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Dead-time compensation

yu QC .s/

˘.s/

Here
I QC.s/ is primary controller (rational)
I ˘.s/ is stable dead-time compensator of the form

˘.s/ D QP .s/ � OP .s/e�sh

for some rational QP .s/ and OP .s/.

Implementation of DTC: stable OP case

In this case QP stable too1 and controller can be safely implemented as

yu QC .s/

QP .s/

OP .s/e�sh

-

or even

yu QTu.s/

OP .s/e�sh

-

where
QTu.s/´ QC.s/�I � QP .s/ QC.s/��1

is (stable) controller sensitivity function. The only irrational element,
I e�sh is a buffer,

which is easy to implement.

1Otherwise ˘ is unstable.



Unstable OP : example

C.s/

reuy 1

s�1
e�sh

2eh

e�h� e�sh

s�1

1

2eh- -

Closed-loop transfer function from r to y

Tr.s/ D 1

s C 1 e
�sh

which results in step response (for h D 1):
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Unstable OP : example (contd)

C.s/

reuy 1

s�1
e�sh

2eh

e�h� e�sh

s�1

1

2eh- -

If DTC implemented as

P�.t/ D �.t/C e�hu.t/ � u.t � h/;

closed loop is unstable (because of unstable
pole/zero cancellations at s D 1):
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Implementation with unstable OP
yu QC .s/

˘.s/

Main challenge:
I avoid unstable pole/zero cancellation between implemented parts.

In other words, these cancellations should be performed
I analytically, within implementable block(s).

Conventionally, this is done within the DTC block, ˘.s/.

Canceling unstable modes

yu QC .s/

˘.s/

Split components of ˘ to stable and anti-stable parts:

QP .s/ D QPs.s/C QPu.s/ and OP .s/ D OPs.s/C OPu.s/

(with strictly proper QPu.s/ and OPu.s/, which is always possible). Then,

˘.s/ D QPs.s/ � OPs.s/e
�sh„ ƒ‚ …

stable for every QPs and OPs

C QPu.s/ � OPu.s/e
�sh„ ƒ‚ …

all poles must be canceled



Canceling unstable modes (contd)

Let
OPu.s/ D

�
Au Bu

Cu 0

�
be a minimal realization, then

OPu.s/e
�sh D

�
Au Bu

Cue�Auh 0

�
� �h

��
Au Bu

Cu 0

�
e�sh

�
and, therefore, QPu.s/ � OPu.s/e�sh 2 H1 for some anti-stable QPu.s/ iff

QPu.s/ D
�

Au Bu

Cue�Auh 0

�
:

In other words, the “unstable” part of ˘.s/ is necessarily of the form

QPu.s/ � OPu.s/e
�sh D �h

˚ OPu.s/e
�sh	;

which is a distributed-delay element.

Distributed-delay element

Distributed-delay (DD) element can be expressed in the following forms:

˘.s/ D �h

��
A B

C 0

�
e�sh

�
D
�

A B

C e�Ah 0

�
�
�
A B

C 0

�
e�sh (Ä)

D
�
A e�AhB
C 0

�
�
�
A B

C 0

�
e�sh (Å)

D C
Z h

0

eA.��h/e�s�d�B (Ö)

DD element is
I entire function of s (no poles)
I FIR system (impulse response has support in Œ0; h�)

Implementing DD element

DD element is irrational (infinite-dimensional), so its
I precise implementation doesn’t appear to be feasible.

Hence, approximations required.

Possibilities:
I incorporate resetting mechanism to avoid hidden modes to run away
I approximate distributed delay by lumped delays

ı find finite-dimensional approximation, like Padé
(complete pole/zero cancellation requirement imposes additional constraints)
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Respect internal loop: a case study



Form (Å) with zero initial conditions

The form (Å) can be implemented as(
Px.t/ D Ax.t/C �e�AhBu.t/ � Bu.t � h/�C �.t/
�.t/ D Cx.t/

where �.t/ represents (inevitable) error in computing e�AhBu.t/�Bu.t � h/.
Starting from zero initial conditions at t D 0 (i.e., x.0/ D 0 and u� .0/ � 0):

x.t/ D
Z t

0

eA.t��/
�
e�AhBu.�/ � Bu.� � h/C �.�/�d�

D
Z t

0

eA.t���h/Bu.�/d� �
Z maxft;hg

h

eA.t��/Bu.� � h/d�

C
Z t

0

eA.t��/�.�/d�„ ƒ‚ …
x�.t/

Form (Å) with zero initial conditions (contd)

Then

x.t/ D
Z t

0

eA.t���h/Bu.�/d� �
Z maxft�h;0g

0

eA.t���h/Bu.�/d� C x�.t/

D
Z t

maxft�h;0g
eA.t���h/Bu.�/d� C x�.t/

D
Z minft;hg

0

eA.��h/Bu.t � �/d� C x�.t/

D
Z h

0

eA.��h/Bu.t � �/d� �
Z h

minft;hg
eA.��h/Bu.t � �/d�„ ƒ‚ …
xi.c..t/

Cx�.t/

and

�.t/ D C
Z h

0

eA.��h/Bu.t � �/d�„ ƒ‚ …
expected output

C
Z h

0

Cxi.c..t/C Cx�.t/„ ƒ‚ …
implementation errors

:

Form (Å) with zero initial conditions: error analysis

xi.c.: we can write:

xi.c..t/ D
˚
�
Z h

t

eA.��h/Bu.t � �/d� if t 2 .0; h/
0 otherwise

starts from finite (might be large, if the true u.t/ is far from 0 in t < 0)
and then vanishes after h time units (history accumulation period).

x�: this term

x�.t/ D
Z t

0

eA.t��/�.�/d�

starts from x�.0/ D 0 and might diverge exponentially if A unstable.

Idea

Implement several systems of the form(
Pxi .t/ D Axi .t/C e�AhBu.t/ � Bu.t � h/
�i .t/ D Cxi .t/

in parallel and make sure that

1. each system is periodically reset
(so that its x�.t/ is always bounded)

2. at every t at least one system has history accumulation stage completed
(so that its xi.c..t/ D 0)



Implementation

It is sufficient to take two systems:

Px1.t/ D Ax1.t/C e�AhBu.t/ � Bu.t � h/
and

Px2.t/ D Ax2.t/C e�AhBu.t/ � Bu.t � h/

with
I reset mechanisms x1.2kh/ D x2..2k C 1/h/ D 0 (k 2 ZC)
I output formed according to

�.t/ D
(
Cx1.t/ if t 2 Œ.2k C 1/h; 2.k C 1/h/
Cx2.t/ if t 2 Œ2kh; .2k C 1/h/

Example: ˘.s/ D 1
1�e�h

e�h�e�sh
s�1

Open-loop response of ˘ with h D 1 to square wave with period 2.5:
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Example: ˘.s/ D 1
1�e�h

e�h�e�sh
s�1 (contd)

Open-loop response of ˘ with h D 1 to square wave with period 5:
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Outros

Pros:
I easy to implement
I precision can be improved (by increasing number of systems)

Cons:
I nonlinear system

(hard to analyze stability, hard to analyze performance, . . . )
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Preliminary: numerical integration

Let f .t/ be integrable in t 2 Œa; b�. ThenZ b

a

f .t/dt �
�X
iD0

˛if
�
aC i

�
.b � a/�

for some number of partitionings � 2 N and some ˛i (depend on method).
Main steps:

1. split Œa; b� into � subintervals uniformly2

2. in each subinterval approximate f .t/ by function with calculable area

3. integral � sum of approximation areas in each subinterval

Approximation
I performance improves as � increases.

2Just for the sake of simplicity, intervals may be non-uniform.

Example: rectangle rule (� even)

t2i t2i+1 t2i+2

In this case

˛i D b � a
�

(
2 if i odd

0 if i even

Approximation error (if f 0.t/ and f 00.t/ continuous and bounded):ˇ̌̌̌Z b

a

f .t/dt �
�X
iD0
˛if

�
aC i

�
.b � a/�ˇ̌̌̌ � .b � a/3

6�2
max
t2Œa;b�

ˇ̌̌̌
d2

dt2
f .t/

ˇ̌̌̌

Example: trapezoid rule

t2i t2i+1 t2i+2

In this case

˛i D b � a
2�

(
2 if i D 1; : : : ; � � 1
1 if i D 0; �

Approximation error (if f 0.t/ and f 00.t/ continuous and bounded):ˇ̌̌̌Z b

a

f .t/dt �
�X
iD0
˛if

�
aC i

�
.b � a/�ˇ̌̌̌ � .b � a/3

12�2
max
t2Œa;b�

ˇ̌̌̌
d2

dt2
f .t/

ˇ̌̌̌



Example: Simpson’s rule (� even)

t2i t2i+1 t2i+2

In this case

˛i D b � a
6�

�
1 if i D 0; �
2 if i even but neither 0 nor �

4 if i odd

Approximation error (if f .i/.t/, i D 1; 2; 3; 4, continuous and bounded):ˇ̌̌̌Z b

a

f .t/dt �
�X
iD0
˛if

�
aC i

�
.b � a/�ˇ̌̌̌ � .b � a/5

720�4
max
t2Œa;b�

ˇ̌̌̌
d4

dt4
f .t/

ˇ̌̌̌

Lumped-delay approximations

Consider form (Ö) and deduce from it

˘.s/ D
Z h

0

C eA.��h/Be�s�d� �
�X
iD0

˛iC eA.i=��1/hBe�shi=� µ ˘�.s/

˘� is a lumped-delay system with entire and bounded transfer function, so

˘�.s/ 2 H1;

exactly what we need.

Example: unpleasant surprise

C.s/

reuy 1

s�1
e�sh

2eh

e�h� e�sh

s�1

1

2eh- -

For trapezoid approximation and � D 10 we have unstable response:
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Even more unpleasant is that system remains unstable as � !1.

Approximation error

Let
�˘ .s/´ ˘.s/ �˘�.s/ 2 H1

be the approximation error. Its size may be measured as

k�˘k1 D ess sup!2Rk�˘ .j!/k;

meaning that good match between ˘ and ˘� requires
I accurate approximation over all frequencies.

At the same time, the derivative of

f .�/ D C eA.��h/Be�j!�

unbounded (grows with !), which questions the applicability of numerical
integration methods to transfer functions.



Example: approximation error
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As � increases,
I mismatch just moves to higher frequencies

rather than vanishes3.

3It can be shown that lim sup!!1j�˘ .j!/j D h.1�e�h/.eh=�C1/
2�.eh=��1/

�!1����! 1 � e�h.

Bad news

Key observations:
I ˘.s/ D QP .s/ � OP .s/e�sh has a finite bandwidth

(as QP .s/ and OP .s/ are strictly proper), whereas
I ˘�.s/ D

P�
iD0 ˛iC eA.i=��1/hB e�shi=� has an infinite bandwidth.

In other words,
I ˘� is an intrinsically poor approximation in the high-frequency range

Stability analysis

As �˘ 2 H1, we may use loop shifting to separate �˘ from nominal parts:

C.s/

wu

wy

P.s/e�sh

QC.s/

˘�.s/
,

C.s/

wu

wy

P.s/e�sh

QC.s/

˘.s/

�˘ .s/

- ,

Geq.s/

P.s/e�sh

QC.s/

˘.s/

�˘ .s/
Qwu

Qwy-

We then get feedback connection of �˘ and

Geq.s/ D � QC.s/
�
I � .P.s/e�sh C˘.s// QC.s/��1

If OP .s/ D P.s/ (this is all what we saw by now),

Geq.s/ D � QC.s/
�
I � QP .s/ QC.s/��1 2 H1

by design of QC .

Stability analysis (contd)

Qwu

QwyQyQu

�˘ .s/

Geq.s/

By the Small Gain Theorem (SGT), this system is stable if

kLeq.s/k1 < 1; where Leq.s/´ Geq.s/�˘ .s/

For our example (trapezoid approximation of
˘.s/ D e�h�e�sh

s�1 .)

Geq.s/ D 2eh s � 1
s C 1

and SGT condition fails. More important:
I it fails in high-frequency range
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Stability analysis (contd)

Qwu

QwyQyQu

�˘ .s/

Geq.s/

We say that system is w-stable if

1. it is stable

2. lim sup!!1kLeq.j!/k < 1
If system is not w-stable, it might be

I destabilized by an arbitrarily small high-frequency mismatch,

which renders w-stability necessary for practical stability.

For system in our example lim sup!!1jLeq.j!/j D h=�.eh=�C1/
eh=��1 .eh � 1/ > 1

(if h D 1 and � D 10), so that it is
I not w-stable.

Remedies

Qwu

QwyQyQu

�˘ .s/

Geq.s/

Two possibility:
I improve high-frequency robustness of Geq.s/

(always a good idea, regardless approximation precision, because

Geq D � QC.I � QP QC/�1 D �C.I � P e�shC/�1

is controller sensitivity, for which high high-frequency gain should be avoided)

I improve high-frequency precision of the lumped-delay approximation

Limiting approximations bandwidth

Since QP .s/ and OP .s/ are strictly proper,

˘.s/ D �s C 1
�s C 1 �h

˚ OP e�sh
	

D 1

�s C 1
�
.�s C 1/

��
A B

C e�Ah 0

�
�
�
A B

C 0

�
e�sh

��
D 1

�s C 1
�
�C e�AhB � �CBe�sh C �h

��
A B

C.I C �A/ 0

�
e�sh

��
D 1

�s C 1 ˘� .s/;

where ˘� is also a DD element. We may then
I approximate ˘ via approximating ˘� ,

which shall result in a finite-bandwidth approximation.

Limiting approximations bandwidth (contd)

Standard lumped-delay approximation of ˘� is

˘� .s/ �
�X
iD0

˛iC.I C �A/eA.i=��1/hB e�shi=�

This results in

˘.s/ � 1

�s C 1
�X
iD0

˘i e
�shi=� µ ˘�;�.s/;

where

˘i D

�
C.˛0.I C �A/C �I /e�AhB if i D 0
C.˛�.I C �A/ � �I /B if i D �
˛iC.I C �A/eA.i=��1/hB otherwise



It works. . .
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Step response is then virtually ideal.

Outros

Pros:
I precision can be improved (by increasing number of discr. steps �)
I linear, so (relatively) easy to analyze

Cons:
I implementation cost grows with �

Outline

Dead-time compensators and their implementation: general observations

Implementing DD elements via resetting mechanism

Implementing DD elements via lumped delay approximations

Respect internal loop: a case study

Problem: servo for DC motor

Plant: P.s/ D 41:085

s.0:71s C 1/e
�sh for h 2 f0:1; 0:15; 0:2g

Nichols Chart
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Specs: 1. integral action
2. (first) crossover !c D 6rad/sec
3. phase margin �ph D 0:6rad � 34:4ı



Classical loop shaping

Delay makes it harder: with standard lead-lag elements4 results not exciting

Bode Diagram
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4The use of 2nd order leads and other loop shaping tricks might perhaps improve results,
yet this is not a point here. . .

DTC-based design

Use of H1 loop shaping results in DTC controllers and resulting loops:

Bode Diagram
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Off-the-shelf implementation

Let’s use lumped-delay approximation with �-augmentation and choose �
so that ˇ̌̌̌

1 � �d,a

�d

ˇ̌̌̌
� 0:001;

where �d and �d,a are delay margins of designed and implemented loops.

Results:

h 0:1 0:15 0:2

� 7 435 5460

Scary:
I doubling delay increases � by a factor of 780 !

Inaccuracy mechanisms: mind controller loop

yu QC .s/

˘.s/

We implement controller as
I feedback interconnection of two systems, QC and ˘ .

It then makes sense to
I scrutinize this loop.



Inaccuracy mechanisms: mind controller loop (contd)
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Clearly seen that
I as h increases stability margins decrease

which, in turn, makes controller loop
I extremely sensitive to numerical errors.

Inaccuracy mechanisms: loop disparity

Consider now each component of the controller internal loop:
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We see that as h increases
I j˘.j!/j grows, whereas j QC.j!/j decreases

This results in an unbalanced loop and numerical errors in computing ˘ .

Inaccuracy mechanisms: loop disparity (contd)

Take a closer look at the components of ˘ D QP � OP e�sh:
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Clearly,

QP .s/ D
�

A B

C e�Ah 0

�
rather than OP .s/ D

�
A B

C 0

�
is the component inflating ˘ and an apparent cause of this is the e�Ah term.

Loop disparity: remedy

Two point to notice:
1. only stable modes of A cause problems via inflating e�Ah

2. only unstable modes of A have to be canceled in DD element
This suggests split (we already saw it)

˘.s/ D ˘s.s/C˘u.s/µ
� QPs.s/C OPs.s/e

�sh�C � QPu.s/C OPu.s/e
�sh�

and the implementation via loop shifting:

˘.s/

yu QC .s/

˘u.s/

QPs.s/

OPs.s/e�sh

”

QCa.s/

˘a.s/

yu QC .s/

˘u.s/

QPs.s/

OPs.s/e�sh

(rational QCa D QC.I � QPs QC/�1 implemented as one piece).



Loop shifting: components

Bode Magnitude Diagram
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More balanced. . .

Loop shifting: stability margins
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Loop shifting: results

h 0:15 0:2

�out of the box 435 5460

�loop shifting 25 52

Much better, isn’t it?

Outros

Internal loop of controller
I must be respected

as its ill-posedness might cause implementation problems.

To understand underlying reasons of ill-posed loops and possible remedies,
I much yet to be done. . .
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