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Discrete case: problem statement

Consider

Ṅ
h W
(
NxŒk C 1� D NA NxŒk�C NB NuŒk � h�
NyŒk� D NC NxŒk�

We look for NuŒt � stabilizing Ṅh for any given h.

Luenberger observer: delay-free case

Consider the problem of reconstructing Nx in

Ṅ
0 W
(
NxŒk C 1� D NA NxŒk�C NB NuŒk�
NyŒk� D NC NxŒk�

To this end, construct observer

NxoŒk C 1� D NA NxoŒk�C NB NuŒk� � NL. NyŒk� � NC NxoŒk�/

which has two inputs ( Nu and Ny). The observation error N�Œk�´ NxŒk� � NxoŒk�

satisfies then autonomous (input free) equation

N�Œk C 1� D . NAC NL NC/N�Œk�;

which can be made stable provided . NC ; NA/ is detectable. Stability implies
that limk!1 N�Œk� D 0 from any initial condition.



Observer-based feedback: delay-free case

Combining plant, observer, and observer-based control law NuŒk� D NF NxoŒk�,
we get the following closed-loop system:

Ṅcl W

„ � NxŒk C 1�
NxoŒk C 1�

�
D
� NA NB NF
� NL NC NAC NL NC C NB NF

� � NxŒk�
NxoŒk�

�

NyŒk� D � NC 0
� � NxŒk�
NxoŒk�

�

As the dynamics of N� are autonomous, rewrite (by similarity transformation)

Ṅcl W

„ � NxŒk C 1�
N�Œk C 1�

�
D
� NAC NB NF NB NF

0 NAC NL NC
� � NxŒk�
N�Œk�

�

NyŒk� D � NC 0
� � NxŒk�
N�Œk�

�

whence spec. Ṅcl/ D spec. NAC NB NF / S spec. NAC NL NC/ (separation).

Reduced-order observer: simple special case

If

Ṅ
0 W

„ � Nx1Œk C 1�
Nx2Œk C 1�

�
D
� NA11 0
NA21 NA22

� � Nx1Œk�
Nx2Œk�

�
C
� NB1
NB2

�
NuŒk�

� Ny1Œk�
Ny2Œk�

�
D
�
I 0

0 NC
� � Nx1Œk�
Nx2Œk�

�

i.e., we measure the whole Nx1 and a part of Nx2, we need to observe only Nx2.
From the second state equation:

(
Nx2Œk C 1� D NA22 Nx2Œk�C NA21 Ny1Œk�C NB2 NuŒk�„ ƒ‚ …

“known input”Ny2Œk� D NC Nx2Œk�

and then the reduced-order observer

NxoŒk C 1� D NA22 NxoŒk�C NA21 Ny1Œk�C NB2 NuŒk� � NL. Ny2Œk� � NC NxoŒk�/:

results in autonomous N�2Œk�´ Nx2Œk� � NxoŒk� again:

N�2Œk C 1� D . NA22 C NL NC/N�2Œk�:

Reduced-order observer-based feedback

Combining plant, reduced-order observer, and observer-based control law

NuŒk� D � NF1 NF2
� � Nx1Œk�
NxoŒk�

�
;

we get the following closed-loop system:

Ṅcl W

�2
4
Nx1Œk C 1�
Nx2Œk C 1�
N�2Œk C 1�

3
5 D

2
4
NA11 C NB1 NF1 NB1 NF2 NB1 NF2
NA21 C NB2 NF1 NA22 C NB2 NF2 NB2 NF2

0 0 NA22 C NL NC

3
5
2
4
Nx1Œk�
Nx2Œk�
N�2Œk�

3
5

2
4
Ny1Œk�
Ny2Œk�
N�2Œk�

3
5 D

�
I 0 0

0 NC 0

�2
4
Nx1Œk�
Nx2Œk�
N�2Œk�

3
5

State observer for input-delay systems

Let now

Ṅ
h W
(
NxŒk C 1� D NA NxŒk�C NB NuŒk � h�
NyŒk� D NC NxŒk�

Remember, the true state model looks like

Ṅ
h W

˚2
666664

NuŒk�
NuŒk � 1�

:::

NuŒk � hC 1�
NxŒk C 1�

3
777775
D

2
666664

0 � � � 0 0 0

I � � � 0 0 0
:::
: : :

:::
:::
:::

0 � � � I 0 0

0 � � � 0 NB NA

3
777775

2
666664

NuŒk � 1�
NuŒk � 2�

:::

NuŒk � h�
NxŒk�

3
777775
C

2
666664

I

0
:::

0

0

3
777775
NuŒk�

NyŒk� D

2
666664

I 0 � � � 0 0

0 I � � � 0 0
:::
:::
: : :

:::
:::

0 0 � � � I 0

0 0 � � � 0 NC

3
777775

2
666664

NuŒk � 1�
NuŒk � 2�

:::

NuŒk � h�
NxŒk�

3
777775



State observer for input-delay systems (contd)

Of state vector, Nxa, we measure all Nu’s, hence we need only reduced-order
observer

NxoŒk C 1� D NA NxoŒk�C NB NuŒk � h� � NL. NyŒk� � NC NxoŒk�/

The error equation reads then

N�Œk C 1� D . NAC NL NC/N�Œk�

and can be made stable iff . NC ; NA/ detectable (exactly as in delay-free case).

Discrete output feedback: input delay

Mechanical amalgamation of
I reduced-order discrete observer
I state-feedback shifting only the modes of NA

yields ‚
NxoŒk C 1� D NA NxoŒk�C NB NuŒk � h� � NL. NyŒk� � NC NxoŒk�/

NuŒk� D NF
�
NAh NxoŒk�C

hX

iD1
NAi�1 NB NuŒk � i �

�

which is called observer-predictor.

As this is a special case of the reduced-order observer-based feedback,

I spec. Ṅcl/ D spec. NAC NB NF / S ˚
0
	mh S

spec. NAC NL NC/.

Continuous output feedback: input delay

If

˙h W
(
Px.t/ D Ax.t/C Bu.t � h/
y.t/ D Cx.t/

the observer-predictor controller
�
Pxo.t/ D .AC LC/xo.t/C Bu.t � h/ � Ly.t/

u.t/ D F
�
eAhxo.t/C

Z h

0

eA�Bu.t � �/d�
�

assigns
I spec.˙cl/ D spec.AC BF / S spec.AC LC/

(this can be verified by standard arguments of FSA).
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Smith controller: preliminary conclusions

C.s/

reQeu

d

y
- -Pr.s/e�sh QC .s/

Pr.s/.1� e�sh/

Remember, Smith controller
I works if Pr.s/ is stable

(stabilization problem reduces then to that for delay-free plant)

I does not necessarily work if Pr.s/ is unstable
(might lead to unstable loop)

More rigorous analysis

wu

wyyu

Pr.s/e�sh

C.s/

System is said to be internally stable if
I transfer matrix from

�
wy
wu

�
to
�
y
u

�
,

Tcl ´
1

1 � PrC e�sh

�
1 Pre�sh
C PrC e�sh

�
µ

�
S Td
Tu T

�
2 H1:

Let’s
I analyze Smith controller from internal stability perspectives.

Loop shifting

QC .s/

Pr.s/
wu

wyyu

Pr.s/e�sh

C.s/

Pr.s/.1� e�sh/

Pr.s/.1� e�sh/ -

Adding and subtracting block Pr.1 � e�sh/ we
I redistribute loop components w/o changing the whole system.

We end up with a new loop with the plant Pr and the controller

QC ´ C

1C CPr.1 � e�sh/

�
so that C D

QC
1 � QCPr.1 � e�sh/

�

Loop shifting: signal transformations

QC .s/

Pr.s/
wu

wyyu

Pr.s/e�sh

C.s/

Pr.s/.1� e�sh/

Pr.s/.1� e�sh/ -

QC .s/

Pr.s/

wu

wy

.�/wu

yu

Pr.s/e�sh

C.s/

Pr.s/.1� e�sh/

Pr.s/.1� e�sh/ -

-

QC .s/

Pr.s/

wu Qwy

Qy

yu

Pr.s/e�sh

C.s/

Pr.s/.1� e�sh/

Pr.s/.1� e�sh/ -



Loop shifting (contd)

wu

wyyu

Pr.s/e�sh

C.s/

,
Qwu

QwyQyQu

Pr.s/

QC.s/

The new system is delay-free yet with
I different signals.

To complete1 the picture, we have to calculate them:
� Qy
Qu
�
D
�
y C Pr.1 � e�sh/u

u

�
D
�
I Pr.1 � e�sh/
0 I

� �
y

u

�

and
� Qwy
Qwu

�
D
�
wy � Pr.1 � e�sh/wu

wu

�
D
�
I �Pr.1 � e�sh/
0 I

� �
wy
wu

�
:

1Well, we also have to guarantee that internal “ QC ” loop is well posed.

Loop shifting (contd)

Thus,

Tcl D
�
I �Pr.1 � e�sh/
0 I

�
QTcl

�
I �Pr.1 � e�sh/
0 I

�
:

1. if Pr.1 � e�sh/ 2 H1, then QTcl 2 H1 implies Tcl 2 H1
2. if Pr.1 � e�sh/ 62 H1, then QTcl 2 H1 not necessarily implies Tcl 2 H1

(in fact, never; this can be verified by making use of explicit form of QTcl)

Key question:
I when does Pr.1 � e�sh/ 2 H1 ?

Obviously, this is true if Pr 2 H1. Yet this also true if
I Pr.s/ proper and its only unstable poles are single poles at j2�

h
k, k 2 Z,

which are simple zeros of 1 � e�sh.
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Loop shifting: idea

QC .s/

Pr.s/
wu

wyyu

Pr.s/e�sh

C.s/

Pr.s/.1� e�sh/

Pr.s/.1� e�sh/ -

Driving idea here is to
I cancel (compensate) delay via Pr.s/e�sh C Pr.s/.1 � e�sh/ D Pr.s/.

The question:
I can we do it with stable compensation element ?



Dead-time compensation question

QC .s/

QP .s/
wu

wyyu

Pr.s/e�sh

C.s/

˘.s/

˘.s/ -

Technicaly speaking, we are looking for ˘.s/ 2 H1 such that

Pr.s/e
�sh C˘.s/ D QP .s/

for some proper and rational QP .s/.

Dead-time compensation: aspirations

If we obtained required ˘.s/ 2 H1, we would transform

wu

wyyu

Pr.s/e�sh

C.s/

,
Qwu

QwyQyQu

QP .s/

QC.s/

for rational (delay-free) QP .s/. Resulting C.s/,

C.s/ D QC.s/�I �˘.s/ QC.s/��1 D
yu QC .s/

˘.s/

;

called dead-time compensator (DTC) and
I QC.s/ internally stabilizes QP .s/ iff C.s/ internally stabilizes Pr.s/e�sh as

Tcl.s/ D
�
I �˘.s/
0 I

�
QTcl.s/

�
I �˘.s/
0 I

�

(provided DTC loop well posed).

DTC question: stable Pr.s/

Choice of ˘.s/ apparent and non-unique:
I ˘.s/ D QP .s/ � Pr.s/e�sh for any QP .s/ 2 H1 does the job.

Some standard choices:
I QP .s/ D Pr.s/ results in Smith predictor
I QP .s/ D 0 results in internal model controller (IMC)

DTC question: unstable Pr.s/ in Example 2 (Lect 3)

In this case Smith predictor

˘.s/ D 1 � e�sh

s
D
Z h

0

e�s�d� 2 H1

indeed (integrand analytic and bounded in C0 and integration path finite).
In this case

QP .s/ D Pr.s/ D 1

s

can be interpreted as unstable rational part of partial fraction expansion2 of

Pr.s/e
�sh D Res

�
e�sh

s
I 0�

s
C�.s/

for some entire �.s/ (Pr.s/ has only one pole, that at the origin).

2Here Res.f .s/I c/´ lims!c.s � c/f .s/ stands for residue of f .s/ at c.



DTC question: unstable Pr.s/ in Example 1 (Lect 3)

We’re looking for stable QP .s/ such that

˘.s/ D QP .s/ � 1

s � 1 e
�sh 2 H1:

As Pr.s/e�sh has one singularity, pole at s D 1, we have that

1

s � 1 e
�sh D Res

�
1
s�1 e

�shI 1�

s � 1 C�.s/;

for some entire �.s/. This suggest choice

QP .s/ D Res
�
1
s�1 e

�shI 1�

s � 1 D e�h

s � 1;

for which ˘.s/ is distributed-delay system

˘.s/ D ��.s/ D e�h � e�sh

s � 1 D e�h
Z h

0

e�.s�1/�d� 2 H1:

DTC question: first-order unstable Pr.s/

Likewise,

1

s � a e�sh D Res
�
1
s�a e

�shI a�

s � a C�.s/ D e�ah

s � a �
e�ah � e�sh

s � a ;

so that if Pr.s/ D 1
s�a , the choice

QP .s/ D e�ah

s � a
gives us required

˘.s/ D e�ah

s � a �
e�sh

s � a D e�ah
Z h

0

e�.s�a/�d� 2 H1

again.

First-order unstable Pr.s/: time-domain interpretation

Impulse responses of P.s/´ Pr.s/e�sh D 1
s�ae

�sh and QP .s/ D 1
s�ae

�ah are

p.t/ D
(
0 it t < h

ea.t�h/ if t � h and Qp.t/ D
(
0 it t < 0

ea.t�h/ if t � 0

respectively. Thus,
p.t/ � Qp.t/; 8t � h:

Impulse response of ˘.s/ D QP .s/ � Pr.s/e�sh then

�.t/ D Qp.t/ � p.t/ D
(
0 it t < 0 or t � h
ea.t�h/ if 0 � t < h

i.e., ˘.s/ is FIR (finite impulse response).

Completion operator

Let G.s/ D
�
A B

C 0

�
. Impulse response of Gh.s/´ G.s/e�sh is

gh.t/ D
(
0 it t < h

C eA.t�h/B if t � h

We are looking for rational QG.s/ such that Qg.t/ � gh.t/, 8t � h. Obviously,

Qg.t/ D
(
0 it t < 0

C e�AheAtB if t � 0 so that QG.s/ D
�

A B

C e�Ah 0

�
:

LTI system

�h
˚
G.s/e�sh

	´ QG.s/ �G.s/e�sh´
�

A B

C e�Ah 0

�
�
�
A B

C 0

�
e�sh

completes, in a sense, G.s/e�sh to rational QG.s/, so we call it completion of
G.s/e�sh.



Completion operator (contd)

For any rational G.s/, �h
˚
G.s/e�sh

	
is FIR with (bounded) impulse response

�h.t/ D
(
C eA.t�h/B if 0 � t < h
0 otherwise

Hence, transfer function

�h
˚
G.s/e�sh

	 D
Z h

0

�h.t/e
�stdt D

Z h

0

C eA.t�h/Be�stdt

is bounded in C0 and, as it also entire, belongs to H1. Thus,
I �h

˚
G.s/e�sh

	
stable for every proper rational G.s/.

In time domain, y D �h
˚
G.s/e�sh

	
u writes

y.t/ D C
Z t

t�h
eA.t���h/Bu.�/d� D C

Z h

0

eA.��h/Bu.t � �/d�:

DTC question: general Pr.s/

Let

Pr.s/ D
�
A B

C 0

�
:

We can always choose ˘.s/ D �h
˚
Pr.s/e�sh

	 2 H1, for which

QP .s/ D Pr.s/e
�sh C �h

˚
Pr.s/e

�sh	 D
�

A B

C e�Ah 0

�

is indeed rational.

Modified Smith predictor

yu QC .s/

�h

˚
Pr.s/e�sh

	

Transfer function

C.s/ D QC.s/�I � �h
˚
Pr.s/e

�sh	 QC.s/��1

Then,
I if Pr.s/ is strictly proper, internal loop is well-posed for every proper QC ,
I C.s/ stabilizes Pr.s/e�s iff QC stabilizes QP .s/

Example 1

C.s/

reQeu

d

y 1

s�1
e�sh

2eh

e�h� e�sh

s�1

- -

This QC stabilizes QP .s/ D e�h

s�1 and then

Tu.s/ D 2eh.s � 1/
s C 1 ; T .s/ D 2eh

s C 1 e
�sh;

and

Td .s/ D 1

s C 1
�
1C 2.1 � e�.s�1/h/

s � 1
�
e�sh

are all stable, as expected.
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Observer-predictor revised

Let Pr.s/ D
�
A B

C 0

�
and consider observer-predictor control law

�
Pxo.t/ D .AC LC/xo.t/C Bu.t � h/ � Ly.t/

u.t/ D F
�
eAhxo.t/C

Z t

t�h
eA.t��/Bu.�/d�

�

where F and L are matrices making ACBF and ACLC Hurwitz. Denote

�.t/´ eAhxo.t/C
Z t

t�h
eA.t��/Bu.�/d�:

Then

P�.t/ D eAh
�
.AC LC/xo.t/C Bu.t � h/ � Ly.t/

�

C �Bu.t/ � eAhBu.t � h/�C A
Z t

t�h
eA.t��/Bu.�/d�

D A�.t/C Bu.t/ � eAhL
�
y.t/ � Cxo.t/

�
:

Observer-predictor revised (contd)

In other words, observer-predictor control law writes as
(
P�.t/ D A�.t/C Bu.t/ � eAhL

�
y.t/ � Cxo.t/

�

u.t/ D F�.t/

Substituting xo.t/ D e�Ah�.t/ �
Z t

t�h
eA.t�h��/Bu.�/d� , we get

„ P�.t/ D .AC eAhLC e�Ah/�.t/C Bu.t/

� eAhLC

Z t

t�h
eA.t�h��/Bu.�/d� � eAhLy.t/

u.t/ D F�.t/

Observer-predictor revised (contd)

Thus, we end up with control law
�
P� D .AC BF C eAhLC e�Ah/� � eAhL

�
y C C

Z t

t�h
eA.t�h��/Bu.�/d�

�

u D F�

Now, noting that the last term above is the output of �h
˚
Pr.s/e�sh

	
when u

is its input, control law above is actually

yu QC .s/

�h

˚
Pr.s/e�sh

	

for
QC.s/ D

�
AC BF C eAhLC e�Ah �eAhL

F 0

�
:



Connections

yu QC .s/

�h

˚
Pr.s/e�sh

	

This is clearly MSP with primary controller,

QC.s/ D
�
AC BF C eAhLC e�Ah �eAhL

F 0

�
;

which is observer-based controller for

QP .s/ D
�

A B

C e�Ah 0

�

(note that AC eAhLC e�Ah D eAh.AC LC/e�Ah is Hurwitz). Thus,
I observer-predictor is MSP when primary controller QC is observer-based

controller for QP

Outline

Output feedback for input-delay systems: adding observers

Smith controller revised

Modified Smith predictor and dead-time compensation

Modified Smith predictor vs. observer-predictor

Coprime factorization over H1 and Youla parametrization

Two-stage design of dead-time compensators

Coprime factorization over H1

We say that transfer function P.s/ has (strongly) coprime factorization over
H1 if there are transfer functions

M.s/;N.s/; QM.s/; QN.s/; X.s/; Y.s/; QX.s/; QY .s/ 2 H1

such that
P.s/ D N.s/M�1.s/ D QM�1.s/ QN.s/

and �
X.s/ Y.s/

� QN.s/ QM.s/

� �
M.s/ � QY .s/
N.s/ QX.s/

�
D
�
I 0

0 I

�
:

Coprime factorization and stabilizability

wu

wyyu

P.s/

C.s/

Theorem
There is controller C.s/ internally stabilizing this system iff 3P.s/ has strong
coprime factorization over H1. In this case all stabilizing controllers can be
parametrized as (Youla parametrization)

C.s/ D �� QY .s/CM.s/Q.s/�� QX.s/CN.s/Q.s/��1

D �X.s/CQ.s/ QN.s/��1��Y.s/CQ.s/ QM.s/
�

for some Q.s/ 2 H1 but otherwise arbitrary.

3Most nontrivial part here, only if, was proved by Malcolm C. Smith (1989).



Coprime factorization for rational systems

Let P.s/ D
�
A B

C D

�
with .A;B/ stabilizable and .C;A/ detectable. Then

�
X.s/ Y.s/

� QN.s/ QM.s/

�
D
2
4
AC LC B C LD �L
�F I 0

�C �D I

3
5

and

�
M.s/ � QY .s/
N.s/ QX.s/

�
D
2
4
AC BF B �L
F I 0

C CDF D I

3
5 ;

where F and L are any matrices such that AC BF and AC LC Hurwitz.

Reduction to rational factorization

Let P.s/ be (not necessarily rational) proper transfer function such that

P.s/ D Pa.s/ ��.s/

for some �.s/ 2 H1 and rational Pa.s/ with coprime factorization

�
Xa.s/ Ya.s/

� QNa.s/ QMa.s/

� �
Ma.s/ � QYa.s/

Na.s/ QXa.s/

�
D
�
I 0

0 I

�
:

We’re looking for
I strongly coprime factorization of P.s/ in terms of that of Pa.s/.

Reduction to rational factorization (contd)

Lemma
P.s/ D Pa.s/ ��.s/ has strongly coprime factorization

�
X.s/ Y.s/

� QN.s/ QM.s/

�
D
�
Xa.s/ Ya.s/

� QNa.s/ QMa.s/

� �
I 0

�.s/ I

�
2 H1

and

�
M.s/ � QY .s/
N.s/ QX.s/

�
D
�

I 0

��.s/ I
� �
Ma.s/ � QYa.s/
Na.s/ QXa.s/

�
2 H1

Proof.
By direct substitution.

Resulting stabilizing controllers

Youla parametrization in this case is

C D .� QY CMQ/. QX CNQ/�1

D .� QYa CMaQ/
� QXa CNaQ ��.� QYa CMaQ/

��1

Hence,
C. QXa CNaQ/ � C�.� QYa CMaQ/ D � QYa CMaQ

or, equivalently,

C. QXa CNaQ/ D .I C C�/.� QYa CMaQ/:

Thus, denoting Ca ´ .� QYa CMaQ/. QXa CNaQ/
�1, we end up with

.I C C�/�1C D Ca ” C D Ca.I ��Ca/
�1 D

yu
Ca.s/

�.s/

Hmm, looks familiar. . .



Dead-time systems

If

P.s/ D Pr.s/e
�sh D

�
A B

C 0

�
e�sh

we already know how to present it in form

P.s/ D QP .s/ � �h
˚
P.s/

	 D
�

A B

C e�Ah 0

�
� �h

��
A B

C 0

�
e�sh

�

Thus, any stabilizing controller for P.s/ is of the form

yu QC .s/

�h

˚
Pr.s/e�sh

	

where QC.s/ is stabilizing controller for QP .s/. Thus, we end up with
I modified Smith predictor yet again.

Outline

Output feedback for input-delay systems: adding observers

Smith controller revised

Modified Smith predictor and dead-time compensation

Modified Smith predictor vs. observer-predictor

Coprime factorization over H1 and Youla parametrization

Two-stage design of dead-time compensators

Idea

C.s/

reQeu

d

y
Pr.s/e�sh QC.s/

˘.s/

- - ! QrQeQu

Qd
Qy QP .s/ QC.s/ -

S1: design QC for (delay-free) QP
and then

S2: implement QC in combination with DTC ˘ .

Hence, two-stage design.

Clear advantages:
I design delay-free
I stability preserved
I resulting controller implementable

Good question

QrQeQu

Qd
Qy QP .s/ QC.s/ - !

C.s/

reQeu

d

y
Pr.s/e�sh QC.s/

˘.s/

- -

Assume that QC is designed well (for QP ). This probably means that
I responses of Qy and Qu to “reasonable” Qd and Qr are “good”.

Does it imply that
I responses of y and u to “reasonable” d and r are also “good”

for the original system ?

Not necessarily, just because
I

˚ Qy; Qu; Qr; Qd	 ¼ ˚
y; u; r; d

	

I loop QP 	 QC is different from loop Pre�sh 	 C



Signal tracing

C.s/

reQeu

d

y
Pr.s/e�sh QC.s/

˘.s/

- - !
QP .s/

rQeu

d

yQy QC .s/

˘.s/

P.s/e�sh
-

m #

rQeu

Qd
Qy QP .s/ QC.s/ -  

QP .s/

rQeu

d

Qy QC.s/

˘.s/

˘.s/

P.s/e�sh
-

-

with

Qy D y C˘u and Qd D
�
1 � ˘QP

�
d D Pre�sh

QP d

Example 1: static gain with P primary controller

C.s/

reQeu

d

y 1

s
e�sh Qk

1�e�sh

s

- - , rQeu

Qd
Qy 1

s
Qk -

Control goal: reduce steady-state effect of step d on y or, equivalently,
I end up with high static gain of controller, jC.0/j.

Stability is equivalent to Qk > 0 and for system in S1

I we can end up with arbitrarily large (primary) controller static gain, Qk.

Looks perfect . . . yet (mind that ˘.0/ D h)

jC.0/j D
Qk

1C Qkh D
1

1= Qk C h <
1

h
;

which is not necessarily what we expect. Thus, in this case
I two-stage design might be misleading.

Example 2: static gain with PI primary controller

C.s/

reQeu

d

y 1

s
e�sh Qkp.sC Qki/

s

1�e�sh

s

- - , rQeu

Qd
Qy 1

s

Qkp.sC Qki/

s -

Now, stability is guaranteed for all Qkp > 0 and Qki � 0 and
I primary controller has infinite static gain

because of its integral action. Still,

jC.0/j D 1

h
;

which is far from what we expect. Thus, in this case
I two-stage design is even more misleading.

Comparing loop gains

C.s/

reQeu

d

y
Pr.s/e�sh QC.s/

˘.s/

- - , rQeu

Qd
Qy QP .s/ QC.s/ -

Let QL´ QP QC be loop gain in S1. Then resulting loop gain

L D Pr e
�sh QC

1C QC˘ D
. QP �˘/ QC
1C QC˘ D

QP QC C 1 � .1C˘ QC/
1C QC˘ ;

from which4

1C L D 1

1C QC˘ .1C QL/:
Thus, we need to

I keep j QC.j!/˘.j!/j small at frequencies of interest

to preserve loop gain properties achieved in S1 at these frequencies.

41C L.s/ called return difference t.f. and plays an important role in feedback analysys.



How to achieve j QC.j!/˘.j!/j � 1

We can

1. decrease j QC.j!/j
(only makes sense at frequencies where a low loop gain is required)

2. decrease j˘.j!/j
(our only choice at frequencies where a hight loop gain is required)

Option 2 is effectively an
I additional requirement for the choice of (rational) QP ,

apart from ˘ 2 H1. Small j˘.j!/j implies that at these frequencies
I QP .j!/ is a good approximation of Pr.j!/ e�j!h,

which is a reasonable strategy justifying two-stage design (note that we then
also have C.j!/ � QC.j!/).

Static gain of MSP

Consider the requirement
C.0/ D QC.0/

implying that we want to guarantee that static gain of QC is preserved in the
two-stage design. This clearly is equivalent to

˘.0/ D 0:
In the MSP case,

˘.0/ D C
Z h

0

eA.t�h/dtB ¤ 0

generically. To render it zero we may
I subtract from ˘ any RH1 transfer function with static gain ˘.0/.

Apparently, the easiest example is a static gain ˘.0/, resulting in

˘WI.s/ D C
Z h

0

eA.t�h/.e�st � 1/dtB

(clearly ˘WI.0/ D 0), which sometimes called Watanabe-Ito DTC.

Example 1: static gain with P primary controller (contd)

C.s/

reQeu

d

y 1

s
e�sh Qk

1�sh�e�sh

s

- - , rQeu

Qd
Qy 1�sh

s
Qk -

Now ˘WI.0/ D 0, which implies that

jC.0/j D j QC.0/j D Qk

We still cannot reach high-gain C because stability in S1 requires

0 < Qk < 1

h

(if Qk D 1
h
, controller loop is ill posed). Advantage here is that

I this limitation shows up already in S1,

thus helping us to be under no illusions when Qk is designed in S1.

Example 2: static gain with PI primary controller (contd)

C.s/

reQeu

d

y 1

s
e�sh Qkp.sC Qki/

s

1�sh�e�sh

s

- - , rQeu

Qd
Qy 1�sh

s

Qkp.sC Qki/

s -

Again, ˘WI.0/ D 0 guarantees (provided 0 < Qkp <
1
h

and 0 < Qki <
1
h
) that

jC.0/j D j QC.0/j D 1;

exactly what we need.

Note that QP .s/ D 1�sh
s

can be thought of as
I approximation of P.s/ D 1

s
e�sh

(in fact, QP .s/ is the Œ1; 1�-Padé approximation of P.s/).


	Output feedback for input-delay systems: adding observers
	Smith controller revised
	Modified Smith predictor and dead-time compensation
	Modified Smith predictor vs. observer-predictor
	Coprime factorization over H and Youla parametrization
	Two-stage design of dead-time compensators

