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Topic studied today
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Assume the closed-loop system is stable,
> the smallest destabilizing deviation of loop delay &5

called the delay margin, 1¢4.

We'll discuss the following questions:
» How to calculate pq?
» What q can be achieved?

Topic studied today (contd)

In most cases, precise methods of computing g
~ apply only to single- and commensurate delay cases
~ computationally involved

~ unsuitable for design

This motivates developing alternative methods
» trading accuracy for simplicity
These methods
~ normally conservative
yet
= numerically efficient

= design friendly (at least some of them)

Outline

Preliminaries: small gain arguments and LMIs




The Small Gain Theorem

Ti(s)

T>(s)

Theorem (Small Gain Theorem)
The closed-loop system is stable if

T1 EHOO, T2€Hoo, and ||T1T2||OO<1

Robust stability theorem

A(s)

)

A(s) belongs to the unitball in H* (| All < 1) but otherwise arbitrary (for

scalars, A(jw) € D at each w, where the closed unit disk D := {z : [z| < 1})

Theorem
Closed-loop system is stable for all A from the class above iff

TeH® and |T|e < 1.
Proof.
“if": follows by the SGT

“only if”: if || T ||eo > 1 destabilizing admissible A can be constructed (such
that I — A(jw)T (jw) is singular for some w) O

Linear Matrix Inequalities
Inequality .
Mo+ xiM; >0
i=1
to be solved in real x1, ..., x,, for given M; = M/ called LMI. E.g.,
» Lyapunov LMI
AP + PA <0, inP=P >0

To see the connection, consider the 2 x 2 case. Then

10 00 01
n=loa] r=lov] m=[id]

is a basis for the 3-dimensional space of 2 x 2 symmetric matrices and
we end up with an LMI for

P; 0

My =0 and M,~=[0 AP — P’
1 ]

:|, i=1,2,3.

Schur complement and LMIs

It's known that
Mll MIZ}
>0
|:M21 M>,
¢
M11 >0 and Mzz—M21M1_11M12>0

¢
My >0 and My — Mi;My, My > 0

For example, 3P > 0 such that P’A + A’P + C'RC + P'BR™'B’P < 0 for
some given 4, B, C, and R > 0 iff

3P >0 suchthat[_PA_AP_CRC _PB:|>O

—B'P R

LMI




LMIs: why ?

Because

1. they can be efficiently solved and many solvers available on the market

2. plenty of control problems can be solved in terms of LMIs

H*®° norm via LMI

Let

o-[245]

Then T € H® and |T||s < 1 iff

AX +XA XB C’
3X >0 such that B'X -1 D'| <0
C D -1

or, equivalently,

/ / /
3X >0 suchthat[AX+XA+CC XB+CD]<O.

B'X +D'C D'D—1

Structured uncertainty

It may happen that we know more about the structure of uncertainty, e.g.:
If scalar §(s) is only restricted to be in the unit ball in H*,

and SGT arguments apply. But they are conservative then.

Example

05 o } for some o € R. Closed-loop system is stable iff

with T(s) = [ o 0s

I —5(jw)T(ja))=[l_0'58(j‘”) 8 jo) ]

0 1—0.58(jw)

is nonsingular for every admissible §(w) and Yo € R. This is indeed true as
|8(jw)| < 1 for all w, so that

» system is stable for all ||§]loc < 1 irrespective of .




Example (contd)

To apply SGT:

. 1
IT oo = 6 ([05 ¢ D = 5\/2oﬂ+ 1+ 2la|ve? + 1,

0 05

which grows with || (in fact, | T |leo > 1 iff |a| > %). Thus

> by SGT stability is guaranteed only if |a| < 2

which is conservative.

Scaled robust stability theorem

Key observation:

—

for every nonsingular M. Thus:

0

Theorem (scaled robust stability theorem)
The closed-loop system is stable for all ||§]|co < 1 if

IM  such that |MTM |4 < 1.

This condition would become necessary as well if we allowed time-varying
(in fact, arbitrarily slow) §’s. Otherwise, dynamic M(s) should be used (u).

Example (contd)

Choose M = [g 9]. Then

~1_ |05 o
MT(E)M™ = [ 0 0.5]

so that || MTM o = 41/20282 + 1 + 2la|B/oa?B7 + 1 < L iff pla| < 3.

In other words,
» SRST guarantees stability for every « if g is sufficiently small
(in fact, [IMTM ™ |oo — % as B — 0).

Scaled H* norm via LMI

Let
_[A|B o [ A]| BM™!
T(S) = [?‘f] , SO that MT(S)M = |:MC ‘MDM_I ]

Then T € H® and |[MTM™!|« < 1iff 3X > 0 such that

AX +XA+C'M'MC XBM~ '+ C'M'MDM™! <0
M7B'X+M'D'M'MC M7D'M'MDM™"'—1 ’

Pre- and post-multiplying by [? 9, ] and [} 9 ], resp., this condition reads

AX+XA+C'YC XB+C'YD <0
B'X+D'YC D'YD —-Y ’

where Y = M’M > 0. Thus, 3M such that ||[MTM | < 1 iff

A'X + XA+ C'YC XB+C'YD
3X,Y >0 suchthat[ B'X + D'YC D'YD —Y < 0.




Outline

Delay robustness analysis: unstructured uncertainty embedding

Simple setup

._ygi P(s) He‘”’s }-"—{ C(s) }‘iﬁ

Problems:

» Given P and C, calculate uq

i.e., the smallest 5 destabilizing the system (we denote this smallest /5 as i)

» Given P, design C guaranteeing required pq (if possible)

Geometry of uncertain delays in C

Im

oh =1

Im

wh =29

Im

e = 1

wh =2

wh =4

Arcs via disks

Im wh =2

eioh

» arc uncertainties are hard to handle analytically

» disk uncertainties fall into the scope of SGT

We may try to cover arcs by disks. . .




Covering by disks
At each frequency, find x(w) € C and (smallest possible) p(w) > 0 s.t.

Im

p\u)\

e—jo)hg C x(w) + ,O(Cl))l]_) — U . s Vhs € [0, ﬁ]
/ic(w)/

As rational approximations are preferable, we may look for stable rational
V(s) and W(s) s.t.

e7I9hs C V(jw) + |W(jw)|D, Vhs € [0, h].

Covering by disks (contd)

Im

V(jo)

W N

The disk can be described as all possible values of D(jw), where
D(s) :=V(s) + W(s)d(s),

where

> §(s) is arbitrarily transfer function from the unit ball in H°
in this case |D(jo) — V(jw)| = [W(jw)| - 1§(jw)| < |W(jw)| for every @

Covering by disks: implication
The replacement e=" — D(s) = V(s) + W(s)3(s) results in

._yA| P(s) He—shs H C(s) }—ﬁ

where
> V(s) is “nominal delay”
> W(s) reflects the “size” of uncertainty (|W(jw)| is uncertainty radius)
> §(s) unstructured disk uncertainty (stable and such that ||§]lec < 1)

Covering by disks: implication (contd)
Then,

stable for all [|§]loc < 1

4

stable for all kg € [0, i]
._ygi P(s) H e—shs }_"‘_{ C(s) }_i_ﬁ

:-(but not necessarily vice versa).




Reduction to standard robust stability problem

0 1
—PW(s) —PV(s)

T;(s)

P(s)W(s)C(s)

and the system is robustly stable iff || T; || < 1, with Tj;(s) = —TIPGIVGICH)

So, what did we gain / loose ?

We gained
< simplicity

g calculation / design reduce to a standard H*° problem, which is readily solvable

We payed by

~ conservatism
introduced when we replace an arc with a disk;

if the H°® problem isn't solvable, the system may still be stable for all &5 € [0, /]

Abstract setup

In many problems delay can be isolated as

7Sh,g

e

Examples:
> For the problem above, Go(s) = [ _p() ¢ ]
> If X(t) = Aox(t) + Apx(t — hs) + Bu(t) with output y(¢) = Cx(¢),

Go(s) = [CC‘{| (sI —Ao)™'[Bw B].

where C; and B,, are any matrices such that A, = B,,C;.

Abstract setup: reduction to robust stability
Embedding e=5%s into the wider class (disk) D(s) = V(s) + W(s)(s):

[
W

Go(s) -

. C(s) '

and the system is stable for all ks € [0, h] if

AM  such that [MT;M ™| < 1.

If T;,(s) is proper and rational, the problem is LMl able (hence, computable).
To compute 4, a binary search in & can be carried out.




Outline

Covering options

Setup

and the system is robustly stable if || 7} [l < 1, with T} (s) =

._ygi P(s) He‘”’s }-"—{ C(s) }‘iﬁ

¥

0 1
—PW(s) —PV(s)

8(s)

&J T;;(S)

__PEW(s)C(s)
1+P(s)V(s)C(s) *

How to choose V(s) ?

Basically, tradeoff between tightness and complexity. Common choices:

V(s) = Vo(s) :=0 ¢

 (joo) 1

(5

V(is) = Vi(s) :=1 :

/ (zero nominal delay)

V(s) = Va(s) i= e~5h/2 “

/ (nominal delay of )

Im

(jo)

9@)\

Im

(jo)

p\w\

Im

(jo) 1

p\m\

Im

(jo) 1

p\m\




V = V,: delay-independent conditions

p@) = 1
\:
T 1 W(s) =1
) ¢
|PClloo <1

= if holds, guarantees stability for all 45 > 0

~ disregards phase information about e~5"s

~~ very conservative if hs known to be bounded (realistic assumption)

V = V;: delay-dependent conditions

p(w) = p1(@) = 5

Im { 2 SiIl %h
!

0 V(jo)

p\w\ Re
7 \L
PCW

lirel. <!
14 PC lleo

Z does take phase information about %5 into account

oh <

otherwise

W(s) any rational s.t. [W(jw)| > p1(®)

p1(w) is HPF; reflects the fact that delay uncertainty more harmful at high frequencies

|4}
Im Im
0 N V(jo) 0 V(jo)
ﬁ R ﬁ Re
Ty Im
0 V(jo) / 0 V(jw)
Re Re
o o)
S~—
V)
Im Im
0 1 0 1
Re Re
V(jw/@ ‘
V(jw) Plw)
Im Im
0 1 / 0 1
Re Re
~ o) V(o>
Plw)




V = V,: delay-dependent conditions

Im 2sin @t wh <2
p(w) = p2(w) 1= ! .
2 otherwise
\
0 1 W(s) any rational s.t. |W(jw)| > pa2(®)
mwﬁ 2
l+Femmel. <
1+ Pe2C

-~ does take phase information about e =% into account
p2(w) is HPF; reflects the fact that delay uncertainty more harmful at high frequencies
< pa(w) = p1(w/2), so the radius is smaller
“T(s) is irrational (contains e=4/2), which might complicate the analysis
although in the design of C(s) the use of DTC reduces the problem to the rational one

Rational upper bounds of p;(w)

10.8

> W(s) = Wio(s) := hs
2/3 hs

hs + 2\/5
2.007hs h2s® + 3.695hs + 5.56
hs + 2 h2s2 + 3.026hs + 5.56

> W(s) = Wi(s) = (Wi (jo)| < [Wie(jw)], Vo > 0)

> W(s) = Wis(s) =

Rational upper bounds of p,(w)

10.8

P2

> W(s) = Wao(s) := hs/2
2«/_ﬁs
s + 443
2.007hs h2s® + 7.39hs + 22.24
hs + 4 h2s2 + 6.052hs + 22.24

> W(s) = Wa(s) := (W21 (jow)| < [Wao(jw)|, Yo > 0)

> W(s) = Was(s) =

Is D, less conservative than D, ?

Although p> (@) < p1(w) for all @, what matters is that

Im

Do)

Da(jo) & Di(je)

[t might happen that destabilizing §(jw) corresponds to the darkest region
of Dy (jw), which doesn’t belong to D;(jw). If this is the case covering with
the smaller D, will be more conservative than that with the larger D;.
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Delay robustness analysis: Lyapunov-Krasovskii approach

Approach
Consider system
x(t) = Aox(t) + A1x(t — h)
where matrices 4 and 4, given and delay & uncertain in [0, h), h > 0. We
want to find maximal & for which this system stable. To this end, we

» construct a Lyapunov-Krasovskit functional V(x;) and find conditions
under which its derivative along system trajectory is non-negative

for all [0, A].

Solution steps typically involve
1. transform system equation into a Lyapunov-Krasovskii-friendly form
2. choose a Lyapunov-Krasovskif functional
3. upper-bound cross terms in its derivative

Below we provide a flavor of these steps.

Descriptor model transformation

Rewrite
X(t) = Aox(t) + A1x(t —h) = (Ag + A x () — Al(x(t) —x(t— h))

0
= (Ao + ADx () — Ay /_h X(t +6)do

It turns out to be advantageously to rewrite this equation in descriptor form

IO x()] _ 0 I [ x(@) 07 (°
|:O 0j| |:)}(t)i|_|:Ao+A1 _I][Y(t)]_[Al]/_hy(t+9)d9
R — Ll Lo

—— ——— e’
E () A n(t) B

by adding auxiliary variable
x(@) = y()=1[0 I]n@

———

State vector here is (x(z), y(1)). ¢

Lyapunov-Krasovskii functional

Let
0 pt
V=Vi+V,:=n'(t)P En) —I—f / y'()Ry(0)dodr
—h Jt+1

for R>0and P = [ﬁ; p, |, P1 > 0. Note that n/(t) EPn(t) = x'(t) P1x(t),
so that V' is indeed positive function of state. Now,

0
Vi =20 (t) P Eq(t) = 21/ (¢) P’ (An(t) - B /h y(t + e)de)

0

= OP A+ AP =2 [ P By + )0

and

0
v, = /_ (YORY®) =Y+ DRy + 1)) do
0

= hn'(t)C'RCn(t) — /h y'( +t)Ry(t + 7)dr




Covering cross-term
Thus, taking into account that & < h,

0

V <n'@)(P'A+ A'P + hC'RC)n(t) —/ y'(t +0)Ry(t + 6)d — ¢ (1),
h

where ¢(t) := 2f_0h n'(t)P'By(t + 6)d6 is cross term. To handle ¢(¢), note
that for any Q > 0 and vectors vy and v,,

0<(v1+ Q') Q(v1 + 0 v2) = v] Quy + v50 v + 205y,

or, equivalently, —2v5v; < v Qv + v50 vy, Thus

0
—¢(1) < /_h (') P'BQ™'B"Pr (1) + y'(t + 0)Qy(t + 6)) db

0

< 7l (1)P'BO™'B'Pr/ (1) + / V(i +6)0y(t + 6)d6.
h

which is true for all Q > 0, in particular, for Q = R.

Fitting things together

Thus,
V <n@)(P'A+ AP +hC'RC +hP'BR™'B'P)n(t)

and V < 0 for all 5 # 0 iff
P'A+ A'P+hC'RC +hP'BR'B'P <0
or, equivalently (via Schur complement arguments), iff LMI

P'A+ A'P +hC'RC hP'B “0
hB'P —hR

solvable in some R > 0 and [1};; [(,)3] with P; > 0.

Addressing the same problem via UUE

Choosing V(s) = 1, we reduce problem to

1—eh 8(s)1

%(SI—AO—Al)‘lAI}— A{fzs(sl—Ao—Al)*lAl}f

Covering |1 —e™3@"| by W(s) = hs (loosest cover), we end up with robust
stability problem for scalar uncertainty §(s) satisfying [|§]lcc < 1.

:

This problem, in turn, solvable if
IM = M’ >0 such that |shM(s] — Ag — A1) "AM ™ < 1,

which is LMI-able.

Finding connections

To make simple things complicated, note that

-1
s(s] —Ag—Ay)'A1 =[0 1] (s [(I) 8} B [Ao-(i)-z‘h —II]) [’21]

=C(sE—A)"'B
It is known that |C(sE — A)™'Blleo < 1 iff 3P such that
E'P=PE>0 and P'A+ AP+ P'BB'P+C'C <.

First inequality equivalent to

Py O .
= >
P |:P2 P3] with P; >0

and second inequality and structure of C yield that det Py # 0, i.e., Py > 0.




Finding connections (contd)
Thus, robust stability condition reads

Py 0

aM >0 and P:|:P2 P,

:| with Pl >0
such that . )
P'A+ AP +hP'BM2B'P +hC'M?*C < 0.

Denoting R = M? > 0 and using Schur complement arguments, stability
conditions reduce to solvability of LMI

P'A+ AP+ hC'RC hP'B
- - <0
hB'P —hR

in some R > 0 and [g 193] with P; > 0. Haven't we already seen this?

Reducing conservatism of Lyapunov-Krasovskii results

Several possibilities:
» alternative model transformations
(perhaps, those going beyond W(s) = hs covering)
» more complete Lyapunov-Krasovskii functionals
(complete Lyapunov-Krasovskii from lecture 2, discretized Lyapunov-Krasovskif, etc)
> tighter cross-term covering
(like

/ / / Q QS V1
_2U2U1§[U1 U2]|:S/Q (1+S/Q)Q_I(I+QS)]|:U2]

instead of —2vjv; < v] Qv + 1)’2Q_1 v, which corresponds to S = 0 here)

Outline

Time-varying extensions

Time-varying delay

Here Dy, is time-varying delay operator for

0 <h(t) <h, forsome given h.

Might be inspired by

» networked control

Interesting fact (remember Homework 1):
> D is not bounded as an operator L? — L2,

no matter how small 4 is.




Key result

Theorem
Let h(t) € [0, h], then linear operator

t 0
o:an=/t );(9)d9=/_h(t)§(t+9)d0

—h(t

is bounded L?* operator with ||O||L2®+ys12R+) = h.
Proof (scalar case). By Cauchy-Schwartz inequality,

0 2 0 0
2() = NHdo ) <h 2 6)do < h 2 6)do
P (/_hm:m ) ) < (z)/_hmé(w o =i [ 2+0)

Robust stability conditions

Dh
=

Reduces to robust stability for all time-varying § such that

8]l L2052 < 1.

Then original system stable for all (1) € [0, /] if
1. T;(s) := —To(s)(I — To(s)) " € H®
2. |hsTylloo < 1

so that
oo _ r0 _r0 (o) _r0
Inl3 < / h[ CC3(t 4+ 0)dodr = h/ / 2t 4+ 6)drdd = h/ ¢15d6
0 —h ~hJo —h
Thus, |91 < #2)¢]13. &
Outline

Bounds on the achievable delay margin

Achievable 4 for hg =0

Y P(s)ehs |« C(s) [ ? !

» What 14 can be achieved by an appropriate choice of C(s)?

Equivalently, we'd like to know whether there is an upper bound' on .

"This part is based on (Middleton & Miller, 2007), IEEE TAC, 52, pp. 1194-1207.




Stable plant

<—y—i P(s)e™shs }—”—i C(s) }—e—T;

If P ¢ H®, then

> /1q is unbounded,

any C € H*® with ||C e < 75— does the job (by the Small Gain Theorem).

[Plloo

Examples (some from Homework 2 and Lecture 3)

— P(s)eshs Lt C(s) oL

with P(s) = ﬁ and

> Pl controller C(s) = kp(1 + X&), the achievable pg < 1
> PD controller C(s) = kp + kqs, the achievable pq < 2

Can we do better?

Preliminaries: auxiliary system

o pae e -

—0

Let C(s) stabilize rational P(s), then:
1. C(s) stabilizes the closed-loop system for all sufficiently small <;

2. if C(s) does not stabilize the closed-loop system forall >0, 37 >0
such that the closed-loop system is stable Vz € [0, T) and unstable for
7 = 7 with poles at £jo for some @ > 0;

3. the closed-loop system

o e e b

2 arctan(wT)
—_— > 0

unstable if hg =
w

Real unstable pole

Theorem
Let P(s) have a real pole ats = a > 0. Then

2
fd < —.
a

Moreover, if P(s) is minimum-phase and has no other unstable poles, then
this upper bound is tight.

Proof (outline).
Auxiliary system unstable if T = 1 (unstable cancellations). Hence, 37 < 1
and @ > 0 such that £j& is a closed-loop pole. Hence,

2 arctan (@t 2arctan(@7 2
Zarctan(®®) _, 2arctan(®?) _ . 2

Hd < w o—0 w
If P(s) = L Po(s) for some stable and minimum-phase Py(s), controller
C(s) = Po_l(s)(kIO + kgs) (or its proper modification) does the job. O




Real unstable pole: bad news

It follows from the proof that
> the highest g requires w. — 0,

which renders the resulting design meaningless (no closed-loop bandwidth,
zero pg and pupp). If bandwidth requirements are accounted for, even the (%
bound might be very conservative :(

Pair of complex unstable poles

Theorem

Let P(s) have a pair of poles ats = (¢ £ jy/1 —¢?)w, for £ €10,1), w, > 0.
Then

Md<ﬂ(ﬂ+2max§; E}):

, arctan
wWn

J1=22 ¢ : )

Proof (outline).

If £ > 0, similarly to the real pole case, modulo complex t and lengthier
technicalities.

If £ = 0, there must be a crossover w. > w, with some ,u;h € (0,27). Then

+
th 2w

Wc (O

Md =

Unstable poles only at the origin

Theorem

Let the only Cy poles of P(s) be those at the origin. Then 4 can be made
arbitrarily large.

Proof.

Exploits the fact that such systems can be stabilized with an arbitrarily low
crossover. . . L]
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