedba
k inter
onne
tion of G and � is stable.Proof. We need to show that e� and eG satisfy 
ondition (ii) and (iv) in Theorem 6. Let usverify 
ondition (ii). We noti
e that� eve�(ev)� = � I �H2H1 I �� v�(v)� ;where the notation refers to Figure 14. The assumptions on the transformation operatorimplies that e� is well-de�ned. It remains to show that assumption (ii) in the propositionimplies (ii) in Theorem 6. This follows sin
e2Dev;M� e�(ev)E = �� v�(v)�;� � v�(v)�� � 0;for all v and hen
e for all ev in Lm2 [0;1). Condition (iv) is veri�ed in a similar way.The invertibility 
ondition on the transformation operator and the fa
torization 
ondi-tion on M is not needed for the 
orresponding result derived in the IQC framework. Theproposition also indi
ates a very fruitful approa
h to obtain multipliers for the IQC frame-work. Loop transformations and multipliers from the 
lassi
al theory 
an be used to obtainthe IQC multiplier in (20). Hen
e, it is possible to in
lude loop transformations in the IQCmultipliers.10 The S-Pro
edure Lossless TheoremThe S-pro
edure is frequently used in system theory to derive stability and performan
eresults for nonlinear and un
ertain systems. In fa
t, the idea has been used in the formerSoviet Union sin
e the work of Lure and Postnikov [13℄. The idea has sin
e then beendeveloped by many resear
hers. The most notable early results are due to Yakubovi
h,who pioneered the use of the S-pro
edure in systems analysis and optimal 
ontrol, see, forexample, [37, 39℄ and the referen
es therein. The S-pro
edure be
ame popular in the robust
ontrol 
ommunity during the 1990s, largely due to a new development by Megretski andTreil [20℄. We prove a version of Megretski and Treils result in this se
tion and show how it
an be used to prove ne
essary 
onditions for stability.The basi
 idea behind the S-pro
edure is simple. De�ne the quadrati
 forms �k : H ! Ras �k(f) = h�kf; fi ; k = 0; 1; : : : ; N (21)where �k are linear bounded self-adjoint operators on H. Now 
onsider the following twoproblems 32



S1 : �0(f) � 0 for all f 2 H su
h that �k(f) � 0, k = 1; : : : ; N .S2 : There exists �k � 0, k = 1; : : : ; N su
h that�0(f) + NXk=1 �k�k(f) � 0; 8f 2 H:It is a obvious fa
t that S2 implies S1. The two 
onditions S1 and S2 are in general notequivalent. However, there are some spe
ial 
ases when S1 , S2 and the S-pro
edure is then
alled lossless. Yakubovi
h proved losslessness of the S-pro
edure in [37℄ for the followingtwo 
ases1. H = Rn and N = 1.2. H = Cn and N = 2.Megretski and Treils losslessness result holds for the 
ase of any �nite number of time-invariant quadrati
 forms on L2.Before stating a number of important lossless results for the S-pro
edure we supply someremarks and give an appli
ation of the S-pro
edure in the �nite dimensional 
ase.� Note that there generally is a massive 
omputational advantage in using the S-pro
edure.To understand this we noti
e that the 
onstraint in S1 generally is non
onvex. Forexample, in the 
ase when H = Rn we have�k(f) = fT�kf;where �k = �Tk 2 Rn�n in general may be inde�nite. The problem in S2 is thenequivalent to the linear matrix inequality�0 + NXk=1 �k�k � 0;whi
h 
an be solved eÆ
iently. The situation is similar for the robust 
ontrol appli
a-tions we 
onsider.� We often use the S-pro
edure in appli
ations where it 
an be lossy. This will in appli-
ations for 
ontrol system stability mean that we obtain suÆ
ient but not ne
essary
onditions for stability. However, the 
omputational advantage dis
ussed in the pre-vious remark justi�es the potential 
onservatism.Example 25. We will here derive a ne
essary and suÆ
ient 
ondition for quadrati
 stabilityof the system _x = Ax +Bw; x(0) = x0v = Cxwhere the input and output satis�es the se
tor 
onstraint�1(v; w) = (�v � w)(w � �v) = 12 �vw�T ��2�� � + �� + � �2 � �vw� � 0;where � < � are real numbers. In order to have quadrati
 stability it is ne
essary andsuÆ
ient that there exists P = P T > 0 su
h that the Lyapunov fun
tion V (x) = xTPxsatis�es xTP (Ax+Bw) < 0; 8(x;w) 6= 0 su
h that �1(Cx;w) � 0:33



This is equivalently stated as�0(x;w) := �xw�T �ATP + PA PBBTP 0 � �xw� < 0; 8(x;w) 6= 0 s:t: �1(Cx;w) � 0:It follows from [37℄ that the S-pro
edure is lossless for this 
ase of two quadrati
 forms(and stri
t/nonstri
t inequality). Hen
e, the above 
riterion is equivalent to the existen
e of� � 0 su
h that �0(x;w) + ��1(Cx;w) < 0 for all (x;w) 6= 0. It is easily seen that we need� > 0 for this to hold. We 
an then normalize su
h that � = 1 (and P=� ! P ). We havethus shown that quadrati
 stability of a linear system with se
tor un
ertainty is equivalentto feasibility of the linear matrix inequality: 9P = P T > 0 su
h that�ATP + PA� 2��CTC PB + (� + �)CTBTP + C(� + �) �2 � < 0:We will next formulate the S-pro
edure lossless result for the 
ase of time-invariantquadrati
 forms on a Hilbert spa
e. We state a somewhat more general result than in [20℄.To do this we will use the following properties given in [39℄, where [20℄ was extended to amore general 
ase.Assumption 1. Let the quadrati
 forms �k : H ! H be de�ned as in (21) and let S� : H !H be the shift operator de�ned by (S�f)(t) = f(t� �). We assume that the Hilbert spa
e,its inner produ
t, and the self-adjoint operators �k are su
h that the following propertieshold(i) if f 2 H then S�f 2 H for all � � 0(iia) h�kS�f1; f2i ! 0 as � !1(iib) h�kf1; S�f2i ! 0 as � !1(iii) �k(S�f) = �k(f) for all � � 0 and all f 2 HExample 26. If � = �� 2 RLm�m1 and H = L2[0;1), and �(f) = h�f; fi then all theabove properties hold due to the time-invarian
e of � and the standard properties of the L2integrals.Theorem 7 (S-Pro
edure Lossless Theorem). Assume the quadrati
 form satis�es theproperties in Assumption 1 and that there exists f� 2 H su
h that �k(f�) > 0 for k =1; : : : ; N . Then the S-pro
edure is lossless, i.e., the following are equivalentS1 : �0(f) � 0 for all f 2 H su
h that �k(f) � 0, k = 1; : : : ; N .S2 : There exists �k � 0, k = 1; : : : ; N su
h that�0(f) + NXk=1 �k�k(f) � 0; 8f 2 H:Proof. The dire
tion S2 ! S1 is obvious so it remains to prove (S1 ) S2). De�neK = f(�0(f); �1(f); : : : ; �N (f)) : f 2 Hg;N = f(n0; n1; : : : ; nN) : nk > 0; k = 0; 1; : : : ; Ng:We will �rst prove that the 
losure of K is 
onvex. Then S1 implies that K\N = ; and we
an use the separating hyperplane theorem to prove that S2 holds.34



Convexity of K: Let f1; f2 2 H and de�nek1 = ((�0(f1); �1(f1); : : : ; �N (f1)) 2 Kk2 = ((�0(f2); �1(f2); : : : ; �N (f2)) 2 KWe have �k(p�f1 +p1� �S�f2) = ��k(f1) + (1� �)�k(f2) +p�(1� �)(h�f1; S�f2i+ h�S�f2; f1i)! ��k(f1) + (1� �)�k(f2);as � !1. Hen
e(�0(p�f1 +p1� �S�f2); : : : ; �N (p�f1 +p1� �S�f2))! �k1 + (1� �)k2;as � !1 and it follows that �k1 + (1� �)k2 2 K. This proves the 
laim.The separation argument: The statement in S1 implies that K \ N = ;. Hen
e, sin
eK and N are 
onvex and N is open there exists a separating hyperplane. In other words,there exists a nonzero N + 1-tuple (
0; 
1; : : : ; 
N ) su
h that
0n0 + 
1n1 + : : :+ 
NnN > 0; 8(n0; n1; : : : ; nN ) 2 N (22)
0�0 + 
1�1 + : : :+ 
N�N � 0; 8(�0; �1; : : : ; �N ) 2 K (23)Consider (22). For any given " > 0, we have (n0; "; : : : ; ") 2 N , for all n0 > 0. This impliesthat 
0 � 0. We 
an in the same way show that 
k � 0, k = 1; : : : ; N . Let �k = �k(f�),then by assumption �1; : : : ; �N > 0. Using this in (23) shows that 
0 > 0. This shows thatS2 holds with �k = 
k=
0, for k = 1; : : : ; N .The next proposition shows that the 
ondition in the IQC-theorem sometimes also 
anbe ne
essary and not only suÆ
ient for stability.Proposition 6. Consider the system v = Gw + ew = �(v)where G 2 RHm�m1 , e 2 Lm2 [0;1), and � is any bounded 
ausal operator on Lm2 [0;1) su
hthat � 2 IQC(�k), for k = 1; : : : ; N . Here the IQCs are de�ned as usual��k(v; w) = Z 1�1 �bv(j!)bw(j!)���k(j!) �bv(j!)bw(j!)� d! � 0; 8w = �(v); v 2 L2[0;1):Assume 
ondition (i) and (ii) of Theorem 4 holds and that there exists a pair (v�; w�) 2L2m2 [0;1) su
h that ��k(v�; w�) > 0, for k = 1; : : : ; N . Under these 
onditions a ne
essaryand suÆ
ient 
ondition for stability is that there exist �k � 0 su
h thatNXk=1 �k �G(j!)I ���k(j!) �G(j!)I � d! < 0; 8! 2 [0;1℄: (24)
35



Proof. SuÆ
ien
y follows from Theorem 4 and Remark 16. To prove ne
essity we introdu
eH = f(v; w; e) 2 L3m2 [0;1) : v = Gw + eg�0(v; w; e) = kGwk2 + kwk2 � 
kek2:�k(v; w; e) = ��k (v; w)Stability of the system means that�0(v; w; e) � 0; for all (v; w; e) 2 H su
h that �k(v; w; e) � 0This is by the S-pro
edure lossless theorem equivalent to the existen
e of �k � 0 su
h that�0(v; w; e) + NXk=1 �k�k(v; w; e) � 0; (v; w; e) 2 H:On the subspa
e (v; w; 0) 2 L3m2 [0;1) : v = Gwg � H this is equivalent tokGwk2 + kwk2 + NXk=1 �k�k(Gw;w; 0)= *w; ( NXk=1 �k �GI ���k �GI �+G�G+ 1)w+ � 0; 8w 2 Lm2 [0;1)This is by Proposition 4 equivalent toNXk=1 �k �G(j!)I ���k(j!) �G(j!)I � � �(G(j!)�G(j!) + I); 8! 2 R:This proves that (24) is ne
essary for stability.11 Un
ertain SystemsWe will here dis
uss how to treat various forms of system un
ertainty with IQCs. Both un-
ertainty in the system model and various disturban
e and noise signals will be 
onsidered.System un
ertainty System un
ertainty 
an be due to approximations in the model-ing of the system, errors during identi�
ation, 
hange of parameters and nonlinearities dueto wear, 
hange of operating 
onditions (for example in gain s
heduled systems), et
. Nextfollows a list of un
ertainties with a short dis
ussion of their s
ope of appli
ation. A list ofIQCs for these un
ertainties 
an be found in, for example, [19, 17℄ and the toolbox [18℄.LTI Dynami
 Un
ertainty: This type of un
ertainty is used to represent unmodeleddynami
s or model error from identi�
ation. It is represented as a stable transferfun
tion with bounded H1-norm. It is 
ommon to normalize su
h that k�kH1 =sup!2R �(�(j!)) � 1 and insert weights W (s) that are used to determine the fre-quen
y distribution of the un
ertainty, i.e., where it is large and small. One 
an
onsider either additive or multipli
ative un
ertainty, see Figure 15.Parametri
 Un
ertainty Parametri
 un
ertainty 
an be used to model un
ertain gainsor un
ertainty in the lo
ation of real poles or zeros of the system.36
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Figure 15: The left blo
k diagram illustrates multipli
ative output un
ertainty and the rightblo
k diagram illustrates additive un
ertainty.General L2-bounded un
ertainty In situations when we do not have mu
h knowledgeof the un
ertainty then we use the least informative IQC possible�(v; w) = Z 10 (jv(t)j2 � 
jw(t)j2)dt � 0:Hen
e, the only thing we assume about the un
ertainty is 
ausality and a norm bound.This 
an be used to 
hara
terize fast time-varying parameters or time-varying and/ornonlinear operators.Slowly Time-varying Parameters Slowly time-varying parameters 
an be used to rep-resent a 
hange in the operating 
onditions of the system. This 
an, for example, beused for analysis of some gain-s
heduled system.Memoryless Nonlinearities The IQCs for memoryless nonlinearities in previous se
tionsare valid for a large 
lass of se
tor bounded nonlinearities. This allows for un
ertaintyin our knowledge of the true nonlinearity.Disturban
e Signals We 
an use IQCs to 
hara
terize the spe
tral 
ontents of load dis-turban
es and measurement noise in the system. Early 
ontributions along this line 
an befound in [17, 23℄.De�nition 8. A signal set E � Lq2[0;1) satis�es the IQC de�ned by 	 = 	� 2 RLq�q1(E 2 IQC(	)) if �	(e) = Z 1�1 be(j!)�	(j!)be(j!)d! � 0 (25)for all e 2 E .We give two examples.Dominant Harmoni
s: Let e 2 Lq2[0;1) be a bandpass signal with supp be 2 [�b;�a℄ [[a; b℄, where supp be denotes the support of the Fourier transform of e. Then we 
anuse 	(j!) = (0; j!j 2 [a; b℄;�1I; otherwise:in (25). Rational approximations of 	 
an easily be obtained.Signals with Given Spe
tral Chara
teristi
: Consider a signal with spe
trumjbe(j!)j2 = kek2kHk22 jH(j!)j2 (26)37



z ev wG�Figure 16: The LFT in (27).where H is a given transfer fun
tion. Su
h signals 
an be used to model �ltereddeterministi
 white noise or the initial 
onditions response of a linear system. If 	satis�es Z 1�1	(j!)jH(j!)j2 d! � 0then the IQC (25) holds for all signals with spe
trum (26). This follows sin
eZ 1�1	(j!)jbe(j!) j2d! = kek2kHk22 Z 1�1	(j!)jH(j!)j2 d! � 0;Linear Fra
tional TransformationsIt is 
ommon in robust 
ontrol to represent an un
ertain system with disturban
e signalsas a Linear Fra
tional Transformation (LFT). We will see later that this is not 
ru
ial forthe treatment of robust 
ontrol systems. However, it is a 
onvenient mathemati
al notationand it has a 
ru
ial role in many robust 
ontrol papers and toolboxes, see, for example [1℄.If the transfer fun
tion G 2 RH(q+m)�(q+m)1 has blo
k stru
tureG = �G11 G12G21 G22�then the (lower) LFT with respe
t to � is de�ned asFl(G;�) = G11 +G12�(I �G22�)�1G21: (27)This LFT 
orresponds to the blo
k diagram in Figure 16. As an example 
onsider thefeedba
k system in Figure 17. The system on LFT form is given in Figure 18 where ' isthe saturation nonlinearity andG = 24 P P 1�KP �KP �KP P 0 35 :An IQC for the diagonal operator �' 00 ��
an easily be obtained from IQCs of the two diagonal elements. Indeed, if ' satis�es theIQC de�ned by �1 and � satis�es the IQC de�ned by �2, where the matri
es has blo
kstru
ture �i = ��i(11) �i(12)��i(12) �i(22)� ;38
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Figure 17: Control system with saturation and un
ertainty.G' 00 �

zv ew
Figure 18: The system in Figure 17 on LFT form.then the diagonal operator satis�es the IQC de�ned by� = 26664 �1(11) �1(12)�2(11) �2(12)��1(12) �1(22)��2(12) �2(22) 37775 :This is easily seen by writing out the expression for the IQC.Diagonal un
ertainty stru
tures are normally 
alled stru
tured un
ertainty in the robust
ontrol literature.Robust Performan
e AnalysisConsider now the system �zv� = G � ew� (28)w = �(v)see also Figure 16. Assume G 2 RH(m+q)�(m+q)1 . We want to investigate if the 
losed loopsystem satis�es various performan
e obje
tives. The most 
ommon performan
e measure isthe L2-gain of the system. This 
orresponds to the IQC�P (z; e) = Z 10 (jz(t)j2 � 
2je(t)j2)dt � 0:39



Other examples are the L2 ! L1 gain and various weighted sensitivity measures. Robustperforman
e is formally de�ned as follows.De�nition 9. Assume e 2 E � Lq2[0;1). Then the system in (28) has robust performan
ewith respe
t to the performan
e IQC �P if(i) the system is stable(ii) �P (z; e) � 0 for all z = Fl(G;�)e, e 2 E .To derive a 
ondition for robust performan
e assume that we have the noise IQC�	(e) = Z 1�1 be(j!)�	(j!)be(j!)d! � 0; e 2 E (29)and the IQC��(v;�(v)) = Z 1�1 " bv(j!)[�(v)(j!)#��(j!)" bv(j!)[�(v)(j!)# d! � 0; 8v 2 Lm2 [0;1); (30)for the un
ertainty. We assume that � has the blo
k stru
ture� = ��11 �12��12 �22� :We 
an now prove the following robust L2-performan
e result.Proposition 7. Assume that E satis�es (29) and � satis�es (30). Then the system (28)has robust L2-gain 
 if(i) it is stable(ii) the frequen
y domain inequality�G(j!)I �� 26664 I 0 0 00 �11(j!) 0 �12(j!)0 0 �
2I +	(j!) 00 ��12(j!) 0 �22(j!) 37775�G(j!)I � � 0;holds for all ! 2 [0;1℄.Furthermore, if 
ondition (i) and (ii) in Theorem 4 hold and the frequen
y domain inequalityabove holds stri
tly then the system is also stable.Proof. The result follows from the trivial dire
tion of the S-pro
edure. LetH = �(z; v; e; w) 2 L2m+2q2 [0;1) : �zv� = G �ew�� :We need �P (z; e) � 0; for all (z; v; w; e) 2 H su
h that �	(e) � 0; ��(v; w) � 0:This is 
learly the 
ase if �(z; v; e; w) := �P (z; e)+�	(e)+��(v; w) � 0 for all (z; v; w; e) 2H. Using that (z; v) = G(e; w) gives the equivalent statement�(z; v; e; w) = Z 1�1 �bebw�� �GI �� 26664 I 0 0 00 �11 0 �120 0 �
2I +	 00 ��12 0 �22 37775�GI � �bebw� d! � 0 (31)for all (e; w) 2 Lm+q2 [0;1). Appli
ation of Proposition 4 shows that the frequen
y domaininequality in (ii) is equivalent to (31). The last 
laim is easy to verify.40



12 The Kalman Yakubovi
h Popov LemmaWe will next show that the frequen
y domain 
riterion�G(j!)I ���(j!) �G(j!)I � < 0; 8! 2 [0;1℄ (32)is equivalent to a number of 
onditions on the system matri
es in the realization of thetransfer fun
tions G and �. The dis
rete time 
ase 
an be treated similarly.We will �rst derive an LQ optimal 
ontrol formulation of (32). Let � have the realization� = �(j!I �A�)�1B�I ��M� �(j!I �A�)�1B�I � ; (33)where B� = �B�;v B�;w� and A� is Hurwitz. Using (33) and G(s) = CG(sI �AG)�1BG+DG (where AG is Hurwitz) shows that (32) 
an be formulated as13�(j!I �A)�1BI �� � Q SST R� �(j!I �A)�1BI � > 0 (34)where A = �A� B�;vCG0 AG � ; B = �B�;vDG +B�;wBG � ;and � Q SST R� = �264 I 0 00 CG DG0 0 I 375T M� 264 I 0 00 CG DG0 0 I 375 :From Proposition 4 it follows that (34) is equivalent to existen
e of " > 0 su
h that"kwk2 � Z 1�1 �(j!I �A)�1B bw(j!)bw(j!) �� � Q SST R� �(j!I �A)�1B bw(j!)bw(j!) � d!= Z 10 (xTQx+ 2xTSw + wTRw)dt; (35)for all pairs (x;w) 2 L2[0;1) su
h that _x = Ax + Bw; x(0) = 0, w 2 Lm2 [0;1). This isan LQ optimal 
ontrol problem. The Kalman Yakubovi
h Popov Lemma shows that (34)and the LQ optimal 
ontrol problem above are equivalent to an LMI 
ondition, a Ri

atiequation 
ondition, and an eigenvalue 
ondition on the Hamiltonian matrix 
orrespondingto the LQ problem.13Here we used the following rule for system 
omposition: IfGi(s) = Ci(sI � Ai)�1Bi +Di = " Ai BiCi Di #for i = 1; 2, then G1G2 = 264 A1 B1C2 B1D20 A2 B2C1 D1C2 D1D2 375 :41



Theorem 8 (\KYP-Lemma"). Assume the pair of matri
es (A;B) is stabilizable and Ahas no eigenvalues on the imaginary axis14. Then the following statements are equivalent:(i) there exists � > 0 su
h that15Z 10 (xTQx+ 2xTSw + wTRw)dt � � Z 10 (jxj2 + jwj2)dt;for all pairs (x;w) 2 L2[0;1) su
h that _x = Ax+Bw; x(0) = 0.(ii) we have �(j!I �A)�1BI �� � Q SST R� �(j!I �A)�1BI � > 0; 8! 2 [0;1℄(iii) there exists P = P T su
h that�PA+ATP PBBTP 0 �+ � Q SST R� > 0:(iv) R > 0, and the Ri

ati equationQ+ PA+ATP = (PB + S)R�1(BTP + ST ) (36)has a stabilizing solution P = P T , i.e., bA = A�BR�1(PB + S)T is Hurwitz.(v) R > 0, and the Hamiltonian matrixH = �A�BR�1ST BR�1BTQ� SR�1ST �AT + SR�1BT�has no eigenvalues on the imaginary axis.Proof. See, for example, [30℄.Optimization of IQCsLet us 
onsider the feasibility problem: Find �k � 0 su
h thatNXk=1 �k �G(j!)I ���k(j!) �G(j!)I � < 0; 8! 2 [0;1℄: (37)It is no loss of generality to assume thatNXk=1 �k�k(j!) = �(j!I �A�)�1B�I ��M�(�) �(j!I �A�)�1B�I � ;where again B� = �B�;v B�;w�, A� is Hurwitz, and M� is linear in the �k , i.e.,M�(�) = NXk=1 �kMk;14The 
ondition that A has no eigenvalues on the imaginary axis 
an be removed, but then 
ondition (ii)needs to be slightly 
hanged.15This 
orresponds to (35) sin
e there A was Hurwitz and then we have k(sI�A)�1Bwk � 
kwk for some
 > 0. Hen
e, we 
ould use " = (
+ 1)� in (35) 42



where ea
h Mk is a real valued symmetri
 matrix. We 
an again use the state spa
e real-ization G(s) = CG(sI �AG)�1BG +DG to formulate (37) as: Find �k � 0 su
h thatNXK=1 �k �(j!I �A)�1BI �� �Qk SkSTk Rk��(j!I �A)�1BI � > 0 (38)where the matri
es are de�ned in the same way as before. By the KYP lemma (38) isequivalent to the following feasibility problem for linear matrix inequalities: Find P = P Tand �k � 0 su
h that �PA+ATP PBBTP 0 �+ NXk=1 �k �Qk SkSTk Rk� > 0:Su
h problems 
an be solved using, for example, LMIlab [7℄.The Bounded Real LemmaAs a spe
ial 
ase of the equivalen
e (ii) , (iii) in Theorem 8 we 
onsider the importantbounded real lemma.Let G(s) = C(sI � A)�1B +D, where A is Hurwitz. Then the following are equivalentstatements(i) kGkH1 < 1,(ii) G(j!)�G(j!) < I; 8! 2 [0;1℄,(iii) there exists P = P T > 0 su
h that�ATP + PA PBBTP 0 �+ �CTC CTDDTC �(I �DTD)� < 0:To see this we �rst note that the equivalen
e between (i) and (ii) follows sin
e kGk1 =sup!2[0;1℄ �max(G(j!)) and sin
e the 
ondition �max(G(j!)) < 1 is equivalent with the
ondition G(j!)�G(j!) < I . The equivalen
e between (ii) and (iii) follows from the KYPLemma, sin
e G(j!)�G(j!) < I, �G(j!)I �� �I 00 �I� �G(j!)I � < 0, �(j!I �A)�1BI �� �C D0 I �T �I 00 �I��C D0 I �| {z }24CTC CTDDTC �(I �DTD)35 �(j!I �A)�1BI � < 0:
We �nally note that P > 0 sin
e A is Hurwitz and sin
e CTC � 0. Another importantspe
ial 
ase, the positive real lemma, will be proven as a homework problem.13 IQC analysis of Complex SystemsIn this se
tion we 
onsider IQC analysis of 
omplex systems, i.e., system of high 
omplexity.The se
tion 
ontains an alternative view of the development of the material in the previous43



se
tions. In fa
t, we show how the ideas in the previous se
tions 
an be used as a theoreti
alfoundation for a Matlab toolbox for systems analysis. One su
h Matlab toolbox is theIQCbeta toolbox, whi
h was developed at LIDS-MIT in 1997. The most 
urrent version ofthe toolbox 
an be found at http://web.mit.edu/
ykao/www/index.html.The system under 
onsideration 
an in general be written as, see also the blo
k diagramin Figure 19, z = NXj=1G0jwj + e0vi = NXj=1Gijwj + eiwi = �i(vi) (39)where the Gij are stable LTI transfer fun
tions, �i are bounded 
ausal operators, and thedisturban
e signals ei belong to subsets Ei � L2[0;1). We assume that we want to �nd anupper bound on the L2-gain of the 
losed loop system, i.e., an as small as possible 
 > 0su
h that Z 10 (jzj2 � 
2jej2)dt � 0;for all input output pairs of (39). We will show how this 
an be done in a way that 
an beimplemented in a software pa
kage as Matlab.We next use IQCs to 
hara
terize the operators �k and the signals ek, k = 0; 1; : : : ; N .Assume that �k 2 IQC(�k(��k )), where ��k 2 ��k is a parameterization of the IQCs. Itis assumed that �k is linear in ��k and that ��k is a 
onvex 
one. We further assume that�k has the realization�k(j!; ��k ) = �(j!I �A�k )�1B�kI ��M�k(��k ) �(j!I �A�k )�1B�kI � ; (40)where A�k is Hurwitz, B�k = �B�k;v B�k;w�, and M�k is linear in ��k . The IQC �k 2IQC(�k(��k )) 
an now be formulated in state spa
e asZ 10 Q�k(x�k ; vk; wk; ��k )dt � 0; 8(x�k ; vk; wk) 2 L2[0;1) su
h that( _x�k = A�kx�k +B�k;vvk +B�k;wwk; x�k (0) = 0;wk = �k(vk)where Q�k(x�k ; vk; wk ; ��k) := 24x�kvkwk 35T M�k(��k )24x�kvkwk 35 : (41)
Similarly, we assume that the disturban
e signals satis�es the IQCs Ek 2 IQC(	k(� k )) (seeDe�nition 8), where � k is a linear parameterization of the IQCs. Again we assume that� k belongs to a 
onvex 
one � k and that the 	k have state spa
e realizations	k(j!; � k ) = �(j!I �A k )�1B kI ��M k(� k ) �(j!I �A k)�1B kI � ;44
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Figure 19: A blo
k diagram of the system in (39).
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where A k is Hurwitz and M k is aÆne in � k . Then the IQCs Ek 2 IQC(	k(�)) 
anequivalently 
an be formulated asZ 10 Q k (x k ; ek; � k )dt � 0; for all (x k ; ek) 2 L2[0;1) su
h that_x k = A kx k +B kek; x k (0) = 0; ek 2 Ekwhere Q k(x k ; ek; � k ) := �x kek �T M k(� k ) �x kek � (42)Examples of aÆne parameterization of IQCs 
an, for example, be found in the manual forIQCbeta [18℄.Let us de�ne the set valued fun
tions16 Dk : Lmk2 [0;1)� ��k ! P(Lmk2 [0;1)) de�nedas wk 2 Dk(vk ; ��k), whereDk(vk; ��k ) = fwk 2 Lmk2 [0;1) : Z 10 Q�k(x�k ; vk; wk; ��k )dt � 0;_x�k = A�kx�k +B�k;vvk +B�k;wwk ; x�k (0) = 0g:Let us also introdu
e the setsEk(� k ) = fek 2 Lmk2 [0;1) : Z 10 Q k(x k ; ek; � k )dt � 0;_x k = A kx k +B kek; x k (0) = 0g:We will initially assume that the 
losed loop system is stable, whi
h means that all signalsin the loop belongs to L2. The operators �k in (39) 
an then be repla
ed by Dk and thenoise signals ek 
an be repla
ed by arbitrary signals ek 2 Ek. This follows sin
e� every wk = �k(vk) also belongs to Dk due to the IQC 
onstraint (41)� every ek 2 Ek also belongs to Ek due to the IQC 
onstraint (42)This implies that all possible solutions of the original system also are valid solutions of thenew system, whi
h is illustrated in Figure 20.Next we use state spa
e realizations of the Gij to obtain a realization of the linear partof the system on the form_xG = AGxG + NXk=1BG;kwk ; xG(0) = 0z = C0xG + NXk=1D0;kwk + e0vi = CixG + NXk=1Di;kwk + ei; i = 1; : : : ; N (43)
An upper bound to our robust performan
e 
ondition 
an now be obtained as (here wT =�wT1 ; : : : ; wTN�T , vT = �vT1 ; : : : ; vTN �T , and �nally eT = �eT1 ; : : : ; eTN�T )inf 
 subj to 8><>:R10 (jzj2 � 
2jej2)dt � 0; 8(z; v; w; e) 2 L2 s.t.(43), wk 2 Dk(vk ; ��k), and ek 2 Ek(� k )
 � 0; ��k 2 ��k ; � k 2 �	k ; 8k: (44)16P(Lmk2 [0;1)) denotes the set of all subsets of Lmk2 [0;1)46
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Figure 20: IQC relaxation of the system in (39).
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The above optimization problem is generally not 
onvex sin
e the IQC 
onstraints wk 2Dk(vk; ��k ), and ek 2 Ek(� k ) are not 
onvex in general. However, it is possible to use theS-pro
edure to obtain a 
onvex optimization problem. The following steps will do the job� Combine the dynami
s in (43) with the dynami
s in Dk and Ek. The total state spa
eequation for the optimization problem (44) 
an now be written _x = Ax+B1w+B2e,x(0) = 0, where xT = �xTG; xT�1 ; : : : xT�N ; xT 0 ; : : : ; xT N �T , wT = �wT1 ; : : : ; wTN�T , and�nally eT = �eT0 ; eT1 ; : : : ; eTN�T . The matrix A will be Hurwitz.� In order to de�ne the IQCs in terms of the 
omplete state spa
e ve
tor we introdu
ethe quadrati
 forms eQ�k(x;w; e; ��k ) : = Q�k(x�k ; vk; wk; ��k )eQ k(x;w; e; � k ) : = Q k(x k ; ek; � k)where vk is de�ned as a fun
tion of x;w; e from the state spa
e equation in (43).� De�ne17 Qp(x;w; e; 
) = jzj2 � 
2jej2. Then the performan
e 
onstraint in (44) 
anequivalently be writtenZ 10 Qp(x;w; e; 
)dt � 0; 8(x;w; e) 2 H s.t. (R10 eQ�k(x;w; e; ��k )dt � 0R10 eQ k(x;w; e; � k )dt � 0where H = f(x;w; e) 2 L2[0;1) : _x = Ax +B1w + B2eg. This is by the S-pro
edureimplied by18 the 
ondition: There exists ��k ; � k � 0 su
h thatZ 10 (Qp(x;w; e; 
) +Xk [��k eQ�k(x;w; e; ��k ) +� k eQ k(x;w; e; � k ℄)dt � 0; 8(x;w; e) 2 H: (45)� Linearity of the quadrati
 form gives ��k eQ�k(x;w; e; ��k ) = eQ�k(x;w; e; ��k��k), but��k��k 2 ��k , sin
e ��k is a 
onvex 
one. The same holds for the other quadrati
forms. This means that we 
an remove all the � from the problem.� If we repla
e (45) by its stri
t 
ounter part then we also have robust stability (thisfollows as in Proposition 7) given that the two te
hni
al 
onditions (i) and (ii) inTheorem 4 hold.� De�ne � = (��1 ; : : : ; � N ), � = f(��1 ; : : : ; � N ) : ��k 2 ��k ; � k 2 � kg andQ(x;w; e; �; 
) = �QP (x;w; e; 
)� NXk=1 eQ�k(x;w; e; ��k )� NXk=0 eQ k(x;w; e; � k ):17We just use that z = C0xG + e0 +PNk=1D0;kwk and that x has xG as its �rst 
omponent18even equivalent if there exists (x�; w�; e�) 2 H su
h that R10 eQ�k (x�; w�; e�; ��k )dt � "(kx�k2+kw�k2+ke�k2) and R10 eQ k (x�; w�; e�; � k )dt � "(kx�k2 + kw�k2 + ke�k2) for k = 1; : : : ; N48



Then it follows from the above that the optimization probleminf 
 subje
t to8><>:R10 Q(x;w; e; �; 
)dt � "(kxk2 + kwk2 + kek2)_x = Ax+B1w +B2e; x(0) = 0
 � 0; " > 0; � 2 � (46)gives an upper bound on the indu
ed L2-gain of the system in (39).� We will have Q(x;w; e; �; 
) = 264 xwe 375T � Q(�; 
) S(�; 
)S(�; 
)T R(�; 
)�264 xwe 375where all matri
es Q;S;R are aÆne in (�; 
). It is now possible to use Theorem 8(KYP lemma) to obtain an LMI optimization problem, whi
h is equivalent to (46). It
an be formulated asinf 
 subje
t to8><>:9P = P T ; 
 � 0; � 2 � su
h that"PA+ATP PBBTP 0 #+ " Q(�; 
) S(�; 
)S(�; 
)T R(�; 
)# > 0: (47)We have now presented the theoreti
al ba
kground behind IQCbeta. More details are givenin the manual [18℄, whi
h 
an be obtained from:http://web.mit.edu/
ykao/www/index.html. See also the transparen
ies for next le
ture.14 Appli
ationsAppli
ations of IQC analysis have been reported in the following publi
ation� Analysis of an antiwindup s
heme was 
onsidered in [10℄.� An sele
tor system was analysed in [9℄� Robust stability analysis of the longitudinal 
ontrol system of a tail-less air
raft wasdis
ussed in [11℄During the 
ourse we dis
ussed [9℄ in detail.A
knowledgmentI am indebted to A. Megretski and A. Rantzer who introdu
ed me to the subje
ted ofintegral quadrati
 
onstraints. Their in
uen
e has been important for my view of systemstheory. Collaboration with F.J. D'Amato and Chung-Yao Kao have also been in
uential onthe material in the report.Many errors and typos have been found and 
orre
ted by my 
olleague A. Hansson atDepartment of Automati
 Control, KTH, and by Ryozo Nagamune at Optimization andSystems Theory, KTH. This have improved the readability a great deal.49
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