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Topic studied today

reuy
-P.s/e�s.h0Chı/ C.s/

Assume the closed-loop system is stable,
I the smallest destabilizing deviation of loop delay hı

called the delay margin, �d.

We’ll discuss the following questions:
I How to calculate �d ?
I What �d can be achieved ?

Topic studied today (contd)

In most cases, precise methods of computing �d

R_ apply only to single- and commensurate delay cases

R_ computationally involved

R_ unsuitable for design

This motivates developing alternative methods
I trading accuracy for simplicity

These methods

R_ normally conservative

yet

R̂ numerically efficient

R̂ design friendly (at least some of them)

Outline

Preliminaries: small gain arguments and LMIs

Delay robustness analysis: unstructured uncertainty embedding

Covering options

Delay robustness analysis: Lyapunov-Krasovskiı̆ approach

Time-varying extensions

Bounds on the achievable delay margin



The Small Gain Theorem

T2.s/

T1.s/

Theorem (Small Gain Theorem)
The closed-loop system is stable if

T1 2 H1; T2 2 H1; and kT1T2k1 < 1:

Robust stability theorem

T .s/

�.s/

�.s/ belongs to the unit ball in H1 (k�k1 � 1) but otherwise arbitrary (for
scalars, �.j!/ 2 ND at each !, where the closed unit disk ND´ f´ W j´j � 1g)
Theorem
Closed-loop system is stable for all � from the class above iff

T 2 H1 and kT k1 < 1:

Proof.

“if”: follows by the SGT

“only if”: if kT k1 � 1 destabilizing admissible � can be constructed (such
that I ��.j!/T .j!/ is singular for some !)

Linear Matrix Inequalities

Inequality

M0 C
mX
iD1

xiMi > 0

to be solved in real x1; : : : ; xm for given Mi DM 0i called LMI. E.g.,
I Lyapunov LMI

AP C PA0 < 0; in P D P 0 > 0
To see the connection, consider the 2 � 2 case. Then

P1 D
�
1 0

0 0

�
; P2 D

�
0 0

0 1

�
; P3 D

�
0 1

1 0

�
is a basis for the 3-dimensional space of 2 � 2 symmetric matrices and
we end up with an LMI for

M0 D 0 and Mi D
�
Pi 0

0 �APi � PiA0
�
; i D 1; 2; 3:

Schur complement and LMIs

It’s known that �
M11 M12

M21 M22

�
> 0

m
M11 > 0 and M22 �M21M

�1
11 M12 > 0

m
M22 > 0 and M11 �M12M

�1
22 M21 > 0

For example, 9P > 0 such that P 0AC A0P C C 0RC C P 0BR�1B 0P < 0 for
some given A, B, C , and R > 0 iff

9P > 0 such that
��P 0A � A0P � C 0RC �P 0B

�B 0P R

�
> 0„ ƒ‚ …

LMI



LMIs: why ?

Because

1. they can be efficiently solved and many solvers available on the market

2. plenty of control problems can be solved in terms of LMIs

H1 norm via LMI

Let

T .s/ D
�
A B

C D

�
:

Then T 2 H1 and kT k1 < 1 iff

9X > 0 such that

24A0X CXA XB C 0

B 0X �I D0

C D �I

35 < 0
or, equivalently,

9X > 0 such that
�
A0X CXAC C 0C XB C C 0D
B 0X CD0C D0D � I

�
< 0:

Structured uncertainty

It may happen that we know more about the structure of uncertainty, e.g.:

T .s/

ı.s/I

If scalar ı.s/ is only restricted to be in the unit ball in H1,

T .s/

ı.s/I

�
T .s/

�.s/

and SGT arguments apply. But they are conservative then.

Example

T .s/

ı.s/I

with T .s/ D
�
0:5 ˛

0 0:5

�
for some ˛ 2 R. Closed-loop system is stable iff

I � ı.j!/T .j!/ D
�
1 � 0:5ı.j!/ ˛ı.j!/

0 1 � 0:5ı.j!/
�

is nonsingular for every admissible ı.!/ and 8! 2 R. This is indeed true as
jı.j!/j � 1 for all !, so that

I system is stable for all kık1 � 1 irrespective of ˛.



Example (contd)

T .s/

ı.s/I

To apply SGT:

kT k1 D N�
��
0:5 ˛

0 0:5

��
D 1

2

q
2˛2 C 1C 2j˛j

p
˛2 C 1;

which grows with j˛j (in fact, kT k1 � 1 iff j˛j � 3
4
). Thus

I by SGT stability is guaranteed only if j˛j < 3
4

which is conservative.

Scaled robust stability theorem

Key observation:

T .s/

ı.s/I

”
MT .s/M �1

ı.s/I

for every nonsingular M . Thus:

Theorem (scaled robust stability theorem)
The closed-loop system is stable for all kık1 � 1 if

9M such that kMTM�1k1 < 1:

This condition would become necessary as well if we allowed time-varying
(in fact, arbitrarily slow) ı’s. Otherwise, dynamic M.s/ should be used (�).

Example (contd)

T .s/

ı.s/I

Choose M D � ˇ 0
0 1

�
. Then

MT.s/M�1 D
�
0:5 ˛ˇ

0 0:5

�

so that kMTM�1k1 D 1
2

q
2˛2ˇ2 C 1C 2j˛jˇ

p
˛2ˇ2 C 1 < 1 iff ˇj˛j < 3

4
.

In other words,
I SRST guarantees stability for every ˛ if ˇ is sufficiently small

(in fact, kMTM�1k1 ! 1
2

as ˇ ! 0).

Scaled H1 norm via LMI

Let

T .s/ D
�
A B

C D

�
; so that MT.s/M�1 D

�
A BM�1

MC MDM�1

�
:

Then T 2 H1 and kMTM�1k1 < 1 iff 9X > 0 such that�
A0X CXAC C 0M 0MC XBM�1 C C 0M 0MDM�1
M�0B 0X CM�0D0M 0MC M�0D0M 0MDM�1 � I

�
< 0:

Pre- and post-multiplying by
�
I 0
0 M 0

�
and

�
I 0
0 M

�
, resp., this condition reads�

A0X CXAC C 0YC XB C C 0YD
B 0X CD0YC D0YD � Y

�
< 0;

where Y DM 0M > 0. Thus, 9M such that kMTM�1k1 < 1 iff

9X; Y > 0 such that
�
A0X CXAC C 0YC XB C C 0YD
B 0X CD0YC D0YD � Y

�
< 0:
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Simple setup

reuy
-P.s/ e�shı C.s/

Problems:
I Given P and C , calculate �d

i.e., the smallest hı destabilizing the system (we denote this smallest hı as Nh)

I Given P , design C guaranteeing required �d (if possible)

Geometry of uncertain delays in C

�!
N h

e�j!0 D 1

e�j! Nh

! Nh D 1

Re

Im

0

�!

Nh

e�j!0 D 1

e�j! Nh

! Nh D 2

Re

Im

0

�! Nh

e�j!0 D 1

e�j! Nh

! Nh D 2:9

Re

Im

0

�! Nh

e�j!0 D 1

e�j! Nh

! Nh D 4

Re

Im

0

Arcs via disks

�!

Nh

e�j!0 D 1

e�j! Nh

! Nh D 2

Re

Im

0

I arc uncertainties are hard to handle analytically
I disk uncertainties fall into the scope of SGT

We may try to cover arcs by disks. . .



Covering by disks

At each frequency, find ~.!/ 2 C and (smallest possible) �.!/ � 0 s.t.

e�j!hı � ~.!/C �.!/ ND D
�.!/

~.!/
Re

Im

0 1 ; 8hı 2 Œ0; Nh�

As rational approximations are preferable, we may look for stable rational
V.s/ and W.s/ s.t.

e�j!hı � V.j!/C jW.j!/j ND; 8hı 2 Œ0; Nh�:

Covering by disks (contd)

jW.j!/j
V.j!/

Re

Im

0 1

The disk can be described as all possible values of D.j!/, where

D.s/´ V.s/CW.s/ı.s/;

where
I ı.s/ is arbitrarily transfer function from the unit ball in H1

in this case jD.j!/ � V.j!/j D jW.j!/j � jı.j!/j � jW.j!/j for every !

Covering by disks: implication

The replacement e�sh ! D.s/ D V.s/CW.s/ı.s/ results in

reuy
-P.s/ e�shı C.s/

#

reuy
-P.s/ V .s/

ı.s/W.s/

C.s/

where
I V.s/ is “nominal delay”
I W.s/ reflects the “size” of uncertainty (jW.j!/j is uncertainty radius)
I ı.s/ unstructured disk uncertainty (stable and such that kık1 � 1)

Covering by disks: implication (contd)

Then,By the Small Gain Theorem

reuy
-P.s/ V .s/

ı.s/W.s/

C.s/

›
stable for all kık1 � 1

+
stable for all hı 2 Œ0; Nh�©

reuy
-P.s/ e�shı C.s/

:-( but not necessarily vice versa).



Reduction to standard robust stability problem

reuy
-P.s/ V .s/

ı.s/W.s/

C.s/

m

T Nh.s/

ı.s/

0 1

�PW.s/ �PV.s/

C.s/

and the system is robustly stable iff kT Nhk1 < 1, with T Nh.s/ D � P.s/W.s/C.s/
1CP.s/V.s/C.s/

So, what did we gain / loose ?

We gained

R̂ simplicity
�d calculation / design reduce to a standard H1 problem, which is readily solvable

We payed by

R_ conservatism
introduced when we replace an arc with a disk;

if the H1 problem isn’t solvable, the system may still be stable for all hı 2 Œ0; Nh�

Abstract setup

In many problems delay can be isolated as

e�shıI

G0.s/

C.s/

Examples:
I For the problem above, G0.s/ D

�
0 1

�P.s/ 0
�

I If Px.t/ D A0x.t/C Ahx.t � hı/C Bu.t/ with output y.t/ D Cx.t/,

G0.s/ D
�
C´
C

�
.sI � A0/�1

�
Bw B

�
:

where C´ and Bw are any matrices such that Ah D BwC´.

Abstract setup: reduction to robust stability

Embedding e�shı into the wider class (disk) D.s/ D V.s/CW.s/ı.s/:

e�shıI

G0.s/

C.s/

�

ı.s/I

G0.s/

C.s/

V.s/

W.s/

,

T Nh.s/

ı.s/I

G0.s/

C.s/

V.s/

W.s/

and the system is stable for all hı 2 Œ0; Nh� if

9M such that kMT NhM
�1k1 < 1:

If T Nh.s/ is proper and rational, the problem is LMI able (hence, computable).
To compute �d, a binary search in Nh can be carried out.
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Setup

reuy
-P.s/ e�shı C.s/

#

T Nh.s/

ı.s/

0 1

�PW.s/ �PV.s/

C.s/

and the system is robustly stable if kT Nhk1 < 1, with T Nh.s/ D � P.s/W.s/C.s/
1CP.s/V.s/C.s/ .

How to choose V.s/ ?

Basically, tradeoff between tightness and complexity. Common choices:

V.s/ D V0.s/´ 0
�.!/

V .j!/

Re

Im

0 1

V.s/ D V1.s/´ 1
�.!/

V .j!/

Re

Im

0 (zero nominal delay)

V.s/ D V2.s/´ e�s Nh=2
�.!/V .j!/

Re

Im

0 1 (nominal delay of Nh
2
)

V D V0

�.!/

V .j!/

Re

Im

0 1

�.!/

V .j!/

Re

Im

0 1

�.!/

V .j!/

Re

Im

0 1

�.!/

V .j!/

Re

Im

0 1



V D V0: delay-independent conditions

�.!/

V .j!/

Re

Im

0 1

�.!/ � 1
#
W.s/ D 1
#
kPCk1 < 1

R̂ if holds, guarantees stability for all hı > 0

R_ disregards phase information about e�shı

R_ very conservative if hı known to be bounded (realistic assumption)

V D V1

�.!/
V .j!/

Re

Im

0

�.!/

V .j!/

Re

Im

0

�.!/

V .j!/

Re

Im

0

�.!/

V .j!/

Re

Im

0

V D V1: delay-dependent conditions

�.!/

V .j!/

Re

Im

0

�.!/ D �1.!/´
(
2 sin ! Nh

2
! Nh � �

2 otherwise
#
W.s/ any rational s.t. jW.j!/j � �1.!/
# PCW

1C PC
1 < 1

R̂ does take phase information about e�shı into account
�1.!/ is HPF; reflects the fact that delay uncertainty more harmful at high frequencies

V D V2

�.!/V .j!/
Re

Im

0 1

�.!/V .j!/

Re

Im

0 1

�.!/
V .j!/

Re

Im

0 1

�.!/

V .j!/

Re

Im

0 1



V D V2: delay-dependent conditions

�.!/V .j!/

Re

Im

0 1

�.!/ D �2.!/´
(
2 sin ! Nh

4
! Nh � 2�

2 otherwise
#
W.s/ any rational s.t. jW.j!/j � �2.!/
# PCW

1C P e�s Nh=2C

1 < 1

R̂ does take phase information about e�shı into account
�2.!/ is HPF; reflects the fact that delay uncertainty more harmful at high frequencies

R̂ �2.!/ D �1.!=2/, so the radius is smaller

R_ T.s/ is irrational (contains e�s Nh=2), which might complicate the analysis
although in the design of C.s/ the use of DTC reduces the problem to the rational one

Rational upper bounds of �1.!/

0

6

10:8

! Nh

�1

W10

W13

W11

�

I W.s/ D W10.s/´ Nhs
I W.s/ D W11.s/´ 2

p
3 Nhs

Nhs C 2p3
(jW11.j!/j < jW10.j!/j;8! > 0)

I W.s/ D W13.s/´ 2:007 Nhs
Nhs C 2

Nh2s2 C 3:695 Nhs C 5:56
Nh2s2 C 3:026 Nhs C 5:56

Rational upper bounds of �2.!/

0

6

10:8

! Nh

�2

W20

W23

W21

� 2�

I W.s/ D W20.s/´ Nhs=2
I W.s/ D W21.s/´ 2

p
3 Nhs

Nhs C 4p3
(jW21.j!/j < jW20.j!/j;8! > 0)

I W.s/ D W23.s/´ 2:007 Nhs
Nhs C 4

Nh2s2 C 7:39 Nhs C 22:24
Nh2s2 C 6:052 Nhs C 22:24

Is D2 less conservative than D1 ?

Although �2.!/ � �1.!/ for all !, what matters is that

D2.j!/ 6� D1.j!/ W V1.j!/

V2.j!/

D1.j!/

D2.j!/

Re

Im

0

It might happen that destabilizing ı.j!/ corresponds to the darkest region
of D2.j!/, which doesn’t belong to D1.j!/. If this is the case covering with
the smaller D2 will be more conservative than that with the larger D1.
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Approach

Consider system
Px.t/ D A0x.t/C A1x.t � h/

where matrices A0 and A1 given and delay h uncertain in Œ0; Nh�, Nh > 0. We
want to find maximal Nh for which this system stable. To this end, we

I construct a Lyapunov-Krasovskiı̆ functional V.x� / and find conditions
under which its derivative along system trajectory is non-negative

for all Œ0; Nh�.

Solution steps typically involve

1. transform system equation into a Lyapunov-Krasovskiı̆-friendly form

2. choose a Lyapunov-Krasovskiı̆ functional

3. upper-bound cross terms in its derivative

Below we provide a flavor of these steps.

Descriptor model transformation

Rewrite

Px.t/ D A0x.t/C A1x.t � h/ D .A0 C A1/x.t/ � A1
�
x.t/ � x.t � h/�

D .A0 C A1/x.t/ � A1
Z 0

�h
Px.t C �/d�

It turns out to be advantageously to rewrite this equation in descriptor form�
I 0

0 0

�
„ ƒ‚ …

E

� Px.t/
Py.t/

�
„ ƒ‚ …
P�.t/

D
�

0 I

A0 C A1 �I
�

„ ƒ‚ …
A

�
x.t/

y.t/

�
„ ƒ‚ …
�.t/

�
�
0

A1

�
„ƒ‚…
B

Z 0

�h
y.t C �/d�

by adding auxiliary variable

Px.t/µ y.t/ D �0 I
�„ƒ‚…

C

�.t/

State vector here is .x.t/; y� .t//.

Lyapunov-Krasovskiı̆ functional

Let

V D V1 C V2´ �0.t/P 0E�.t/C
Z 0

�h

Z t

tC�
y0.�/Ry.�/d�d�

for R > 0 and P D � P1 0
P2 P3

�
, P1 > 0. Note that �0.t/EP�.t/ D x0.t/P1x.t/,

so that V is indeed positive function of state. Now,

PV1 D 2�0.t/P 0E P�.t/ D 2�0.t/P 0
�
A�.t/ � B

Z 0

�h
y.t C �/d�

�
D �0.t/�P 0AC A0P ��.t/ � 2 Z 0

�h
�0.t/P 0By.t C �/d�

and

PV2 D
Z 0

�h

�
y0.t/Ry.t/ � y0.t C �/Ry.t C �/�d�

D h�0.t/C 0RC�.t/ �
Z 0

�h
y0.t C �/Ry.t C �/d�



Covering cross-term

Thus, taking into account that h � Nh,

PV � �0.t/�P 0AC A0P C NhC 0RC ��.t/ � Z 0

�h
y0.t C �/Ry.t C �/d� � �.t/;

where �.t/´ 2
R 0
�h �

0.t/P 0By.t C �/d� is cross term. To handle �.t/, note
that for any Q > 0 and vectors v1 and v2,

0 � .v1 CQ�1v2/0Q.v1 CQ�1v2/ D v01Qv1 C v02Q�1v2 C 2v02v1

or, equivalently, �2v02v1 � v01Qv1 C v02Q�1v2. Thus

��.t/ �
Z 0

�h

�
�0.t/P 0BQ�1B 0P�0.t/C y0.t C �/Qy.t C �/�d�

� Nh�0.t/P 0BQ�1B 0P�0.t/C
Z 0

�h
y0.t C �/Qy.t C �/d�;

which is true for all Q > 0, in particular, for Q D R.

Fitting things together

Thus,
PV � �0.t/�P 0AC A0P C NhC 0RC C NhP 0BR�1B 0P ��.t/

and PV < 0 for all � ¤ 0 iff

P 0AC A0P C NhC 0RC C NhP 0BR�1B 0P < 0

or, equivalently (via Schur complement arguments), iff LMI�
P 0AC A0P C NhC 0RC NhP 0B

NhB 0P � NhR
�
< 0

solvable in some R > 0 and
�
P1 0
P2 P3

�
with P1 > 0.

Addressing the same problem via UUE

Choosing V.s/ D 1, we reduce problem to

.sI � A0 � A1/�1A1

1 � e�sh

(
Nhs.sI � A0 � A1/�1A1

ı.s/I

Covering j1 � e�j!hj by W.s/ D Nhs (loosest cover), we end up with robust
stability problem for scalar uncertainty ı.s/ satisfying kık1 � 1.

This problem, in turn, solvable if

9M DM 0 > 0 such that ks NhM.sI � A0 � A1/�1A1M�1k1 < 1;

which is LMI-able.

Finding connections

To make simple things complicated, note that

s.sI � A0 � A1/�1A1 D
�
0 I

� �
s

�
I 0

0 0

�
�
�

0 I

A0 C A1 �I
���1 �

0

A1

�
D C.sE � A/�1B

It is known that kC.sE � A/�1Bk1 < 1 iff 9P such that

E 0P D P 0E � 0 and P 0AC A0P C P 0BB 0P C C 0C < 0:

First inequality equivalent to

P D
�
P1 0

P2 P3

�
with P1 � 0

and second inequality and structure of C yield that detP1 ¤ 0, i.e., P1 > 0.



Finding connections (contd)

Thus, robust stability condition reads

9M > 0 and P D
�
P1 0

P2 P3

�
with P1 > 0

such that
P 0AC A0P C NhP 0BM�2B 0P C NhC 0M 2C < 0:

Denoting R DM 2 > 0 and using Schur complement arguments, stability
conditions reduce to solvability of LMI�

P 0AC A0P C NhC 0RC NhP 0B
NhB 0P � NhR

�
< 0

in some R > 0 and
�
P1 0
P2 P3

�
with P1 > 0. Haven’t we already seen this ?

Reducing conservatism of Lyapunov-Krasovskiı̆ results

Several possibilities:
I alternative model transformations

(perhaps, those going beyond W.s/ D Nhs covering)

I more complete Lyapunov-Krasovskiı̆ functionals
(complete Lyapunov-Krasovskiı̆ from lecture 2, discretized Lyapunov-Krasovskiı̆, etc)

I tighter cross-term covering

(like

�2v02v1 �
�
v01 v02

� � Q QS

S 0Q .I C S 0Q/Q�1.I CQS/
� �

v1
v2

�
instead of �2v02v1 � v01Qv1 C v02Q�1v2, which corresponds to S D 0 here)
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Time-varying delay

T0.s/

Dh.t/

Here Dh.t/ is time-varying delay operator for

0 � h.t/ � Nh; for some given Nh:

Might be inspired by
I networked control

Interesting fact (remember Homework 1):
I Dh.t/ is not bounded as an operator L2 7! L2,

no matter how small Nh is.



Key result

Theorem
Let h.t/ 2 Œ0; Nh�, then linear operator

O W � 7! � D
Z t

t�h.t/
�.�/d� D

Z 0

�h.t/
�.t C �/d�

is bounded L2 operator with kOkL2.RC/7!L2.RC/ D Nh.
Proof (scalar case). By Cauchy-Schwartz inequality,

�2.t/ D
�Z 0

�h.t/
�.t C �/d�

�2
� h.t/

Z 0

�h.t/
�2.t C �/d� � Nh

Z 0

� Nh
�2.t C �/d�

so that

k�k22 �
Z 1
0

Nh
Z 0

� Nh
�2.t C �/d�dt D Nh

Z 0

� Nh

Z 1
0

�2.t C �/dtd� D Nh
Z 0

� Nh
k�k22d�

Thus, k�k22 � Nh2k�k22.

Robust stability conditions

T0.s/

Dh.t/

,
T Nh.s/

1 � Dh.t/

(
NhsT Nh.s/

ıI

Reduces to robust stability for all time-varying ı such that

kıkL2 7!L2 � 1:

Then original system stable for all h.t/ 2 Œ0; Nh� if

1. T Nh.s/´ �T0.s/
�
I � T0.s/

��1 2 H1
2. k NhsT Nhk1 < 1

Outline

Preliminaries: small gain arguments and LMIs

Delay robustness analysis: unstructured uncertainty embedding

Covering options

Delay robustness analysis: Lyapunov-Krasovskiı̆ approach

Time-varying extensions

Bounds on the achievable delay margin

Achievable �d for h0 D 0
reuy

-P.s/e�shı C.s/

I What �d can be achieved by an appropriate choice of C.s/ ?

Equivalently, we’d like to know whether there is an upper bound1 on �d.

1This part is based on (Middleton & Miller, 2007), IEEE TAC, 52, pp. 1194–1207.



Stable plant

reuy
-P.s/e�shı C.s/

If P 2 H1, then
I �d is unbounded,

any C 2 H1 with kCk1 < 1
kP k1 does the job (by the Small Gain Theorem).

Examples (some from Homework 2 and Lecture 3)

reuy
-P.s/e�shı C.s/

with P.s/ D 1
s�1 and

I PI controller C.s/ D kp
�
1C ki

s

�
, the achievable �d < 1

I PD controller C.s/ D kp C kds, the achievable �d < 2

Can we do better ?

No!

Preliminaries: auxiliary system

reuy
-P.s/

1 � �s

1 C �s
C.s/

Let C.s/ stabilize rational P.s/, then:

1. C.s/ stabilizes the closed-loop system for all sufficiently small � ;

2. if C.s/ does not stabilize the closed-loop system for all � > 0, 9 N� > 0
such that the closed-loop system is stable 8� 2 Œ0; N�/ and unstable for
� D N� with poles at ˙j N! for some N! > 0;

3. the closed-loop system

reuy
-P.s/e�shı C.s/

unstable if hı D 2 arctan. N! N�/
N! > 0.

Real unstable pole

Theorem
Let P.s/ have a real pole at s D a > 0. Then

�d <
2

a
:

Moreover, if P.s/ is minimum-phase and has no other unstable poles, then
this upper bound is tight.

Proof (outline).
Auxiliary system unstable if � D 1

a
(unstable cancellations). Hence, 9 N� < 1

a

and N! > 0 such that ˙j N! is a closed-loop pole. Hence,

�d <
2 arctan. N! N�/

N! < lim
N!!0

2 arctan. N! N�/
N! D 2 N� < 2

a
:

If P.s/ D 1
s�aP0.s/ for some stable and minimum-phase P0.s/, controller

C.s/ D P�10 .s/.kp C kds/ (or its proper modification) does the job.



Real unstable pole: bad news

It follows from the proof that
I the highest �d requires !c ! 0,

which renders the resulting design meaningless (no closed-loop bandwidth,
zero �g and �ph). If bandwidth requirements are accounted for, even the 2

a

bound might be very conservative :(

Pair of complex unstable poles

Theorem
Let P.s/ have a pair of poles at s D .� ˙ j

p
1 � �2/!n for � 2 Œ0; 1/, !n � 0.

Then

�d <

p
1 � �2
!n

�
� C 2max

�
�p
1 � �2

; arctan

p
1 � �2
�

��
D

�0:652 1

2

!n

3:69

!n

2�

!n

Proof (outline).
If � > 0, similarly to the real pole case, modulo complex � and lengthier
technicalities.

If � D 0, there must be a crossover !c > !n with some �Cph 2 .0; 2�/. Then

�d �
�Cph

!c
<
2�

!n
:

Unstable poles only at the origin

Theorem
Let the only NC0 poles of P.s/ be those at the origin. Then �d can be made
arbitrarily large.

Proof.
Exploits the fact that such systems can be stabilized with an arbitrarily low
crossover. . .


	Preliminaries: small gain arguments and LMIs
	Delay robustness analysis: unstructured uncertainty embedding
	Covering options
	Delay robustness analysis: Lyapunov-Krasovskiı approach
	Time-varying extensions
	Bounds on the achievable delay margin

