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Optimization-based design: introduction

Optimal control

Problem:

> minimize cost function (criterion) subject to constraints imposed by
process dynamics

Hope:
» solution results in “good” (in whatever sense) control system

Advantages:
» analytic design method, with strong theoretic justification

» important byproducts (like stability, robustness, etc)

Things to remember:

> no criterion can ever reflect all our requirements

» more comprehensive cost functions result in less transparent solutions
» “optimal” might have nothing to do with “good”
>

optimization should be used as a tool rather than as the goal

Generalized plant paradigm

(SEN—— P
G(s)
y - u
K(s)
Systems:
> G = |G GZ”} is generalized plant (given components)
Gyw Gy

» K is controller (components we design)

Signals:
> w is exogenous input (reference, disturbances, noise, etc)
» u is control input (output of controller)
» z is regulated output (collection of signals we want to keep “small”)
>

y is measured output (input of controller)




Generalized plant paradigm (contd)

G(s)

System-based performance measure:

» cost function is size (norm) of closed-loop system from w to z

Constraints imposed upon K(s):
> proper (i.e., transfer function of causal system)

> stabilizing

Standard problem:

» given G, design proper and stabilizing K(s) minimizing size of

T = ]:I(G, K) =Gz + G KU — GY"K)_IGyw

H? system norm

Define space

1
H? :=1G(s) : G(s) analytic in Cy and sup o |G (0 + jo)||?de < oo
o0

o>0 <7 J—

where ||-|| is Frobenius matrix norm. If T € H?, its H?>-norm is

1 [ * s .
ITIE = 5 [ 617 o) Go)ldo
T J-co
Signal interpretations:
z T(s) w

by
In SISO case ||T||3 is
> energy of z when w = § (energy of the impulse response of T')

> variance of z when w zero-mean unit intensity white noise

Example: LQR problem

Given x(t) = Ax(t) + Bu(t) with initial condition x(0) = xo, minimize

J = /oo(x’(t)Qx(t) + u’(t)Ru(t))ds,
0

Q > 0and R > 0, assuming that all state vector measured, i.e., y(t) = x(t).

Two things to notice:
1/2
1. J = |zl3, where = [%/]
2. system can be rewritten as x(t) = Ax(t) + xo6(t) + Bu(t), x(0) =0

Thus, LQR is H? standard problem

G(s) : Q/11/2 );0 ](E);
| W|th G(S) = | 1/2
K(s) 1o o

Example: Kalman filtering

Given x(¢) = Ax(t) + vx(¢) and measurements y(t) = Cx(t) + v, (t), where
vy and v, white Gaussian zero-mean stationary stochastic processes with
Eux (v (1)} = 028t — 1) and  E{vy (D} (1)} = 0,8(t — 7).

0. > 0and Q, > 0, estimate x so that estimation X minimizes cost function

J = tr[E{(x(0) — £(9))(x(8) — £(0))'}].
One thing to notice:
> Uy = Q,lc/zwl and vy, = Q;/sz for some white Gaussian zero-mean

stationary unit intensity stochastic processes w; and w,

Thus, Kalman filtering is H? standard problem

Z w
fe——————

G(s) A[0)2 0 1o
with Gs)= | 1| 0 0 -1

" /7
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Loop shifting for H? problem with loop delay

Preliminary: more on H? space

The H? space can be also thought of as
» the space of Laplace transforms of L?(R™) functions.

It is a Hilbert space with the inner product

(61,602 = 5 [ trllGa()]" G ()} do
T J—00

By Parseval, the inner product has the following time-domain form as well:

(G1, Ga)y = /O tr{g)(D)g1(0)} dr

(the impulse response g(t) of G € H? must be zero in t < 0).

Preliminary: inner transfer function

Transfer function G € H® is said to be inner if
G7(5)G(s) =1 or [GHo)]*'G(jw)=1,

where conjugate system G (s) := [G(—s)]’. In the scalar case inner means
stable with unit magnitude for all frequencies (as G™ (jw) = G(jw)). Clearly

—sh

> delay e™" is inner.

Important property of inner functions is that they are
> energy preserving,

i.e., if y = Gu for an inner G, then || y|l2 = |lull» for all u € L?(R). Hence,
» multiplication by inner system preserves both L? and L norms,

i.e., if G inner, then both ||GT |2 = ||[T|2 and |GT ||cc = ||T |lco-

Problem

G(s)

3 K(s) m

Given G and h > 0, design proper stabilizing K(s) minimizing
1712,
where
T := Fi(G,e"K) = G + Gy "K(I — Gyue " K) ' Gy
= Gow + ¢ "G K(I = Gyue " K) ' Gy

h

(as e7*" commutes with G,).




Handling G,,e™"

Should be elementary by now (loop shifting). Indeed, the use of
K=K(I-0OK)™", forll =np{Gyue™"} = Gyy — Gyue™" € H®,
preserves internal stability and does the trick:

K(I —Gye™"K)' = K(I — Gy, K)7L.

Hence,
T =G+ "Gy K(I — Gy K)'Gyy

and we have only one delay to handle.

Structure of the impulse response of T
The impulse response of T = Gy, + e "G, K(I — Gyuk)_lew,
t(t)

t(r) =

°l
can be split into two parts as
109 (z) 19 (7)

t(r) = V& +

0‘ h T 0‘

t10.1) () =g, (t) T10.1) (t) (independent of K) ¢[1.29) (z) (depends on K)

where g;,, is the impulse response of Gy, .

Closer look at [0
In
10 () 11009 ()

t(r) = vk +

the term
» ¢[%M depends only on G,

(in fact it is merely the truncation of g, (t) to [0, h)).

Decomposition of G,
Split
gl (@) g8 ()

gzw(t) = +

0‘ h T 0‘ h T

—

g% (0):=g2uw () 10, (¥) g% (0):=g 20 (1) U h,00) (7)

which corresponds to the decomposition
Gz (s) = GLP () + €7 Gru(5)

where
> Ggf;,h) is an FIR system the impulse response of which is gz, (7) Tjo,1)(7)
> G,y is such that GI%M = 21{e "G} (hence, Gy (s) is rational)

We denote
> 14{Gu(s)} = G (s) and call it h-truncation of G.,.




Decomposition of T

Thus, we may write

T = Th{sz} + e_Sh(ézw + qulg(l - Gyule)_lew)

and then: T

Lemma
Whenever K is such that T € H?, we have t,{G.,} L T.

Proof.
The inner product on H? is

(en{Gaut )y = 5 [ ta([e1{Geu} ()" T o)) o

- / (g% (6)'7(9))d6 (Parseval)
0
~0

because impulse responses of 7;{G.,} and 7 have disjoint supports.

O

Norm of T

By Pythagoras, orthogonality implies that whenever 7' € H?

IT15 = ITa{Gzw} I3 + 17113

where 7,{G.} € H? because g% e 12(R+) (bounded and finite support).

Moreover,

» e5" isinner

so that
IT12 = Ta{Gzw} 13 + 1Grw + Geu KU — Gy K) ' Gy I3
= lta{Gzu}l5 + IIF(G. K) 3.
where .
~ G,w G
o 6
is rational.

Solution of the standard H? problem with input delay

Z
-— fe—————

G(s)

Summarizing, the following result can be formulated:

Theorem
There exists a finite-dimensional G such that the optimal

Kopt = Igopt(l - nh{e_ShGyu}Ieopt)_l,
where Ieopt solves the standard delay-free H? problem for G. The optimal

IT13 = I2a{Gew 13 + 1 FI(G, Kopr) I5-

Loop-shifting cartoon

sz qu Dh
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o
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sz quDh
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Loop-shifting cartoon (contd)

» the optimal controller is a DTC (the modified Smith predictor).

Truncation in state space

State-space formula for G
If

we have that

~ A le "B . A |B
Gyu=|:Cy 5 “] and sz:[czeA Ow]'

This yields (after similarity transformation with e4” for either G, or Gyw)

A | By e 4B, A |e"By, B,
G = CzeAh 0 Dzu = CZ. 0 D;u
Cy D yw 0 Cy e Ah D yw 0

which has the same dimension and structure! as G.

"I the sense that standard assumptions hold for G iff they hold for G.

If
<0 0 t<0&t>h
— [0,7) — =
wll) = = T) =
8z0(7) C,e?*B, 7>0 8zw (1) C,e™B, 0<t<h
and then
0 ift <h
[0,7) —
w(T) — 7) =
8zw(T) — &y (T) C.eATB, = C,etheAC=Np  ifr>h
Thus, if
_[A4]|B, 5 [ 4 |B,
6w = [ oo = G = [t ]
and then
h ’
I {Gzw ()} 3 :tr[Cz/O e4?B, B/ e*?d6 CZ/}.
Outline

Loop shifting for H* problem with loop delay




Problem

Given G and & > 0, design proper stabilizing K such that
1T lloo < ¥ for given y > 0,
where

T := Fi(G,e™"K) = G + Gy " K(I — Gy ™" K) ' Gyuy.

Loop shifting
We already know that if K = K(I — TK)™! for IT = np{e™*"G,,},
T = t1{Gruw} + e " (Grw + G K(I — GyuK) ' Gyu).

In the H? case we just dropped the first term from the optimization process
(as H? is Hilbert space and the Projection Theorem applied). Question is

» whether this policy is reasonable in the H* case?

The answer is negative, because

» H is not a Hilbert space )-:

Example
Consider
— _ea—Sh —
T=1p{i} +e"Q === Q.
For O = 0 (H?-optimal) we have
| — o—ioh 2(1— h
1Tl = max L= oy Y2AZCOS@R) 0o
welR~+ w w€el0,27/ h]
Now, let
1 (2h)%s% + 72
= = - — € HOO
Q= 0Qw s ws(2hs + mwe=sh)
so that
2h w —2hse™sh  2h _spn 2hs + e shy~
7 2hs + we=sh 2hs + me—sh

inner

and | T |loc = 2h, which is some 64% of what we achieved with Q0 = 0. As
a matter of fact, Q = Q is the optimal solution.

Sometimes it works

This happens in special case when G;,, = 0. Then
T =e*"(GuK( — GyuK) 'Gyu)

and
ITlleo = 1GeuK (I = GyuK) ™" Gyl
which is rational problem. Thus, original problem in this case
» solved by modified Smith predictor
too.




Application to robust stability analysis

Some robust stability problems cast as H* problems with G,,, = 0:
Additive uncertainty P = Py 4+ WoAW; = Fy(G, A) with

Tow
= [Wz Po}
Input multiplicative uncertainty P = Po(I + WoAW;) = Fy(G. A) with
T 0w
¢= [POWZ Po]
Output multiplicative uncertainty P = (I + WoAW;) Py = Fy(G, A) with

[0 WP
G_[Wz PO]

Closed loop of P with controller K robustly stable against all ||Alloc < o iff
IF(G.K)lloo < & (this is application of the Small Gain Theorem).

Application to robust stability analysis (contd)
With the use of DTC-based controller,

(e, an] o)l =17 (e &) 7))

for every K = K(I-IK)™"and Gyu such that IT := Gyu —e_ShGyu € H*™.

If Gy, € H*® we can always choose G, = G,,, which implies that

» Smith controller with primary part K has same robustness level against
additive / multiplicative uncertainty as delay-free loop with K = K.

If Gy & H™, Gyu # G,y and comparison is less tangible. Nevertheless, we
can safely say that

> best robustness level brought about by DTC-based controllers,

which might appear counterintuitive (after all, DTCs cancel dynamics).

And what if G,,, # 0?

Solution is still a DTC, but now with
I = mp{e™" (Gyu + Gyw(Y?1 — Gy Gru) "G Gu))

and can be interpreted as
» DTC under the worst-case disturbance for the open-loop system

after all, the best way to predict the future is to invent it (Alan Kay).

For example, the mixed sensitivity problem having the generalized plant

Wo(s): =W (s)P(s)
Gis)=| 0 | W)

results in |

L=y 2 W (s)Wo (s)

which might have a complicated pattern of removable singularities.

I(s) = —my, P(s)e™"t

Outline

Preview control and estimation




Active suspension

4/_\ -

available preview

» road disturbances can be measured with preview

Estimation problems

n

> reconstruct v from noisy measurements y by a stable K(s)

Problem:

Information patterns:

Fixed-lag smoothing setups

<

é I:Gv(s):|
11_ K(s) 5 esh Gy (s)

T(s) = e*"G,(s) — K(5)Gy,(s) or T(s) = Gy(s) — K(s)e"G,(s)

Error system:

Because
T(s) =e*"T(s) ande™*" is inner,

these two setups are essentially equivalent and
» fixed-lag smoothing is also a preview problem.

T(s)

to—h 1o 1 1o 1 o fo+h 1
prediction filtering fixed-lag smoothing
Outline

Technical preliminaries




Two-sided Laplace transform

If f(t): R — C, its Laplace transform is defined as

F(s) = L{f):= /_ Ft)e st de

for those s € C for which this integral exists (region of convergence).

Control theory mainly studies causal systems, in which case signals may be
assumed to satisfy

f(t)=0, V<0

and the one-sided transform (f;° ---) is enough. But in studying non-causal
systems we may no longer assume that.

Unstable or non-causal ¢ (contd)

If we have the transfer function

1
G(s) = —.
s—1
we may (at least in open-loop settings) interpret it as the transfer function of
either an

> unstable causal system with impulse response g(7) = €' Tjo,c0)(?)
ora

» stable anti-causal system with impulse response g(1) = —€’ 1(—c0,0(¢)

Unstable or non-causal ?

Consider a system G with the transfer function

1

We know that G(s) is the Laplace transform of the impulse response g(¢) of
G. Can we safely say that G is causal and unstable with

g(t) = e Tjg.o0)(t) = V ?

I t
Not necessarily, as anti-causal and stable

g(t) = =€ Too01(t) =

g()

\l 7
also produces the same G(s). The difference in the regions of convergence:

» the former exists in C;, whereas the latter—in C \ C;

L*(R) space

Consists of bounded-energy functions, i.e., such that

12wy = (/lef(t)llzdt)l/z < 0.

With some abuse of notation, by L?(R*) (L?(R™)) we denote the subspace
of L2(R) consisting of functions such that f(z) = 0 whenever t < 0 (t > 0).

L*(R) = L*>(RY) @ L*(R")




L?(jR) space

(or L?) is the space of all functions F : jR — C”" such that

1 [ . o 1/2
IF|lz == (—/ |F ()2 do) - < oo
27 J oo

It is a Hilbert space with the inner product

(Fi Fa)o = 5= / HIF>Go)]* Fi (o)) do

It is also the space of Fourier transforms of L?(R) functions f(z). Subspaces:
H?: Fourier transforms of L2(R™) functions

(such functions are Laplace transformable, with the region of convergence in Cy;

hence, H? functions exist and analytic in Res > 0)
H?: Fourier transforms of L?(R™) functions

(such functions are Laplace transformable, with the region of convergence in C \ Cy;
hence, H? functions exist and analytic in Res < 0)

L?(jR) space (contd)

From definitions above,
L>=H*® H?.

Moreover, for any F € L?, its projections onto H? and H? are
projy2 F = L{UI =) f} and  projy> F = L{ITo [},
where I1, is the truncation operator defined in Lect. 1.
It is readily seen that if F(jw) is the frequency response of a system F, then

> projg2 F yields the transfer function of its causal part;
> projy2 F yields the transfer function of its anti-causal part.

By Parseval,
[EN2 = 1/ 2 w)-

L? norm of H? systems

Let G(s) = |:21, lg:| € H? (i.e., anti-causal and —A4 is Hurwitz). Then,

0 0
||G||§=/ tr{g’(t)g(t)}dt:/ tr{B'e?'C'Ce BYdt = tr{B'W, B}

o0 —00

0 0
:/ tr{g(z)g/(t)}dt:/ tr{Ce BB'eA'CYdt = tr{CW.C'}

oo —00

where W and W, solve Lyapunov equations

_AWC_WcA/+BB/ :0 aﬂd _A/WO_WoA—i_C,C :0.

In particular, if a > 0

by _ bl
Hs—aHz V2a

L*(jR) space
(or L) is the space of all functions F : jR — C” such that
[ Flloo := supger 0{F(jw)} < 00

It can be shown that a system G is a bounded operator L2(R) — L?(R) iff its
frequency response G € L*°. Moreover,

1G] L2®)>L2@®) = 1 F |loo-

Thus, L? comprises frequency responses of all L2(R)-stable systems.

It can also be shown that H> C L* and comprises the transfer functions of
all causal and L?(R)-stable systems.

In the rational case? H2 C H®, i.e., all H? systems are stable.

2This is not true in general, i.e., the H? system with g(¢) = sinc(¢) g+ (¢) is unstable.




Some relations

time domain: L*(R)=L*(R*) & L*(R")

lLaplace lLaplace

Fourierl

frequency domain: L?

Also
» if G € L*®, then GL? C L?
» if G € H®, then GH? C H?

Hankel norm

Let G € H®. Its Hankel norm is

i projg2 G ul»
(Gl = sup lprojp: Gulla _ Iprojp? I
e lull2 ueH? leell2

i.e., itisits L2(R™) — L?(R™) induced norm. If G(s) = [%‘%], then
1Gln = v o(WcWo),

where W, and W, are controllability and observability Gramians verifying

AWe+ WA+ BB’ =0 and AW, + WoA+C'C =0

In particular, if a > 0,
_ bl
H 2a°

|+
s +a

Outline

One-block example: L? optimization

Setup
] w
sta T(s)
(i.e., Gy(s) = ﬁ and Gy(s) = {75) for some a > 0. Error system:
—sh
€ S —a
T(s) = - K
() s +a (s)s +a

and the error system is stable for every stable K(s). The problem is to

» find stable and causal K minimizing L?-norm ||T ||,.




Conversion to a distance problem

Rewrite |
s—a
T(s) = ( e™h — K(s))
s —a s+a
Ta(s)
As j:LZ is inner,
T2 = [ITal2
so the problem becomes?
min e~sh _ K) ,
KeH2llSs —a 2

which is the problem of finding the distance from —-e™" € L2 to H?.

3Should be done with some care as H2 ¢ H® in general (but it is for rational+delays).

Tadmor’s reduction

We know that

so that
—ah

¢ —(K(s)+nh{ ! e_Sh}).
—a s—a

1 e—sh%
s—a

and noting that K, € H? iff K € H?, the distance problem can be cast as

Ta(s) = P

Denoting

Ka(s) = K(s) + 7 {

—ah

min

— Ka
K.,eH?

’

2

S —a

which is a delay-free distance problem from an H? function to H?.

Solution

By the Projection Theorem, the optimal

e—ah e—ah e—ah
K, = proj =0 and ||T:|, = H = .
a szJ s—a I Tall2 T—al e

Thus,
1
Kopt(s) = —Tp { € Sh}
S —da

and the optimal performance
—ah

1T, ==
2 v 2a

is an exponentially decreasing function of 4, with lim,_, || 7|2 = 0. l.e.,

» preview improves L? estimation performance,

alleviating the effect of the nonminimum-phase zero (canceling it if 7 = o0).

Outline

One-block example: L* optimization (Nehari problem)




Setup

} w

T(s)
(i.e., Gy(s) = 47 and G, (s) = 252) for some a > 0. Error system:
—sh _
T(s) = —— — K(s)
s +a s +a

and the error system is stable for every stable K(s). The problem is to

» find stable and causal K minimizing L>°-norm ||| -

Conversion to a (delay-free) distance problem

Rewrite |
s—a
T(s) = ( e™sh — K(s))
s—a s+a
Ta(s)
As j:LZ is inner,
1T lloo = IITalloo
so the problem becomes
: 1 —sh : e—ah
min H e —KH = min H —Ka| .
KeH*Ill§s —a oo KeH>®Il§s —a oo

where we used Tadmor’s reduction procedure to end up with

» the problem of finding the distance from % € L®to H®

known as the Nehari problem.

Delay-free Nehari problem

Let G(s) be strictly proper rational transfer function of an anti-causal system
(in particular, G™ € H*). Then

Ln |G = Koo = IG |l

The optimal K(s) is then an RH *° transfer function.

Proof (outline).

(G — K)ull, (G — K)ull,
G — K|l = —_— > —_—
weL2(iR) [l 2 weH? [l 2
[projg2 (G — K)ul2 [projg> Gula
> sup —— = sup —— - =[G,
weH? [l weH? [[2e]]2

sothat |G — K|leo = |G™ ||l for any K € H*®. Then K € H® attaining the
equality can be constructed. O

Solution
Hence, e—ah e—ah e—ah
mmH — K, =H = .
K.eH>lls —a ) s+ aln 2a

In fact, the optimal K, opi(s) = —%. This can be seen from the equality

e—ah e—ah e—ah s+a e—ah

— Ka,opt(s) = + = ,
s—a s—a 2a s—a 2a

which is all-pass and thus || T4 |l = €7 /(2a). Thus,

C_ah 1 —sh
Kopt(s):_ 2a — T s—ae ,

and the optimal performance
—ah

2a

is an exponentially decreasing function of 4, with limj_, o ||T || = 0. l.€.,
> preview improves L™ estimation performance,

1T oo =

alleviating the effect of the nonminimum-phase zero (canceling it if 1 = c0).




Outline

Two-block example: L? optimization (self-study)

Setup

T(s)

for some a > 0 and o > 0 (measurement noise level). Error system:
r(6) = [ et 0]~ K[54 v5]

and the error system is stable for every stable K(s). The problem is to

» find stable and causal K minimizing L?-norm ||T ||,.

Reduction to a 1-block problem

Start with calculating

TT~ = ([sge" 0] - K[52 Vo)) ([fﬂ‘;em] - [%} KN)

= 4 KI+40)K~4+K——¢eh—eh K
—52 4+ a2 s+ a s—a
1 esh s—a ~ o 1
= K )1+ S SR . S—
(1+0s+a s+a ( U)() 1 +0—s%+a?
Thus,
1 e sh s—a |2 o 1 2
i = | (G - vk )L+ |
l1+o\s+a s+a’l2 l+os+alz2
~————
T1(s), depends on K To(s), independent of K
and

» minimizing T reduces to minimizing (1-block) T}, whereas

> ||To|l2 only adds to the optimal performance

Solution of the 1-block problem

As .\
1 e s s—a
Ti(s) = —(1+0)K(s
1) «/1+U(S+a &W)—Qsﬂt)
Ko (s)
we already know that
1 1 1
K — —K —— —sh
Opt(s) 140 U’Opt(s) 1+onh{s—ae }

and the optimal performance

—ah

e
Vv2a(l +0).

ITill2 =




Solution of the 2-block problem

sra VO

T(s)

Thus,

1 1 _
Kopt(s) = _1 +0nh{s_ae Sh}

and the optimal performance

e—2ah e—2ah +0
TN = | —— Tl? =/ ——,

which exponentially decreases to || Ty|». = v/o/(2a(l + 0)).

Outline

Two-block example: L optimization (self-study)

Setup

w

T(s)

for some a > 0 and o > 0 (measurement noise level). Error system:
76) = [ e 0]~ K[54 Vo]

and the error system is stable for every stable K(s). The problem is to

» find stable and causal K minimizing L*°-norm ||| .-

Reduction to a 1-block problem

We already know that

1 e—sh
TT~=< K
l+os+a s+a

S—a

)(1 +o)() +

Thus, |7 [leo < v iff

e ik jo —a ‘2 o 1

— K(jo) l+o0w?2+a

1
(14 0)| - .
l+0jw+a jo +a

or, equivalently,

wra (I+ G)K(jw)J

‘ e ioh jo —a|?
jw

o
<21 -
a(_y(+o)cﬁ+a




Reduction to a 1-block problem (contd)

This is possible only if

- o 1 1 o
max —_ = _ =:
y_a)efk l+o0w?2+a?2 aVl+o Yoo

and y cannot be made smaller than y,,, no matter what K is chosen. Now,
if we assume that y > yoo, we have that || T ||eo < v iff

e—ja)h

. ja)—a)2 5
- K < 1 -
ota (1+0) (Jw)jw+a =y°(1+0) 0 1 a2

yV1+0jo+/y??(1+0)—0o|
jo +a

:
for all w € R. Equivalently,

e—jwh

——— — (1 + 0)K(jo)
2

] — 2
o —ad ‘51, Vo € R

arjo + s

where @) := y/1+0 >0and ay := /y2a2(1 + o) — 0 > 0.

Reduction to a 1-block problem (contd)
Thus, y > ys and then

1 _ s—a
Ml =y = |———e™ -k

"—H <1
oS + ap o1 + op lloo

Ty
where K;(s) := (1 4+ 0)K(s). This is a 1-block problem reminiscent of what
we studied before. The main nontrivial difference is that
» T,(s) might contain unstable elements (if y = y, then oz = 0).

In such a case, K, must stabilize T, first, by canceling the pole at s = 0.

Interpolation condition for stabilization

Consider the model-matching problem

K(s)
s

T6) = “Gi6) + =G,

where G, G, € H® (in particular, such that G;(0) and G,(0) are finite). As
the pole at the origin is the only instability, we have that

T € H® < Res(T(s5);0) =0 < G1(0) + K(0)G»(0) = 0.
Thus, stabilization amounts to satisfying the interpolation constraint

Gi0)
G2(0)’

K(0) =

Resolving the interpolation condition
Lemma
The set of all K € H® such that K(0) = Ky is

s
s+a’

K(s) = Kp(s) + Q(s)

where K, € H* is any transfer function such that K,(0) = Ko, a > 0, and
Q € H* but otherwise arbitrary.

Proof (outline).
“if”: obvious (and a stable Q(s) cannot cancel the zero at the origin)

“only if”: let K € H* be any t.f. such that K(0) = Ky. Then, for any K, as

K(s)—Kp(s)

above, is stable and strictly proper, i.e., that

0@s):=(s+a) —K(S) _SKP(S) c H®

forany a > 0. Hence, K = Ky + Q for Q € H*. =

s
s+a




Stabilizing T, when a; = 0
Thus, if ap =0 (i.e., ¥ = Yoo),

10 = o (1o - K7

and the interpolation constraint K (0) = —% is resolved via

Ko () = Kp(s) + Q(s)——  where Kp(0) = —

Then 1 [e=sh— Ky(s)(s —a)
e —00iY)
A particularly convenient choice (educated guess) is Kp(s) = —ﬁe_s”
which case o = . (Ze_s” o) o a)
s+a s+a

is practically in the form of the 1-block problem studied earlier.

,in

General T,
Let | .4
= arm S T e
Motivated by the stabilization problem, consider
_am — o 1 061S+0l2

Ko (s) = e+ Q(s)————

ac; + oz s -|- a
(stabilizing if @, = 0 and non-restrictive if a; > 0), in which case

2a 1 —sh S —a

—00)

_ e
ao] +or s +a s +a

Ty(s) =

is again the 1-block form studied earlier.

Solvability conditions
Thus, 3K, such that ||T, || < 1 iff

1 s—a
30 € H* such that H— e sh — ” <1
acd; +or s +a s+ a lloo
¢
2a 1 s—a
min ”— et H 1
QeH>llaa; + o2 s +a s+ alloo
¢
H 2a e—ah _ 2a e—ah . e—ah <1
a1 + o s +a H_aa1+a2 2a _aa1+a2_

Thus (remember, a; := y+/1 +0 > 0 and ay :=

Y= Yoo = g/0/(1+0)

e < \/y2a2(1 +0) + /y2a®>(1 +0) —0

ITlo =y <= {

Vy2a:(1+o0)—0>0),

Analysis of the solvability conditions

Note that e#" < 1 and /y2a%(1 + o) + /y2a%(1 + 0) — 0 > /5. Hence,
» if o > I, then y = yo is attainable Vi > 0

(i.e., preview does not help us here at all)

This might be surprising. Then, even if 0 < o < 1, the inequality

e " < \/y2a2(1 + 0) + Vy2a?(1 +0) —0 I Jo

holds whenever # is sufficiently long. Namely,

» if 0 < 1, then y = y is attainable Vi > —1375’

(i.e., preview does not help us here after some finite value)

This might be surprising as well. In fact, only if & = 0, then more preview is
always advantageous from the L performance point of view.




Optimal performance

ra VO
T(s)
The minimal attainable ymin = ||T ||eo is
ah —ah 1
oe e 1fa<1&h<—E
2a/1+ 0 2a
Ymin = ﬁ
_— otherwise
av1+o0
The central optimal estimators (contd)
e
s+a w
[% ﬁ}
T(s)

Thus, going back O — K, — K, we end up with

e~y /1+o St {

1
Kopt(s) = — (
o l+o\ayJ1+0+ y2a2(1+0)—o0
1 e_Sh}—{% ifo<1&h<
a

S—a

1
__l—i-anh{s

e—ah th
m otherwise

where the last equality is obtained by substituting y = ymin.

_f)

The central optimal estimators

Now, whenever ¥y > Ymin,

1 s—aH

2a —sh
§):=arg min |————— e sh —
Qopi($) = ngHOOHaa1+a2s+a s+aloo

2a (e_“h { 1 —sh})
= - + Ty e
acy + o \ 2a s—a

will solve the problem (although we don’t need to minimize this norm if the
minimum is < 1 and then there are infinitely many admissible Q’s). Then,

ac; —ay 1 _
esh

K §) = —
a:opt(5) aoy +ars+a
B 2a e ah . 1 o sh o1s + o
ac; + o \ 2a h s—a s+a
e thy
=% T { e—sh}
ao; + on S —a
Outline

Some comparisons




2-block problem

Optimal performance

Ymin Ymin

1

0.866

0.707

0.707

0.535

0.361

0.218

0 h 0 0.458 0.949 1.5 h

L2 criterion (@ = 1) L criterion (@ = 1)

rha } w
s7a VO
T(s)
with
> preview length
> o representing intensity of measurement noise
Optimal estimators
L? criterion: 1 |
Kopt(s) = — T e™sh
opt(5) 1+o0 h{s—a }

and it vanishes as both 0 — oo and & — 0.

L criterion: either

oeth 4 emah 1 1
K — _ e—sh
ope(5) 2a(1 + o) 1+0nh{s a }

(ifo<1&h<-2%)0r

e~ah 1 1
K - _ _ —sh
opt($) a(l + o) 1+anh{s—ae }

(otherwise) and it vanishes as ¢ — oo, but not as & — 0.

Optimal |T (jo)|

L? criterion: i
e M 4o
TGiw)l? = ,
T (jo)] dro) e+ ad)

which is a low-pass function.

L criterion:

o, —("j‘;';jf;j';)z ifo<1&h<-lo
|T(Jw)| = e—2ah2 {20 .
W otherwise

which is

> all-passifo <1 &h < -2

» a lag otherwise, with |T (joo)|> = ag;f_‘;};) < 7070

=T

As h — oo, both frequency responses approach 1%“02;%2




Optimal |T (jw)| witho =0

T (jo)| T (joo)|

1

0.607

s

. . . _ In2
Optimal |T (jw)| with 0 = %= ~ 0.35

IT ()l IT (o)

1

0.729

0.6

[

0.581 A0

0.509 0.509 h=o05
h=1

h =00

0 ® 0 o

L2 criterion (@ = 1)
Here

> ||T|lo decreases up to h = 0.5 only

L criterion (a = 1)

05 Ao
0.368
0303 h=0s
0.184 k=1
h= o0
% D 0y )
L? criterion (@ = 1) L criterion (@ = 1)
Here
» ||T||oo decreases whenever h decreases
Optimal |T (jw)| witho =1
IT (o) |T(jo)]
1
0.827
g:;g; 0.707 k=0
h=0.5
h=1
h=o fn
0 @ 0 w

L2 criterion (@ = 1) L criterion (@ = 1)

Here

> || Tl does not decrease as h increases

Optimal |T (jw)| with o =2

IT(j)] IT(j)|

1

0.888

B3t

=Y
S
=3

L2 criterion (@ = 1)
Here

> || Tl does not decrease as h increases

L° criterion (@ = 1)
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