Introduction to Time-Delay Systems

lecture no. 7

Leonid Mirkin

Faculty of Mechanical Engineering, Technion—Israel Institute of Technology

Department of Automatic Control, Lund University

Topic studied today (contd)

In most cases, precise methods of computing μ_d

- $\ddot{\neg}$ apply only to single- and commensurate delay cases
- $\ddot{\neg}$ computationally involved
- $\ddot{\frown}$ unsuitable for design

This motivates developing alternative methods

trading accuracy for simplicity

These methods

 $\stackrel{\sim}{\sim}$ normally conservative

yet

- numerically efficient
- ∴ design friendly (at least some of them)

Topic studied today

Assume the closed-loop system is stable,

• the smallest destabilizing deviation of loop delay h_{δ} called the delay margin, μ_{d} .

We'll discuss the following questions:

- How to calculate μ_d ?
- What μ_d can be achieved ?

Outline

Preliminaries: small gain arguments and LMIs

Delay robustness analysis: unstructured uncertainty embedding

Covering options

Delay robustness analysis: Lyapunov-Krasovskiĭ approach

Time-varying extensions

Bounds on the achievable delay margin

The Small Gain Theorem

Theorem (Small Gain Theorem) The closed-loop system is stable if

$$T_1 \in H^{\infty}, \quad T_2 \in H^{\infty}, \quad and \quad ||T_1T_2||_{\infty} < 1$$

Linear Matrix Inequalities

Inequality

$$M_0 + \sum_{i=1}^m x_i M_i > 0$$

to be solved in real x_1, \ldots, x_m for given $M_i = M'_i$ called LMI. E.g.,

► Lyapunov LMI

 $AP + PA' < 0, \quad \text{in } P = P' > 0$

To see the connection, consider the 2×2 case. Then

$$P_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad P_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

is a basis for the 3-dimensional space of 2×2 symmetric matrices and we end up with an LMI for

$$M_0 = 0$$
 and $M_i = \begin{bmatrix} P_i & 0 \\ 0 & -AP_i - P_i A' \end{bmatrix}$, $i = 1, 2, 3$.

Robust stability theorem

 $\Delta(s)$ belongs to the unit ball in H^{∞} ($\|\Delta\|_{\infty} \leq 1$) but otherwise arbitrary (for scalars, $\Delta(j\omega) \in \overline{\mathbb{D}}$ at each ω , where the closed unit disk $\overline{\mathbb{D}} := \{z : |z| \leq 1\}$)

Theorem

Closed-loop system is stable for all Δ from the class above iff

$$T \in H^{\infty}$$
 and $||T||_{\infty} < 1$.

Proof.

"if": follows by the SGT

"only if": if $||T||_{\infty} \ge 1$ destabilizing admissible Δ can be constructed (such that $I - \Delta(j\omega)T(j\omega)$ is singular for some ω)

Schur complement and LMIs

It's known that

$$\begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} > 0$$

$$\Leftrightarrow$$

$$M_{11} > 0 \text{ and } M_{22} - M_{21}M_{11}^{-1}M_{12} > 0$$

$$\Leftrightarrow$$

$$M_{22} > 0 \text{ and } M_{11} - M_{12}M_{22}^{-1}M_{21} > 0$$

For example, $\exists P > 0$ such that $P'A + A'P + C'RC + P'BR^{-1}B'P < 0$ for some given *A*, *B*, *C*, and *R* > 0 iff

$$\exists P > 0 \quad \text{such that} \begin{bmatrix} -P'A - A'P - C'RC & -P'B \\ -B'P & R \end{bmatrix} > 0$$

LMIs: why?

Because

- 1. they can be efficiently solved and many solvers available on the market
- 2. plenty of control problems can be solved in terms of LMIs

Structured uncertainty

It may happen that we know more about the structure of uncertainty, e.g.:

 $\delta(s)I$

T(s)

and SGT arguments apply. But they are conservative then.

H^{∞} norm via LMI

Let

$$T(s) = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}.$$

Then $T \in H^{\infty}$ and $||T||_{\infty} < 1$ iff

$$\exists X > 0 \quad \text{such that} \begin{bmatrix} A'X + XA & XB & C' \\ B'X & -I & D' \\ C & D & -I \end{bmatrix} < 0$$

or, equivalently,

$$\exists X > 0 \quad \text{such that} \begin{bmatrix} A'X + XA + C'C & XB + C'D \\ B'X + D'C & D'D - I \end{bmatrix} < 0.$$

is nonsingular for every admissible $\delta(\omega)$ and $\forall \omega \in \mathbb{R}$. This is indeed true as $|\delta(j\omega)| \leq 1$ for all ω , so that

► system is stable for all $\|\delta\|_{\infty} \leq 1$ irrespective of α .

Example (contd)

To apply SGT:

$$T \|_{\infty} = \bar{\sigma} \left(\begin{bmatrix} 0.5 & \alpha \\ 0 & 0.5 \end{bmatrix} \right) = \frac{1}{2} \sqrt{2\alpha^2 + 1 + 2|\alpha| \sqrt{\alpha^2 + 1}},$$

which grows with $|\alpha|$ (in fact, $||T||_{\infty} \ge 1$ iff $|\alpha| \ge \frac{3}{4}$). Thus

• by SGT stability is guaranteed only if $|\alpha| < \frac{3}{4}$ which is conservative.

Scaled robust stability theorem

Key observation:

for every nonsingular *M*. Thus:

Theorem (scaled robust stability theorem) The closed-loop system is stable for all $\|\delta\|_{\infty} \leq 1$ if

 $\exists M \quad such that \|MTM^{-1}\|_{\infty} < 1.$

This condition would become necessary as well if we allowed time-varying (in fact, arbitrarily slow) δ 's. Otherwise, dynamic M(s) should be used (μ).

```
Scaled H^{\infty} norm via I MI
Let
            T(s) = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}, \text{ so that } MT(s)M^{-1} = \begin{bmatrix} A & BM^{-1} \\ \hline MC & MDM^{-1} \end{bmatrix}.
Then T \in H^{\infty} and ||MTM^{-1}||_{\infty} < 1 iff \exists X > 0 such that
            \begin{bmatrix} A'X + XA + C'M'MC & XBM^{-1} + C'M'MDM^{-1} \\ M^{-'}B'X + M^{-'}D'M'MC & M^{-'}D'M'MDM^{-1} - I \end{bmatrix} < 0.
Pre- and post-multiplying by \begin{bmatrix} I & 0 \\ 0 & M' \end{bmatrix} and \begin{bmatrix} I & 0 \\ 0 & M \end{bmatrix}, resp., this condition reads
                             \begin{bmatrix} A'X + XA + C'YC & XB + C'YD \\ B'X + D'YC & D'YD - Y \end{bmatrix} < 0,
where Y = M'M > 0. Thus, \exists M such that \|MTM^{-1}\|_{\infty} < 1 iff
          \exists X, Y > 0 \quad \text{such that} \begin{bmatrix} A'X + XA + C'YC & XB + C'YD \\ B'X + D'YC & D'YD - Y \end{bmatrix} < 0.
```

Outline

Preliminaries: small gain arguments and LMIs

Delay robustness analysis: unstructured uncertainty embedding

Covering options

Delay robustness analysis: Lyapunov-Krasovskiĭ approach

Time-varying extensions

Bounds on the achievable delay margin

Simple setup

Problems:

- Given *P* and *C*, calculate μ_d i.e., the smallest h_{δ} destabilizing the system (we denote this smallest h_{δ} as \bar{h})
- Given *P*, design *C* guaranteeing required μ_d (if possible)

As rational approximations are preferable, we may look for stable rational V(s) and W(s) s.t.

$$e^{-j\omega h_{\delta}} \subseteq V(j\omega) + |W(j\omega)|\overline{\mathbb{D}}, \quad \forall h_{\delta} \in [0, \overline{h}]$$

where

- ► V(s) is "nominal delay"
- W(s) reflects the "size" of uncertainty ($|W(j\omega)|$ is uncertainty radius)
- ► $\delta(s)$ unstructured disk uncertainty (stable and such that $\|\delta\|_{\infty} \leq 1$)

► $\delta(s)$ is arbitrarily transfer function from the unit ball in H^{∞} in this case $|D(j\omega) - V(j\omega)| = |W(j\omega)| \cdot |\delta(j\omega)| \le |W(j\omega)|$ for every ω

Reduction to standard robust stability problem

Abstract setup

In many problems delay can be isolated as

Examples:

- For the problem above, $G_0(s) = \begin{bmatrix} 0 & 1 \\ -P(s) & 0 \end{bmatrix}$
- If $\dot{x}(t) = A_0 x(t) + A_h x(t h_\delta) + Bu(t)$ with output y(t) = C x(t),

$$G_0(s) = \begin{bmatrix} C_z \\ C \end{bmatrix} (sI - A_0)^{-1} \begin{bmatrix} B_w & B \end{bmatrix}.$$

where C_z and B_w are any matrices such that $A_h = B_w C_z$.

So, what did we gain / loose?

We gained

∵ simplicity

 $\mu_{\rm d}$ calculation / design reduce to a standard H^∞ problem, which is readily solvable

We payed by

conservatism introduced when we replace an arc with a disk;

if the H^{∞} problem isn't solvable, the system may still be stable for all $h_{\delta} \in [0, \bar{h}]$

Abstract setup: reduction to robust stability Embedding $e^{-sh_{\delta}}$ into the wider class (disk) $D(s) = V(s) + W(s)\delta(s)$:

and the system is stable for all $h_{\delta} \in [0, \bar{h}]$ if

 $\exists M$ such that $\|MT_{\tilde{h}}M^{-1}\|_{\infty} < 1$.

If $T_{\bar{h}}(s)$ is proper and rational, the problem is LMI able (hence, computable). To compute μ_d , a binary search in \bar{h} can be carried out.

Outline

Preliminaries: small gain arguments and LMIs

Delay robustness analysis: unstructured uncertainty embedding

Covering options

Delay robustness analysis: Lyapunov-Krasovskiĭ approach

Time-varying extensions

Bounds on the achievable delay margin

 $\ddot{\sim}$ does take phase information about $e^{-sh_{\delta}}$ into account $\rho_1(\omega)$ is HPF; reflects the fact that delay uncertainty more harmful at high frequencies

- $\ddot{}$ does take phase information about $e^{-sh_{\delta}}$ into account $\rho_2(\omega)$ is HPF; reflects the fact that delay uncertainty more harmful at high frequencies
- $\ddot{\ }$ $\rho_2(\omega) = \rho_1(\omega/2)$, so the radius is smaller
- $\ddot{-}$ T(s) is irrational (contains $e^{-s\bar{h}/2}$), which might complicate the analysis although in the design of C(s) the use of DTC reduces the problem to the rational one

It might happen that destabilizing $\delta(j\omega)$ corresponds to the darkest region of $D_2(j\omega)$, which doesn't belong to $D_1(j\omega)$. If this is the case covering with the smaller D_2 will be more conservative than that with the larger D_1 .

Outline

Preliminaries: small gain arguments and LMIs

Delay robustness analysis: unstructured uncertainty embedding

Covering options

Delay robustness analysis: Lyapunov-Krasovskiĭ approach

Time-varying extensions

Bounds on the achievable delay margin

Descriptor model transformation

Rewrite

$$\dot{x}(t) = A_0 x(t) + A_1 x(t-h) = (A_0 + A_1) x(t) - A_1 (x(t) - x(t-h))$$
$$= (A_0 + A_1) x(t) - A_1 \int_{-h}^{0} \dot{x}(t+\theta) d\theta$$

It turns out to be advantageously to rewrite this equation in descriptor form

$$\underbrace{\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}}_{E} \underbrace{\begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix}}_{\dot{\eta}(t)} = \underbrace{\begin{bmatrix} 0 & I \\ A_0 + A_1 & -I \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}}_{\eta(t)} - \underbrace{\begin{bmatrix} 0 \\ A_1 \end{bmatrix}}_{B} \int_{-h}^{0} y(t+\theta) \mathrm{d}\theta$$

by adding auxiliary variable

$$\dot{x}(t) =: y(t) = \underbrace{\begin{bmatrix} 0 & I \end{bmatrix}}_{C} \eta(t)$$

State vector here is $(x(t), y_{\tau}(t))$.

Approach

Consider system

$$\dot{x}(t) = A_0 x(t) + A_1 x(t-h)$$

where matrices A_0 and A_1 given and delay h uncertain in $[0, \bar{h}]$, $\bar{h} > 0$. We want to find maximal \bar{h} for which this system stable. To this end, we

 construct a Lyapunov-Krasovskiĭ functional V(x_τ) and find conditions under which its derivative along system trajectory is non-negative for all [0, h̄].

Solution steps typically involve

- 1. transform system equation into a Lyapunov-Krasovskii-friendly form
- 2. choose a Lyapunov-Krasovskiĭ functional
- 3. upper-bound cross terms in its derivative

Below we provide a flavor of these steps.

Lyapunov-Krasovskiĭ functional

Let

$$V = V_1 + V_2 := \eta'(t) P' E \eta(t) + \int_{-h}^0 \int_{t+\tau}^t y'(\theta) R y(\theta) \mathrm{d}\theta \mathrm{d}\tau$$

for R > 0 and $P = \begin{bmatrix} P_1 & 0 \\ P_2 & P_3 \end{bmatrix}$, $P_1 > 0$. Note that $\eta'(t)EP\eta(t) = x'(t)P_1x(t)$, so that *V* is indeed positive function of state. Now,

$$\dot{V}_1 = 2\eta'(t)P'E\dot{\eta}(t) = 2\eta'(t)P'\left(A\eta(t) - B\int_{-h}^0 y(t+\theta)d\theta\right)$$
$$= \eta'(t)\left(P'A + A'P\right)\eta(t) - 2\int_{-h}^0 \eta'(t)P'By(t+\theta)d\theta$$

and

$$\dot{V}_2 = \int_{-h}^0 \left(y'(t) R y(t) - y'(t+\tau) R y(t+\tau) \right) \mathrm{d}\tau$$
$$= h\eta'(t) C' R C \eta(t) - \int_{-h}^0 y'(t+\tau) R y(t+\tau) \mathrm{d}\tau$$

Covering cross-term

Thus, taking into account that $h \leq \bar{h}$,

$$\dot{V} \leq \eta'(t) \left(P'A + A'P + \bar{h}C'RC \right) \eta(t) - \int_{-h}^{0} y'(t+\theta)Ry(t+\theta)\mathrm{d}\theta - \phi(t),$$

where $\phi(t) := 2 \int_{-h}^{0} \eta'(t) P' B y(t + \theta) d\theta$ is cross term. To handle $\phi(t)$, note that for any Q > 0 and vectors v_1 and v_2 ,

$$0 \le (v_1 + Q^{-1}v_2)'Q(v_1 + Q^{-1}v_2) = v_1'Qv_1 + v_2'Q^{-1}v_2 + 2v_2'v_1$$

or, equivalently, $-2v'_2v_1 \le v'_1Qv_1 + v'_2Q^{-1}v_2$. Thus

$$\begin{aligned} -\phi(t) &\leq \int_{-h}^{0} \left(\eta'(t) P' B Q^{-1} B' P \eta'(t) + y'(t+\theta) Q y(t+\theta) \right) \mathrm{d}\theta \\ &\leq \bar{h} \eta'(t) P' B Q^{-1} B' P \eta'(t) + \int_{-h}^{0} y'(t+\theta) Q y(t+\theta) \mathrm{d}\theta, \end{aligned}$$

which is true for all Q > 0, in particular, for Q = R.

Addressing the same problem via UUE

Choosing V(s) = 1, we reduce problem to

Covering $|1 - e^{-j\omega h}|$ by $W(s) = \bar{h}s$ (loosest cover), we end up with robust stability problem for scalar uncertainty $\delta(s)$ satisfying $\|\delta\|_{\infty} \leq 1$.

This problem, in turn, solvable if

$$\exists M = M' > 0$$
 such that $\|s\bar{h}M(sI - A_0 - A_1)^{-1}A_1M^{-1}\|_{\infty} < 1$,

which is LMI-able.

Fitting things together

Thus,

$$\dot{V} \leq \eta'(t) \left(P'A + A'P + \bar{h}C'RC + \bar{h}P'BR^{-1}B'P \right) \eta(t)$$

and $\dot{V} < 0$ for all $\eta \neq 0$ iff

$$P'A + A'P + \bar{h}C'RC + \bar{h}P'BR^{-1}B'P < 0$$

or, equivalently (via Schur complement arguments), iff LMI

 $\begin{bmatrix} P'A + A'P + \bar{h}C'RC & \bar{h}P'B\\ \bar{h}B'P & -\bar{h}R \end{bmatrix} < 0$

solvable in some R > 0 and $\begin{bmatrix} P_1 & 0 \\ P_2 & P_3 \end{bmatrix}$ with $P_1 > 0$.

Finding connections

To make simple things complicated, note that

$$s(sI - A_0 - A_1)^{-1}A_1 = \begin{bmatrix} 0 & I \end{bmatrix} \left(s \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & I \\ A_0 + A_1 & -I \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 \\ A_1 \end{bmatrix}$$
$$= C(sE - A)^{-1}B$$

It is known that $||C(sE - A)^{-1}B||_{\infty} < 1$ iff $\exists P$ such that

$$E'P = P'E \ge 0$$
 and $P'A + A'P + P'BB'P + C'C < 0$.

First inequality equivalent to

$$P = \begin{bmatrix} P_1 & 0 \\ P_2 & P_3 \end{bmatrix} \quad \text{with} \quad P_1 \ge 0$$

and second inequality and structure of *C* yield that det $P_1 \neq 0$, i.e., $P_1 > 0$.

Finding connections (contd)

Thus, robust stability condition reads

$$\exists M > 0 \text{ and } P = \begin{bmatrix} P_1 & 0 \\ P_2 & P_3 \end{bmatrix}$$
 with $P_1 > 0$

such that

$$P'A + A'P + \bar{h}P'BM^{-2}B'P + \bar{h}C'M^2C < 0.$$

Denoting $R = M^2 > 0$ and using Schur complement arguments, stability conditions reduce to solvability of LMI

 $\begin{bmatrix} P'A + A'P + \bar{h}C'RC & \bar{h}P'B\\ \bar{h}B'P & -\bar{h}R \end{bmatrix} < 0$

in some R > 0 and $\begin{bmatrix} P_1 & 0 \\ P_2 & P_3 \end{bmatrix}$ with $P_1 > 0$. Haven't we already seen this?

Reducing conservatism of Lyapunov-Krasovskiĭ results

Several possibilities:

- alternative model transformations (perhaps, those going beyond $W(s) = \bar{h}s$ covering)
- more complete Lyapunov-Krasovskiĭ functionals (complete Lyapunov-Krasovskiĭ from lecture 2, discretized Lyapunov-Krasovskiĭ, etc)
- ► tighter cross-term covering

(like

$$-2v_2'v_1 \leq \begin{bmatrix} v_1' & v_2' \end{bmatrix} \begin{bmatrix} Q & QS \\ S'Q & (I+S'Q)Q^{-1}(I+QS) \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

instead of $-2v'_2v_1 \le v'_1Qv_1 + v'_2Q^{-1}v_2$, which corresponds to S = 0 here)

Outline

Preliminaries: small gain arguments and LMIs

Delay robustness analysis: unstructured uncertainty embedding

Covering options

Delay robustness analysis: Lyapunov-Krasovskiĭ approach

Time-varying extensions

Bounds on the achievable delay margin

Key result

Theorem Let $h(t) \in [0, \overline{h}]$, then linear operator

$$O: \zeta \mapsto \eta = \int_{t-h(t)}^{t} \zeta(\theta) d\theta = \int_{-h(t)}^{0} \zeta(t+\theta) d\theta$$

is bounded L^2 operator with $||O||_{L^2(\mathbb{R}^+)\mapsto L^2(\mathbb{R}^+)} = \overline{h}$. Proof (scalar case). By Cauchy-Schwartz inequality,

$$\eta^{2}(t) = \left(\int_{-h(t)}^{0} \zeta(t+\theta) \mathrm{d}\theta\right)^{2} \le h(t) \int_{-h(t)}^{0} \zeta^{2}(t+\theta) \mathrm{d}\theta \le \bar{h} \int_{-\bar{h}}^{0} \zeta^{2}(t+\theta) \mathrm{d}\theta$$

so that

$$\|\eta\|_2^2 \leq \int_0^\infty \bar{h} \int_{-\bar{h}}^0 \zeta^2(t+\theta) \mathrm{d}\theta \mathrm{d}t = \bar{h} \int_{-\bar{h}}^0 \int_0^\infty \zeta^2(t+\theta) \mathrm{d}t \mathrm{d}\theta = \bar{h} \int_{-\bar{h}}^0 \|\zeta\|_2^2 \mathrm{d}\theta$$

Thus, $\|\eta\|_2^2 \leq \bar{h}^2 \|\zeta\|_2^2$.

Outline

Preliminaries: small gain arguments and LMIs

Delay robustness analysis: unstructured uncertainty embedding

Covering options

Delay robustness analysis: Lyapunov-Krasovskiĭ approach

Time-varying extensions

Bounds on the achievable delay margin

Robust stability conditions

Reduces to robust stability for all time-varying δ such that

$$\|\delta\|_{L^2\mapsto L^2} \le 1.$$

Then original system stable for all $h(t) \in [0, \bar{h}]$ if

1.
$$T_{\bar{h}}(s) := -T_0(s) (I - T_0(s))^{-1} \in H^{\infty}$$

2. $\|\bar{h}sT_{\bar{h}}\|_{\infty} < 1$

• What μ_d can be achieved by an appropriate choice of C(s)? Equivalently, we'd like to know whether there is an upper bound¹ on μ_d .

¹This part is based on (Middleton & Miller, 2007), *IEEE TAC*, **52**, pp. 1194–1207.

Stable plant

If $P \in H^{\infty}$, then

• μ_d is unbounded,

any $C \in H^{\infty}$ with $||C||_{\infty} < \frac{1}{||P||_{\infty}}$ does the job (by the Small Gain Theorem).

Preliminaries: auxiliary system

Let C(s) stabilize rational P(s), then:

- 1. C(s) stabilizes the closed-loop system for all sufficiently small τ ;
- 2. if *C*(*s*) does *not* stabilize the closed-loop system for all $\tau > 0$, $\exists \bar{\tau} > 0$ such that the closed-loop system is stable $\forall \tau \in [0, \bar{\tau})$ and unstable for $\tau = \bar{\tau}$ with poles at $\pm j\bar{\omega}$ for some $\bar{\omega} > 0$;
- 3. the closed-loop system

Examples (some from Homework 2 and Lecture 3)

$$\underbrace{\begin{array}{c} y \\ P(s)e^{-sh_{\delta}} \end{array}}_{u} \underbrace{\begin{array}{c} C(s) \\ e \\ \hline \end{array}}_{v} \underbrace{\begin{array}{c} e \\ e \\ \hline \end{array}}_{v} \underbrace{\begin{array}{c} r \\ e \\ \end{array}}_{v} \underbrace{\end{array}}_{v} \underbrace{\begin{array}{c} r \\ \end{array}}_{v} \underbrace{\begin{array}{c} r \\ e \\ \end{array}}_{v} \underbrace{\end{array}}_{v} \underbrace{\begin{array}{c} r \\}\\} \underbrace{\end{array}}_{v} \underbrace{}\\}\\\\\end{array}}_{v} \underbrace{\end{array}}_{v} \underbrace{\end{array}}_{v} \underbrace{\end{array}}_{v} \underbrace{}\\\\ \end{array}}_{v} \underbrace{\end{array}}_{v} \underbrace{\end{array}}_{v} \underbrace{}\\\\\\\end{array}}\\$$
}

with $P(s) = \frac{1}{s-1}$ and

- PI controller $C(s) = k_p (1 + \frac{k_i}{s})$, the achievable $\mu_d < 1$
- ► PD controller $C(s) = k_p + k_d s$, the achievable $\mu_d < 2$

Can we do better ?

Real unstable pole

Theorem

Let P(s) have a real pole at s = a > 0. Then

 $\mu_d < \frac{2}{a}.$

Moreover, if P(s) is minimum-phase and has no other unstable poles, then this upper bound is tight.

Proof (outline).

Auxiliary system unstable if $\tau = \frac{1}{a}$ (unstable cancellations). Hence, $\exists \bar{\tau} < \frac{1}{a}$ and $\bar{\omega} > 0$ such that $\pm j\bar{\omega}$ is a closed-loop pole. Hence,

$$\mu_{\rm d} < \frac{2 \arctan(\bar{\omega}\bar{\tau})}{\bar{\omega}} < \lim_{\bar{\omega}\to 0} \frac{2 \arctan(\bar{\omega}\bar{\tau})}{\bar{\omega}} = 2\bar{\tau} < \frac{2}{a}.$$

If $P(s) = \frac{1}{s-a}P_0(s)$ for some stable and minimum-phase $P_0(s)$, controller $C(s) = P_0^{-1}(s)(k_p + k_d s)$ (or its proper modification) does the job.

Real unstable pole: bad news

It follows from the proof that

• the highest μ_d requires $\omega_c \rightarrow 0$,

which renders the resulting design meaningless (no closed-loop bandwidth, zero μ_g and μ_{ph}). If bandwidth requirements are accounted for, even the $\frac{2}{a}$ bound might be very conservative :(

Unstable poles only at the origin

Theorem

Let the only $\overline{\mathbb{C}}_0$ poles of P(s) be those at the origin. Then μ_d can be made arbitrarily large.

Proof.

Exploits the fact that such systems can be stabilized with an arbitrarily low crossover...

Pair of complex unstable poles

Theorem

Let P(s) have a pair of poles at $s = (\zeta \pm j\sqrt{1-\zeta^2})\omega_n$ for $\zeta \in [0, 1)$, $\omega_n \ge 0$. Then

$$\mu_d < \frac{\sqrt{1-\zeta^2}}{\omega_n} \left(\pi + 2 \max\left\{ \frac{\zeta}{\sqrt{1-\zeta^2}}, \arctan\frac{\sqrt{1-\zeta^2}}{\zeta} \right\} \right) = \frac{\frac{\omega_n}{\omega_n}}{\frac{1}{2}}$$

Proof (outline).

If $\zeta > 0$, similarly to the real pole case, modulo complex τ and lengthier technicalities.

If $\zeta = 0$, there must be a crossover $\omega_c > \omega_n$ with some $\mu_{ph}^+ \in (0, 2\pi)$. Then

$$\mu_{\rm d} \le rac{\mu_{\rm ph}^+}{\omega_{\rm c}} < rac{2\pi}{\omega_{\rm n}}.$$