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Dead-time compensators and their implementation: general observations

Dead-time compensation

Here
» C(s) is primary controller (rational)
» [1(s) is stable dead-time compensator of the form

M(s) = P(s) — P(s)e™"

for some rational P(s) and P (s).

Implementation of DTC: stable P case

In this case P stable too' and controller can be safely implemented as

u W y

or even

where
Tu(s) == C(s)(I — P(5)C (s)) ™"
is (stable) controller sensitivity function. The only irrational element,
» e is a buffer,

which is easy to implement.

TOtherwise IT is unstable.




Unstable P: example

Closed-loop transfer function from r to y

I _
Tr(S) = me sh

v

which results in step response (for h = 1):

Unstable P: example (contd)

If DTC implemented as

() = n() + e~ u() —u( - h),

closed loop is unstable (because of unstable =
pole/zero cancellations at s = 1):

Implementation with unstable P

Main challenge:

In other words, these cancellations should be performed
» analytically, within implementable block(s).

Conventionally, this is done within the DTC block, I1(s).

» avoid unstable pole/zero cancellation between implemented parts.

Canceling unstable modes
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Split components of IT to stable and anti-stable parts:
P(s) = Py(s) + Pu(s) and P(s) = Py(s) + Pu(s)
(with strictly proper Py(s) and Py(s), which is always possible). Then,

M (s) = Ps(s) — Py(s)e™" + Py(s) — Py(s)e™"

stable for every Pg and Ps

all poles must be canceled




Canceling unstable modes (contd)

be a minimal realization, then

A A B Ay | B
—sh __ u ujl o u u —sh
Py(s)e™" = |:Cue_A“h 0 } TTh { [—‘F 0 }e }

and, therefore, P, (s) — Isu(s)e_s" € H® for some anti-stable Isu(s) iff

~ Ay By
o = [t 5]

In other words, the “unstable” part of I1(s) is necessarily of the form

Let

ﬁu(s) - ﬁu(s)e_Sh = nh{ﬁu(s)e_Sh}’

which is a distributed-delay element.

Distributed-delay element

Distributed-delay (DD) element can be expressed in the following forms:
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DD element is
> entire function of s (no poles)

> FIR system (impulse response has support in [0, A])

Implementing DD element

DD element is irrational (infinite-dimensional), so its
> precise implementation doesn’t appear to be feasible.

Hence, approximations required.

Possibilities:

> incorporate resetting mechanism to avoid hidden modes to run away

» approximate distributed delay by lumped delays
o find finite-dimensional approximation, like Padé

(complete pole/zero cancellation requirement imposes additional constraints)
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Implementing DD elements via resetting mechanism




Form (A) with zero initial conditions

The form (A) can be implemented as

X(t) = Ax(t) + (e Bu(t) — Bu(t — h)) + (1)
n(t) = Cx(t)

where €(t) represents (inevitable) error in computing e=4% Bu(t) — Bu(t — h).

Starting from zero initial conditions at 7 = 0 (i.e., x(0) = 0 and u.(0) = 0):
t
x(t) = / A0 (™" Bu(0) — Bu(6 — h) + €(0))do
0
t max{z,h}
= / eAC=0-M By (9)do — f A= By (0 — h)do
0 h

t
+ / eAt=9¢(9)do
0

xe(t)

Form (A) with zero initial conditions (contd)

Form (A) with zero initial conditions: error analysis

Xic.: we can write:

! A@6—h) .
Xic(t) = {/t € Bu(t —0)d# ift € (0,h)

0 otherwise

starts from finite (might be large, if the true u(¢) is far from 0 in ¢ < 0)
and then vanishes after & time units (history accumulation period).

Xe: this term
t
xe(1) = / A= ¢(9)do
0

starts from x.(0) = 0 and might diverge exponentially if A unstable.

Then
t max{t—h,0}
x(1) = / eAU=6-M By (9)do — / eA=9"1 By (9)d6 + xc (1)
0 0
t
= / eAC=0-M By (0)d6 + xc(1)
max{t—h,0}
min{z,h}
= / A0 Byt — 0)dO + xc (1)
0
h
_ / AO—) Byt _ 0)dg — AO— Bu (1 — 0)d0 +x. (1)
0 min{z,h}
Xic.(2)
and ,
n(t) = C / AP Byt — 0)dO + Cxic(t) + Cxe(t).
0
expected output implementation errors
ldea

Implement several systems of the form

%i(t) = Ax; (t) + e " Bu(t) — Bu(t — h)
ni(t) = Cx; (1)

in parallel and make sure that

1. each system is periodically reset
(so that its x¢(7) is always bounded)

2. atevery ¢ at least one system has history accumulation stage completed
(so that its xj ¢ (z) = 0)




Implementation

It is sufficient to take two systems:

x1(t) = Ax1(t) + e 4" Bu(t) — Bu(t — h)
and

%2(t) = Axa(t) + e " Bu(t) — Bu(r — h)
with

» reset mechanisms x;(2kh) = x,((2k + 1)h) =0 (k € Z™)
» output formed according to

Cxi(t) ift € [k + Dh,2(k + Dh)

n(t) = Cxo(t) ift € [2kh, 2k + 1)h)

Example: [1(s) = — &=~

l—e " s—1

Open-loop response of IT with h = 1 to square wave with period 2.5:

+F

y1(r) and y, (1)

Example: I1(s) = 1_;@ (contd)

N

Open-loop response of IT with i = 1 to square wave with period 5:

1F

y1(t) and y, (1)

Outros

Pros:
> easy to implement

> precision can be improved (by increasing number of systems)

Cons:

> nonlinear system

(hard to analyze stability, hard to analyze performance, ...)
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Implementing DD elements via lumped delay approximations

Preliminary: numerical integration

Let f(z) be integrable in ¢ € [a, b]. Then

b v
f f(t)dt%Za,-f(a+%(b—a))
a i=0

for some number of partitionings v € N and some «; (depend on method).
Main steps:

1. split [a, b] into v subintervals uniformly?

2. in each subinterval approximate f(r) by function with calculable area

3. integral ~ sum of approximation areas in each subinterval
Approximation

» performance improves as v increases.

2Just for the sake of simplicity, intervals may be non-uniform.

Example: rectangle rule (v even)

/\

toi t2it1 toito

In this case

o =

b—a\2 ifi odd
v 0 ifi even

Approximation error (if f/(¢) and f”(¢) continuous and bounded):

b v l, (b—a)?
/a f(@)dr — ;aif(a + U(b _“))' = 6v2 te[a b]

f()‘

dr?

Example: trapezoid rule

2] t2it1 toito

In this case

o =

b—al\2 ifi=1,...,v—1
2v 1 ifi =0,v

Approximation error (if f/(¢) and f”(¢) continuous and bounded):

b v l, (b—a)?
/a f(@)dr — ;aif(a + 50 —a))' = 1212 te[a b]

f()]

dr?




Example: Simpson’s rule (v even)

2% toit1 toito

In this case
1 ifi =0,v
b—a . .
o = & 2 if i even but neither 0 nor v
4 ifi odd

Approximation error (if FO@), i =1,2,3,4, continuous and bounded):

Lumped-delay approximations

Consider form (O) and deduce from it
h v
II(s) = / CeA0-M pa=s94p ~ ZaiCeA(l/"_l)hBe_Sh’/” =:I1,(s)
0 i=0
I1, is a lumped-delay system with entire and bounded transfer function, so
IT,(s) e H®,

exactly what we need.

T o - L (b L),
/a f(0) —;azf(a—i-;( —a))| < T200t dt4f()‘
Example: unpleasant surprise
- e (1] r

C(s)

For trapezoid approximation and v = 10 we have unstable response:

Yexpected (t)
y(@)

K 2 30
t t

Even more unpleasant is that system remains unstable as v — oo.

Approximation error

Let
Apn(s):=1TI(s) —II,(s) € H*®

be the approximation error. Its size may be measured as

[Anlloe = esssupyerllAm(jo)l,
meaning that good match between IT and [T, requires
> accurate approximation over all frequencies.
At the same time, the derivative of
f(0) = CeA®~M pemivt

unbounded (grows with w), which questions the applicability of numerical
integration methods to transfer functions.




Example: approximation error

11 (jw)| and |11, (jo)|, dB

’ Frequgncy, 10) ’
As v increases,
» mismatch just moves to higher frequencies
rather than vanishes?.

h(—e~ M) +1) Y=

31t can be shown that lim sup,,_,o,|Ag(jw)| = o@D

_h.

—e€

Bad news

Key observations:
> I1(s) = P(s) — P(s)e™*" has a finite bandwidth
(as P(s) and P(s) are strictly proper), whereas
> I1,(s) = Y 1_oo; CeAW/v=Dh B o=shi/v hag an infinite bandwidth.

In other words,

» I, is an intrinsically poor approximation in the high-frequency range

Stability analysis

As A € H®, we may use loop shifting to separate A from nominal parts:

C(s)

c®
We then get feedback connection of A and
Geq(s) = =C(&)(I = (P(s)e™™" + M (5)C(s)) ™
If P(s) = P(s) (this is all what we saw by now),
Geq(s) = =C($)(I = P(5)C(5)) € H*®

by design of C.

Stability analysis (contd)

=

B Geq (s) = i

Wy

By the Small Gain Theorem (SGT), this system is stable if

[ Leq($)lloo < 1, where Leq(s) := Geq(s)An(s)

For our example (trapezoid approximation of

M(s) = <o)
w1 ;
Geq(S)=Ze s+ 1 E*

and SGT condition fails. More important:

» it fails in high-frequency range

10'
Frequency,




Stability analysis (contd)

LE -
— Geq(s) L

u

We say that system is w-stable if
1. itis stable
2. limsup, o0 llLeq(jo)|| < 1
If system is not w-stable, it might be
> destabilized by an arbitrarily small high-frequency mismatch,

which renders w-stability necessary for practical stability.

For system in our example lim sup,,_, o | Leq(j@)| = % (e"—1)>1

(if h =1 and v = 10), so that it is

» not w-stable.

Remedies

D Ap(s) \

b Gey(s) 7 W,

Two possibility:

> improve high-frequency robustness of Geq(s)
(always a good idea, regardless approximation precision, because

Geq=—C(I — PC)™' = —C(I — Pe™hC)7!

is controller sensitivity, for which high high-frequency gain should be avoided)

» improve high-frequency precision of the lumped-delay approximation

Limiting approximations bandwidth

Since P(s) and P(s) are strictly proper,

I(s) = nh{lse_Sh}

1 A |B A|B] _,
_rs+1((”+l)([Ce_Ah0:|_|:CO:|e h))

1 —Ah —sh A Bl _sn
= (rCe B —tCBe +nh{|:C(I+tA) O]e )

= Il ,
s+ 1 ()

where IT; is also a DD element. We may then
» approximate [T via approximating I,

which shall result in a finite-bandwidth approximation.

Limiting approximations bandwidth (contd)
Standard lumped-delay approximation of IT; is
IT.(s) = ZaiC(l + fA)eA(i/”_l)hB e shilv
i=0

This results in

v
M(s) ~ > MY = (s),
=0

s+ 1

where
C(ao(I +tA) + e B ifi =0

I; = { C(ay(I +tA)—1I)B ifi =v
o;C(I + tA)eAti/v=Drp otherwise




I and I,

[T (joo)| and |z, (joo)|, dB

45

|Leq(jw)|/ dB

. .
10° 10' 10°

Frequency, o

Step response is then virtually ideal.

10° 10' 10°

Frequency, w

Outros

Pros:

> precision can be improved (by increasing number of discr. steps v)

> linear, so (relatively) easy to analyze

Cons:

» implementation cost grows with v

Outline

Respect internal loop: a case study

Problem: servo for DC motor
41.085

— = e*"forh €{0.1,0.15,0.2
50715 +1)° (0.1,0.15,0.2;

Plant: P(s) =

Nichols Chart

40H =0

— h=0.1
== h=0.15
30 = -h=02

20F

Open-Loop Gain (dB)
=

|
o
\
[y
v
\

-20F

-360 -315 -270 —225 -180 -135 -90
Open-Loop Phase (deg)

Specs: 1. integral action

2. (first) crossover w. = 6rad/sec
3. phase margin ppn = 0.6rad ~ 34.4°




Classical loop shaping

Delay makes it harder: with standard lead-lag elements* results not exciting

Bode Diagram Nichols Chart

Magnitude (dB)

Open-Loop Gain (dB)

Phase (deg)

10° 10 10' 10 10° -315 -270 -225 -180 -135
Frequency (rad/sec) Open-Loop Phase (deg)

4The use of 2nd order leads and other loop shaping tricks might perhaps improve results,
yet this is not a point here. ..

DTC-based design

Use of H* loop shaping results in DTC controllers and resulting loops:

Bode Diagram Nichols Chart

Lo,

Ry -
PRSPt
?

Magnitude (dB)

Open-Loop Gain (dB)

Phase (deg)

-180

1 . . n . . ; i .
-495 -450 -405 -360 -315 -270 -225 -180 -135
Frequency (rad/sec) Open-Loop Phase (deg)

Off-the-shelf implementation

Let’s use lumped-delay approximation with t-augmentation and choose v

so that
. Md,a

[Ad
where pq and pg, are delay margins of designed and implemented loops.

‘1 < 0.001,

Results:

hllo1]o15]| 0.2
v 7 ] 435 | 5460
Scary:

» doubling delay increases v by a factor of 780!

Inaccuracy mechanisms: mind controller loop

u W Yy

N
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We implement controller as

» feedback interconnection of two systems, C and IT.
It then makes sense to

> scrutinize this loop.




Inaccuracy mechanisms: mind controller loop (contd)

Nyquist plot of the controller loop w10 Nyquist plot of the controller loop

. -1.0004 -1.0003 -1.0002 -1.0001 -1 -0.9999 -0.9998 —0.9997
Real Real

Clearly seen that
> as h increases stability margins decrease
which, in turn, makes controller loop

» extremely sensitive to numerical errors.

Inaccuracy mechanisms: loop disparity
Consider now each component of the controller internal loop:

Bode Magnitude Diagram of IT Bode Magnitude Diagram of €

Magnitude (dB)
lagnitude (dB)

Frequency (rad/sec) Frequency (rad/sec)

We see that as i increases
> |IT(jw)| grows, whereas |C (jo)| decreases

This results in an unbalanced loop and numerical errors in computing I7.

Inaccuracy mechanisms: loop disparity (contd)

Take a closer look at the components of IT = P — Pe~*:

Bode Magnitude Diagram of P Bode Magnitude Diagram of P
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P(s) = [Cei‘h Ig} rather than P (s) = [%‘%]

is the component inflating IT and an apparent cause of this is the e=4" term.

Clearly,

Loop disparity: remedy
Two point to notice:
1. only stable modes of A cause problems via inflating e=4”

2. only unstable modes of 4 have to be canceled in DD element
This suggests split (we already saw it)

M(s) = My(s) + Mu(s) = (Ps(s) + Po(s)e™") + (Puls) + Pu(s)e™")

and the implementation via loop shifting:

. . L GO 2
SR - E

(rational C, = C(I — P;C)~" implemented as one piece).




Loop shifting: components

Much better, isn't it?

Bode Magnitude Diagram Bode Magnitude Diagram
10 T T 15 T
SR AT D RN 111 S T PR
Tl 10 P
0 e “ "J
— v . /
s \:'.‘ 8 s I
8 v b i
2 v 2 i
= [ = o
e )
-15 v &
L -
-20f == =015 e N I O R I S s <. ‘-
- h=02 "r"i" e
_25 L L L P 0 L L
10° 107 10° 10 110’* 10° 10’
Frequency (rad/sec) Frequency (rad/sec)
More balanced. . .
Loop shifting: results
h 0.15| 0.2
Vout of the box || 435 | 5460
Vloop shifting 25 52

Loop shifting: stability margins

Polar plot
2 T T T T
1 e e
. N L
. -
Lo RNy
0 ! Y o N . .
! JdEy , ,
! [ e ‘ [ .
o ! [ ' B
] ' )
' \ K !
Y .. 7 ;!
-2 \ ROV P
> T ’
.
_3t B
_4 . ; .
-3 -2 -1 0 1 2 3 4
Real

Increased. . .

Outros

Internal loop of controller

> must be respected

as its ill-posedness might cause implementation problems.

To understand underlying reasons of ill-posed loops and possible remedies,
» much yet to be done. ..




	Dead-time compensators and their implementation: general observations
	Implementing DD elements via resetting mechanism
	Implementing DD elements via lumped delay approximations
	Respect internal loop: a case study

