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Output feedback for input-delay systems: adding observers

Discrete case: problem statement

Consider

We look for i[t] stabilizing X, for any given /.

Luenberger observer: delay-free case

Consider the problem of reconstructing X in

- | X[k + 1] = Ax[k] + Bulk]
k] = Cx[k]

To this end, construct observer
Yo[k 4+ 1] = Axo[k] + Bii[k] — L(3[k] — C Xolk])

which has two inputs (# and y). The observation error €[k] := x[k] — Xo[k]
satisfies then autonomous (input free) equation

élk + 1] = (A + LC)é[k],

which can be made stable provided (C, A) is detectable. Stability implies
that limg_, o €[k] = 0 from any initial condition.




Observer-based feedback: delay-free case

Combining plant, observer, and observer-based control law i[k] = F¥,[k],
we get the following closed-loop system:

I+ T 4 BF x[k]
5 [;’co[k+1]]_[—ié A+Lc‘+1§ﬁ][xo[k]}

B st =[¢ o] | 1]

As the dynamics of € are autonomous, rewrite (by similarity transformation)
F x[k]
ek + 1] LC || €[k]
cl -
Sl T A x[k]

|:)_c[k—|- 1]} _ [A+ BF

whence spec(Z|) = spec(A + BF) | spec(A + LC) (separation).

Reduced-order observer: simple special case
If
fk+17 [4n 0 ([&K] Bl
5, ) = ) L) L] e
' [y'l[k]}z[l QH)?I[H]
yalk] 0 C | [Xa[k]

i.e., we measure the whole x; and a part of X», we need to observe only %,.
From the second state equation:

Folk + 1] = ApaXalk] + Az 31 [k] + Boiilk]
y2lk] = C_viz[k] “known input”

and then the reduced-order observer
Xolk + 1] = AnaXolk] + Az1y1[k] + Baii[k] — L(32[k] — CXo[k]).
results in autonomous & [k] := X, [k] — X, [k] again:

&lk + 1] = (Agy + LO)&[K].

Reduced-order observer-based feedback

Combining plant, reduced-order observer, and observer-based control law

ikl = [P F] [’“{iﬂ

we get the following closed-loop system:

Yok +1]1 | = | Aoy + BoFy As + BoF, ) ézﬁz_ .
ak+1] | o 0  Ap+LC
XY

kIl %11k
{y‘z[k] [0 ¢ 0] |:)_€2[k]:|
alkl] L &alk]

|:X1[k+1]_ Ay + B Fy B\ F, B\ F, :| |:x1[k]:|

[@R=)

State observer for input-delay systems

Let now

Remember, the true state model looks like

T wlk] 1 [0 - 0 007 [ulk—1]7 [T
ik —1] I - 000 |]|ak=2] 0
: = oo : + | ¢ | ulk]
ik —h+1] 0 -~ 1 0:0]]ik—Ah] 0
_ Cxk+1 ] Lo 0 BIA] | xk] ] Lo
2},2 _ S
10 - 0:07 [alk—1
07 - oio ik —2
)—}[k]: . . . 3 . .
00 - 1:0]|/|alk—n]
00 - 0:C L XKkl




State observer for input-delay systems (contd)

Of state vector, X, we measure all i’s, hence we need only reduced-order
observer

Xolk + 1] = Axo[k] + Bii[k — h] — L(3[k] — C Xo[k])

The error equation reads then

élk +1] = (A + LC)é[k]

and can be made stable iff (C, A) detectable (exactly as in delay-free case).

Discrete output feedback: input delay

Mechanical amalgamation of
» reduced-order discrete observer
» state-feedback shifting only the modes of A

yields
Xolk + 1] = AXo[k] + Biilk — h] — L(3[k] — CXo[k])

ulk] = F(AhxO k]—i—ZA’ L Bii[k —z)

which is called observer-predictor.

As this is a special case of the reduced-order observer-based feedback,

> spec(X) = spec(A + BF) | {O}mh | spec(4 + LC).

Continuous output feedback: input delay

If
%) = Ax(@) + Bu(t — h)
"y =Cx@)

the observer-predictor controller
Xo(t) = (A4 LC)xo(t) + Bu(t —h) — Ly(t)
h
u(t) = F(eAhxo(z) +/ e Bu(r — 9)d9)
0
assigns

» spec(X¢) = spec(4 + BF) | J spec(4 + LC)
(this can be verified by standard arguments of FSA).

Outline

Smith controller revised




Smith controller: preliminary conclusions

Remember, Smith controller
» works if P,(s) is stable
(stabilization problem reduces then to that for delay-free plant)

» does not necessarily work if P;(s) is unstable
(might lead to unstable loop)

More rigorous analysis

System is said to be internally stable if
> transfer matrix from [ 3> ] to [ ],

1 1 Peh S Ty
Tgi=— =: H>™.
N I—RC€M[C RCE”} [n T|€

Let’s

» analyze Smith controller from internal stability perspectives.

Loop shifting

Pi(s)
wu
Pi(s)(1 — e —=
C(s)
i M - Y Wy

Adding and subtracting block P,(1 —e™*") we

» redistribute loop components w/o changing the whole system.

We end up with a new loop with the plant P, and the controller
~ C C
C = - (so that C = = )
1+ CP,(1 — c—sh) 1— CP(l —esh)

Loop shifting: signal transformations

Fi(s)

Pi(s)
|

Pr(s)(1 —e™")




Loop shifting (contd)

— C6) b -

The new system is delay-free yet with
» different signals.

To complete! the picture, we have to calculate them:

[ﬁ] _ [y + P(1 —e_Sh)u:| _ [1 P.(1 —e—sh)]

u u 0 1

and

[wy] _ [wy - P(1 —e_Sh)wui| _ [1 —P(1 —eh)

Wy Wy 0 1

TWell, we also have to guarantee that internal “C” loop is well posed.

.
Il

)

Wy
Wy

|

Loop shifting (contd)

I —P(1—eM)] - [1 —P(1—eh)
Tc|—|:0 I :|Tcl|:0 I :|

Thus,

1. if (1 —e™") € H®, then T,y € H*® implies T,j € H*®
2. if P(1—e*") & H*®, then T,y € H™ not necessarily implies T € H*®

(in fact, never; this can be verified by making use of explicit form of Td)

Key question:
» when does P,(1 —e™") e H®?
Obviously, this is true if P, € H*. Yet this also true if
> Pi(s) proper and its only unstable poles are single poles at j2%k, k € Z,

which are simple zeros of 1 —e=s.

Outline

Modified Smith predictor and dead-time compensation

Loop shifting: idea

Driving idea here is to
» cancel (compensate) delay via P;(s)e™" + P,(s)(1 —e™") = P(s).

The question:

» can we do it with stable compensation element?




Dead-time compensation question

» P
- Pi(s)e™"

i) . Y Wy

Technicaly speaking, we are looking for I7(s) € H such that
P(s)e™" + I (s) = P(s)

for some proper and rational P (s).

Dead-time compensation: aspirations

If we obtained required I1(s) € H*, we would transform

for rational (delay-free) P(s). Resulting C(s),

u

C(s) = C(S)([ _H(ks)é(s))_l =

called dead-time compensator (DTC) and
» C(s) internally stabilizes P (s) iff C(s) internally stabilizes P;(s)e™" as

raw =g 70 R T

(provided DTC loop well posed).

DTC question: stable P;(s)

Choice of I1(s) apparent and non-unique:
> [1(s) = P(s) — P;(s)e™*" for any P(s) € H*® does the job.

Some standard choices:
> P(s) = Pi(s) results in Smith predictor

» P(s) = 0 results in internal model controller (IMC)

DTC question: unstable P.(s) in Example 2 (Lect 3)

In this case Smith predictor

1 — e—sh

S

h
I(s) = = / e%%d0 € H*®
0

indeed (integrand analytic and bounded in Cy and integration path finite).
In this case

~ 1
P(S):Pr(s)zg
can be interpreted as unstable rational part of partial fraction expansion? of

5

Res(e_sh;O)
s

P (s)e™*" = + A(s)

for some entire A(s) (Pr(s) has only one pole, that at the origin).

2Here Res(f(s); ¢) := limg_¢(s — ¢) f(s) stands for residue of f(s) at c.




DTC question: unstable P,(s) in Example 1 (Lect 3)

We're looking for stable P (s) such that

I(s) = P(s) — e h e H.

s—1
As P(s)e™" has one singularity, pole at s = 1, we have that

Ly Res(yeh)
e =
s—1 s—1

+ A(s),
for some entire A(s). This suggest choice

Res (s%l esh: 1) B e~ h

s—1 s —1

P(s) =

’

for which I (s) is distributed-delay system

—h __ e—sh

h
M) = -A@) = =5 = e /0 —6-D0qg ¢ oo,

DTC question: first-order unstable P;(s)

Likewise,
1 Res (- e™";a e"ah  gmah _ g=sh
e—sh — (s—a ) + A(S) — _ ,
s—a s—a s—a s—a
so that if Pi(s) = -, the choice
5 e—ah
P(s) =
s—a
gives us required
e—ah e—sh h
I1(s) = - = e_“h/ e 6949 ¢ H®
s—a s—a 0

again.

First-order unstable P.(s): time-domain interpretation

Impulse responses of P(s) := Py(s)e™" = Le™" and P(s) = Le " are

0 itt <h

() = 0 itr <0
PRI= qat-n iy > p

and p(t) = {ea(t—h) lf[ 2 0
respectively. Thus,

p@) = p@), Vi=h.
Impulse response of I1(s) = P(s) — Pi(s)e " then

0 itt <OQort>h

W) =P =PO =3 em g <t <h

i.e., I1(s) is FIR (finite impulse response).

Completion operator
Let G(s) = [%’%]. Impulse response of Gj,(s) := G(s)e™*" is

itt <h

1) =
&n(0) Cedlt=MpB ift>p

We are looking for rational G (s) such that () = gx(t), YVt > h. Obviously,

0 it 0 ~
s so that G(s)z[ A B]

5(1) =
8() CeAhedtB  ifr >0 Ce 40

LTI system

nh{G(S)o_Sh} = G(s) — G(s)e™h = [Ceé“”‘ g] — [é g] e~k

completes, in a sense, G(s)e™" to rational G (s), so we call it completion of
G(s)e ",




Completion operator (contd)
For any rational G(s), nh{G(s)e_Sh} is FIR with (bounded) impulse response

Celt=Mp ifo<t<h

mp(t) = .
otherwise

Hence, transfer function

h h
r{G(s)e™"} = / mp(t)e™ s dr = / Cedlt=—M pe=stq;
0 0

is bounded in Cy and, as it also entire, belongs to H*. Thus,
> ,{G(s)e™"} stable for every proper rational G(s).

In time domain, y = w4 {G(s)e™"}u writes

t h
y(it)=C / eAt=9-M By (H)do = C / eA6-M Byt — 0)d6.
t—h 0

DTC question: general P(s)

ro-[22]

We can always choose I1(s) = nh{Pr(s)e_Sh} € H®, for which

Let

P(s) = P(s)e™" + mp{Pi(s)e™"} = [c;A 'g]

is indeed rational.

Modified Smith predictor

Transfer function
C(s) = C(s)(I — mn{Pi(s)e*"}C (5)) ™"

Then,
> if P(s) is strictly proper, internal loop is well-posed for every proper C,
> C(s) stabilizes P.(s)e™* iff C stabilizes P (s)

Example 1
d
e e A e 2eh REoet
e—h_efsh T
L1 J ¢
This C stabilizes P (s) = g and then
2ef(s — 1) 2¢h
T T — —sh
u(s) 1 (s) "
and P
| 2(1 —e~G-Dh)\
Tus) = —[(1+ 22— " )es
a(s) s+ 1 ( * s—1 )e

are all stable, as expected.




Outline

Modified Smith predictor vs. observer-predictor

Observer-predictor revised

Let P, (s) = [ g ﬁ ] and consider observer-predictor control law

Xo(t) = (A + LC)xo(t) + Bu(t —h) — Ly(1)
u(t) = F (eAhxo(t) + / t eA(f—9>Bu(9)d9)
t—h

where F and L are matrices making A + BF and A + LC Hurwitz. Denote

n() = e xo(r) + / t eA=9 By (9)do.
t—h
Then
(1) = e ((A + LC)xo(t) + Bu(t —h) — Ly (1))
+ (Bu(t) — e Bu(t — h)) + A / t A= By (9)do
t—h

= An(t) + Bu(t) — e L(y(t) — Cxo(1)).

Observer-predictor revised (contd)

In other words, observer-predictor control law writes as

(t) = An(t) + Bu(t) —e*"L(y(t) — Cxo(t))
u(t) = Fn(t)

t
Substituting x (1) = e~ (1) — / eAU=1=9 By (9)d6, we get
t—h

0(t) = (A + e LCe™")n(t) + Bu(r)
t
—etLC / A== By (6)d0 — e Ly (1)
t—h

u(t) = Fn()

Observer-predictor revised (contd)

Thus, we end up with control law

t
7= (A+ BF +e"LCe™M)n—ehL (y +C /
t

eA<’”)Bu(9)<19)
—h

u=Fng

Now, noting that the last term above is the output of &, { P;(s)e™"} when u
is its input, control law above is actually

for

- Ah —Ah | . Ah
C(S):[A+BF+e LCe™ | —e L]'

F 0




Connections

oot
mh{ Pe(s)e™"}

This is clearly MSP with primary controller,

. A+ BF +e**LCe™ | —ethL
Cls) = 7 0

which is observer-based controller for

IS(S) - |:Cefi“1 f)?i|

(note that A + e4*"LCe 4" = e4"(4 4+ LC)e 4" is Hurwitz). Thus,

» observer-predictor is MSP when primary controller C is observer-based
controller for P

Outline

Coprime factorization over H* and Youla parametrization

Coprime factorization over H*

We say that transfer function P(s) has (strongly) coprime factorization over
H if there are transfer functions

M(s), N(s), M(s), N(s), X(5), Y(s), X (5), Y (s) € H®

such that
P(s) = N(s)M~'(s) = M~ (s)N (s)

X(s) Y(s)][M(s) =Y(s)] _[1 0
|:—N(s) M(s)] [N(s) X (s) ] o |:0 Ii|'

and

Coprime factorization and stabilizability

Wy

Theorem

There is controller C(s) internally stabilizing this system iff> P(s) has strong
coprime factorization over H*. In this case all stabilizing controllers can be
parametrized as (Youla parametrization)

C(s) = (=Y (5) + M(s)0(5)) (X (5) + N(5)0(5)) "
= (X(5) + Q)N ()" (~Y(s) + O(5)M (5))

for some Q(s) € H™ but otherwise arbitrary.

3Most nontrivial part here, only if, was proved by Malcolm C. Smith (1989).




Coprime factorization for rational systems
Let P(s) = [%‘%} with (A4, B) stabilizable and (C, A) detectable. Then

[ X(s) Y(S)]

A+ LC|B+ LD -L
—N(s) M(s) [ }

—FoL L0

and

C + DF

NG £() 57

i) o) { F } ,

where F and L are any matrices such that A + BF and 4 + LC Hurwitz.

Reduction to rational factorization
Let P(s) be (not necessarily rational) proper transfer function such that
P(s) = Pa(s) — A(s)

for some A(s) € H* and rational P,(s) with coprime factorization

Xa(s) Ya(s) [[Ma(s) —Ya(9)]_[1 0
|:_Na(s) Ma(s)] [Na(s) Xa(s) :| B |:0 Ii|'

We're looking for

» strongly coprime factorization of P(s) in terms of that of Pa(s).

Reduction to rational factorization (contd)

Lemma
P(s) = Pa(s) — A(s) has strongly coprime factorization

X(s) Y(@s) | [ Xals) Ya(s) I 0 o

—N(s) M(s)] [ =Nals) Mals) || AG) 1] €
and

M) YO _[ 1 0][Mels) —Fal®)] _ 1yoc

[N(s) X(s)}‘[—A(s) 1][Na<s) )?a(s)]e
Proof.

By direct substitution.

Resulting stabilizing controllers
Youla parametrization in this case is
C=(-Y+MQO)X+NQ)™"
= (_Ya + MaQ)(Xa + NaQ — A(_?a + MaQ))_l

Hence,
C(Xa+ NaQ) —CA(—Ya+ MaQ) = —Ya + Ma O

or, equivalently,
C()Za +Na.Q)=( + CA)(_Ya + M, 0).

Thus, denoting C, := (=Y, + MaQ)()?a + N,0Q)7!, we end up with

u

Ca(s) O
I+CcA)7'c=C — C=C,(I-AC)'= -
( ) a a( a)

Hmm, looks familiar. ..




Dead-time systems

If
P(s) = Pi(s)e™" = [%‘%} esh

we already know how to present it in form

Thus, any stabilizing controller for P(s) is of the form

'
4 {P (s)e‘”’}

hLr

where C (s) is stabilizing controller for P (s). Thus, we end up with
» modified Smith predictor yet again.

Outline

Two-stage design of dead-time compensators

Si: design C for (delay-free) P

and then
S,: implement C in combination with DTC 11.
Hence, two-stage design.

Clear advantages:
> design delay-free
» stability preserved

> resulting controller implementable

Good question

i
—’—‘f B(s) FL—‘“ Cls) %—ﬁg, ’ —

Assume that C is designed well (for P). This probably means that

> responses of y and i to “reasonable” d and 7 are “good”.
Does it imply that
> responses of y and u to “reasonable” d and r are also “good”

for the original system?

Not necessarily, just because
> {j.a,7,d} < {yurd)
> loop P O C is different from loop P.e™" & C




Signal tracing

with

» I P—sh
y=y+Iu and d:(l—ﬁ)d: © 4

Example 1: static gain with P primary controller

Control goal: reduce steady-state effect of step d on y or, equivalently,
» end up with high static gain of controller, |C(0)].
Stability is equivalent to k > 0 and for system in Sy

» we can end up with arbitrarily large (primary) controller static gain, k.
Looks perfect...yet (mind that IT(0) = h)
k 1 1

Cc0)| = — = —— < —,
€O 1+kh 1/k+h h

which is not necessarily what we expect. Thus, in this case
> two-stage design might be misleading.

Example 2: static gain with Pl primary controller

d
b 1 u_ | kysthk) | € r
= - s — }' T‘

Now, stability is guaranteed for all Igp > 0 and k; > 0 and

» primary controller has infinite static gain

because of its integral action. Still,

1
COI = 1.

which is far from what we expect. Thus, in this case
> two-stage design is even more misleading.

Comparing loop gains

Let L := PC be loop gain in S1. Then resulting loop gain

C _(P-mC PC+1-(1+1IC)
1+CO0  1+COo 14+CH

L =Pt

from which* {
1+CII
Thus, we need to
> keep |C (jw) I (jw)| small at frequencies of interest
to preserve loop gain properties achieved in 8; at these frequencies.

41 4 L(s) called return difference t.f. and plays an important role in feedback analysys.




How to achieve |C (jw)IT (jw)| < 1

We can

1. decrease |C (jow)|

(only makes sense at frequencies where a low loop gain is required)

2. decrease |I1(jw)]

(our only choice at frequencies where a hight loop gain is required)

Option 2 is effectively an
» additional requirement for the choice of (rational) P,
apart from IT € H®. Small |IT(jw)| implies that at these frequencies
» P(jw)isa good approximation of P:(jw) e ioh
which is a reasonable strategy justifying two-stage design (note that we then
also have C(jw) ~ C(jw)).

Static gain of MSP
Consider the requirement
C(0) = C(0)

implying that we want to guarantee that static gain of C is preserved in the
two-stage design. This clearly is equivalent to

(0) = 0.
In the MSP case,

h
mm:c/eM%WB¢o
0

generically. To render it zero we may
» subtract from IT any RH® transfer function with static gain I7(0).
Apparently, the easiest example is a static gain I7(0), resulting in

h
Iy, (s) = C/ eAl=M (=t _ 1)dtB
0

(clearly IT,,(0) = 0), which sometimes called Watanabe-Ito DTC.

Example 1: static gain with P primary controller (contd)

d
& j—q = Lg [y Fﬁ

Now [1,,,(0) = 0, which implies that

|C0)] = |C(0)] =k

We still cannot reach high-gain C because stability in Sy requires

0<k<

S| o=

(if k = 3, controller loop is ill posed). Advantage here is that
» this limitation shows up already in Sy,

thus helping us to be under no illusions when & is designed in Sy.

Example 2: static gain with PI primary controller (contd)

Again, I1,,(0) = 0 guarantees (provided 0 < k, < 1 and 0 < k; < 1) that

|C(0)] = |C(0)] = oo,

exactly what we need.

Note that P (s) = =% can be thought of as
> approximation of P(s) = le™*h

(in fact, P(s) is the [1, 1]-Padé approximation of P(s)).
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