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The scheme

C.s/

reQeuy
- -Pr.s/e�sh QC.s/

Pr.s/.1� e�sh/

Introduced by Otto J. M. Smith more than half a century ago (in 1957).
I QC.s/ called primary controller
I Pr.s/.1 � e�sh/ called Smith predictor

(note that Qe D .r �y/�Pr.1� e�sh/u D r �Pru, which is “prediction” of e with h D 0)

The magic

C.s/

reQeuy
- -Pr.s/e�sh QC.s/

Pr.s/.1� e�sh/

Closed-loop signal trailing:

u D QC �.r � Pre
�shu/ � Pr.1 � e�sh/u

� D QC.r � Pru/

from which the closed-loop systems from r to u and y are

Tu.s/ D
QC.s/

1C Pr.s/ QC.s/
and T .s/ D Pr.s/ QC.s/

1C Pr.s/ QC.s/
e�sh;

respectively. Thus, delay is eliminated from the characteristic equation and
I stabilization of .Pre�sh; C / reduces to delay-free stabilization of .Pr; QC/.



Is it that simple ?

C.s/

reQeu

d

y
- -Pr.s/e�sh QC .s/

Pr.s/.1� e�sh/

Consider the effect of the input disturbance d :

u D QC �.r � Pre
�shu � Pre

�shd/ � Pr.1 � e�sh/u
� D QC.r � Pru � Pre

�shd/

from which the transfer function from d to y is

Td .s/ D Pr.s/

1C Pr.s/ QC.s/
�
1C QC.s/Pr.s/.1 � e�sh/

�
e�sh;

which might be unstable if so is Pr.

Preliminary conclusions

C.s/

reQeu

d

y
- -Pr.s/e�sh QC .s/

Pr.s/.1� e�sh/

Smith controller
I works if Pr.s/ is stable

(stabilization problem reduces then to that for delay-free plant)

I does not necessarily work if Pr.s/ is unstable
(might lead to unstable loop)

Example 1

C.s/

reQeu

d

y
- -

1

s�1
e�sh 2

1�e�sh

s�1

In this case QC does stabilize Pr, so that

Tu.s/ D 2.s � 1/
s C 1 and T .s/ D 2

s C 1 e
�sh

are stable. Yet

Td .s/ D 2

s C 1
�
1C 2.1 � e�sh/

s � 1
�
e�sh D 2

s C 1
s C 1 � 2e�sh

s � 1 e�sh

is unstable.

Example 2

C.s/

reQeu

d

y
- -

1

s
e�sh 1

1�e�sh

s

In this case QC does stabilize Pr, so that

Tu.s/ D s

s C 1 and T .s/ D 1

s C 1 e
�sh

are stable. Oddly enough,

Td .s/ D 1

s C 1
�
1C 1 � e�sh

s

�
e�sh

is stable too (since 1�e�sh

s
2 H1).



Extensions

The idea of Smith can be extended to
I more general class of i/o delays
I unstable systems (e.g., the modified Smith predictor)

We’ll study some of these extensions in due course. . .
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Preliminary: state feedback revised

Let
Px.t/ D Ax.t/C Bu.t/; x.0/ D x0

and u.t/ D Fx.t/. Rewrite this set of equations in s-domain as�
sI � A �B
�F I

� �
X.s/

U.s/

�
D
�
x0
0

�
:

The characteristic equation of this system is1

�.s/ D det

�
sI � A �B
�F I

�
D det.sI � A � BF / D 0;

so the closed-loop system stable iff AC BF is Hurwitz.

1Remember, det
�A11 A12

A21 A22

� D det.A22/det.A11 � A12A�122A21/ whenever det.A22/ ¤ 0.

Preliminary: Laplace transform of distributed delay

Let

�.t/ D
Z t

t�h
˚.t � �/�.�/d�

for some function ˚ . This can be seen as the convolution � D Q̊ � �, where

Q̊ .t/´ ˚.t/1Œ0;h�.t/; where 1A is the indicator function of A � RC:

Then

L
�Z t

t�h
˚.t � �/�.�/d�

�
D L

˚ Q̊ 	L˚�	 D Z 1
0

Q̊ .t/e�stdt�.s/

D
Z h

0

˚.t/e�stdt�.s/



Problem statement

Let
˙h W Px.t/ D Ax.t/C Bu.t � h/; .x.0/; u� .0// D .x0; 0/

and we measure x.t/. We look for u.t/ stabilizing ˙h for any given h.

Motivation

If at each t 2 R we measured x.t C h/, the control law

u.t/ D Fx.t C h/

would stabilize ˙h whenever ACBF is Hurwitz. Although x.t C h/ cannot
be measured, we may try to use its calculated (predicted) values

xh.t/´ eAhx.t/C
Z tCh

t

eA.tCh��/Bu.� � h/d�

D eAhx.t/C
Z t

t�h
eA.t��/Bu.�/d�

D eAhx.t/C
Z h

0

eA�Bu.t � �/d�

instead (think of observer-based feedback). Will it work ?

Characteristic equation

In s-domain,

sX.s/ � x0 D AX.s/C Be�shU.s/

U.s/ D F eAhX.s/C F
Z h

0

e�.sI�A/�d�B U.s/

or �
sI � A �Be�sh
�F eAh I � F R h

0
e�.sI�A/�d�B

� �
X.s/

U.s/

�
D
�
x0
0

�
:

Hence, the characteristic quasi-polynomial is

�h.s/ D det

�
sI � A �Be�sh
�F eAh I � F R h

0
e�.sI�A/�d�B

�
:

Characteristic equation (contd)

Now,�
sI � A �Be�sh
�F eAh I � F R h

0
e�.sI�A/�d�B

� �
I �e�AhR h

0
e�.sI�A/�d�B

0 I

�
D
�
sI � A �Be�sh � e�Ah.sI � A/R h

0
e�.sI�A/�d�B

�F eAh I

�
D
�
sI � A �e�AhB
�F eAh I

�
because

�e�Ah.sI � A/
Z h

0

e�.sI�A/�d� D e�Ah.e�.sI�A/h � I / D e�shI � e�Ah:

Hence,

�h.s/ D det.sI � A � e�AhBF eAh/ D det
�
e�Ah.sI � A � BF /eAh�

D det.sI � A � BF /:



Characteristic equation (contd)

Thus,
I characteristic quasi-polynomial is actually a polynomial

and the characteristic equation,

det.sI � A � BF / D 0;

is finite dimensional. In other words, (predictive) control law

u.t/ D Fxh.t/

keeps the closed-loop spectrum finite. Hence the terms
I finite spectrum assignment (FSA).

Problem solution

Theorem
The FSA control law

u.t/ D F
�
eAhx.t/C

Z h

0

eA�Bu.t � �/d�
�

stabilizes
Px.t/ D Ax.t/C Bu.t � h/

iff AC BF is Hurwitz.

Note that
I stabilizability of ˙h is equivalent to that of its delay-free version ˙0.

Extensions

Was extended to the cases when
I we measure y.t/ D Cx.t/

In this case observer-predictor of the form
˚ POx.t/ D .AC LC/ Ox.t/C Bu.t � h/ � Ly.t/
u.t/ D F

�
eAh Ox.t/C

Z h

0

eA�Bu.t � �/d�
�

should be used.

I there are multiple / distributed input delays
I there are limited classes of state delays

Historical remarks
I First proposed by Mayne (1968) for single input delay, y D Cx

(effectively forgotten; as of April 2012, is cited once according to Google Scholar; as

of November 2012, 4 more citations were added)

I Independently derived by Kleinman (1969)
(as a solution to delayed LQG, not credited with the invention of FSA either)

I Solving the case of measured x is credited to Manitius & Olbrot (1979)
(general input delays and some classes of state delay)

I Observer-predictor proposed by Furukawa & Shimemura (1983)
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Problem statement

Let
˙h W Px.t/ D Ax.t/C Bu.t � h/; .x.0/; u� .0// D .x0; 0/

and we measure x.t/. We look for u.t/ stabilizing ˙h for any given h.

Preliminary: Leibniz integral rule

d

dt

Z b.t/

a.t/

f .�; t/d�

D
Z b.t/

a.t/

@

@t
f .�; t/d� C db.t/

dt
f .b.t/; t/ � da.t/

dt
f .a.t/; t/

Reduced system

Introduce

Qx.t/´ x.t/C
Z h

0

eA.��h/Bu.t � �/d� D x.t/C
Z t

t�h
eA.t���h/Bu.�/d�

(note that Qx D e�Ahxh). Then, using Leibniz rule, we have:

PQx.t/ D Px.t/C A
Z t

t�h
eA.t���h/Bu.�/d� C e�AhBu.t/ � Bu.t � h/

D Ax.t/C A
Z t

t�h
eA.t���h/Bu.�/d� C e�AhBu.t/

D A„ƒ‚…
QA
Qx.t/C e�AhB„ƒ‚…

QB
u.t/

i.e.,
I Qx.t/ satisfies ordinary (delay-free) differential equation.

We call this finite-dimensional system reduced system and denote it as Q̇ .

Stabilization via reduced system

It can be proved that
I Q̇ is controllable iff ˙h is (absolutely2) controllable
I if the control law

u.t/ D QF Qx.t/ D QF
�
x.t/C

Z h

0

eA.��h/Bu.t � �/d�
�

stabilizes Q̇ , then if stabilizes ˙h as well.

2Absolute controllability means the controllability of the whole .x.t/; u� .t//.



FSA property

The transformation

Qx.t/ D x.t/C
Z t

t�h
eA.t���h/Bu.�/d�

can be rewritten in the s-domain as� QX.s/
U.s/

�
D
�
I e�Ah

R h
0
e�.sI�A/�d�B

0 I

� �
X.s/

U.s/

�
(haven’t we already seen it?). If u D QF Qx, the closed-loop reduced system is�

sI � A �e�AhB
� QF I

� � QX.s/
U.s/

�
D
�
x0
0

�
so that�

sI � A �e�AhB
� QF I

� �
I e�Ah

R h
0
e�.sI�A/�d�B

0 I

� �
X.s/

U.s/

�
D
�
x0
0

�
:

FSA property (contd)

Thus, using the equality

e�Ah.sI � A/
Z h

0

e�.sI�A/�d� D e�Ah � e�shI

again, we have the following closed-loop equations for ˙h:�
sI � A �e�shB
� QF I � QF e�Ah

R h
0
e�.sI�A/�d�B

� �
X.s/

U.s/

�
D
�
x0
0

�
:

In other words, the control law u D QF Qx applied to ˙h yields a closed-loop
system with finite spectrum. Moreover,

spec.˙h;cl/ D spec. Q̇cl/ D spec.AC e�AhB QF /

and the choice QF D F eAh returns us to FSA.

Extension to distributed input delay

Let now
˙h W Px.t/ D Ax.t/C

Z 0

�h
ˇ.�/u.t C �/d�:

Introduce

Qx.t/´ x.t/C
Z t

t�h

Z ��t

�h
eA.t��C�/ˇ.�/d� u.�/d�

Then

PQx.t/ D Px.t/C
Z t

t�h

�
A

Z ��t

�h
eA.t��C�/ˇ.�/d� � ˇ.� � t / � 0

�
u.�/d�

C
Z 0

�h
eA�ˇ.�/d� u.t/ � 0

D A Qx.t/C
Z 0

�h
eA�ˇ.�/d� u.t/

and we only need to stabilize Q̇ with QA D A and QB D
Z 0

�h
eA�ˇ.�/d� .

Historical remarks
I Roots in optimal control, e.g., (Bate, 1969; Slater & Wells, 1972)

I First explicitly proposed by Kwon & Pearson (1980) for systems of the
form Px.t/ D Ax.t/C B0u.t/C Bhu.t � h/
(motivated by finite-horizon minimum energy control with zero final constraints)

I Extended by Artstein (1982) to rather general class of input delays and
to time-varying systems

I Extended by Fiagbedzi & Pearson (1986, 1990) to state / measurement
delays
(although details of the algorithm are less elegant in general)
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Nontrivial complication

So far, we studied problems in which ˙h has finite spectrum. Let now

˙h W Px.t/ D A0x.t/C Ahx.t � h/C Bu.t/;

which might have
I infinite number of open-loop poles  � complicates matters

Workaround:
I move only part of these eigenvalues by feedback,

namely, unstable ones (we know that there is only a finite number of them).

Yet another transformation

Consider

Qx.t/´ Qx.t/C
Z t

t�h
e
QA.t���h/QAhx.�/d�

for some QA 2 RQn�Qn and Q 2 RQn�n. Then,

PQx.t/ D Q Px.t/C QA
Z t

t�h
e
QA.t���h/QAhx.�/d� C e� QAhQAhx.t/ �QAhx.t � h/

D QA0x.t/CQBu.t/C QA
Z t

t�h
e
QA.t���h/QAhx.�/d� C e� QAhQAhx.t/

D QA Qx.t/CQBu.t/ � � QAQ �QA0 � e� QAhQAh
�
x.t/:

If we can choose QA satisfying the left characteristic matrix equation

QAQ D QA0 C e� QAhQAh; (l.c.m.e.)

˙h reduces to
Q̇ W PQx.t/ D QA Qx.t/CQBu.t/:

Properties of solutions of l.c.m.e. QAQ D QA0 C e� QAhQAh
Let Q� 2 spec. QA/ and Q� be the corresponding left eigenvector. Then

Q� Q�Q D Q� QAQ D Q�QA0 C Q� e� QAhQAh D Q�Q.A0 C e�Q�hAh/:

In other words, Q�Q. Q�I � A0 � e�Q�hAh/ D 0, so that
I whenever �´ Q�Q ¤ 0, every eigenvalue of QA is a pole of ˙h

(remember, those poles are the roots of �h.s/ D det.sI � A0 � Ahe�sh/).



Closed-loop spectrum

Suppose we can solve (l.c.m.e.) in QA and Q. Then

u.t/ D QF Qx.t/ D QF
�
Qx.t/C

Z t

t�h
e
QA.t���h/QAhx.�/d�

�
for some QF leads to the closed-loop system�

sI � A0 � Ahe�sh �B
� QFQ � QF e� QAh

R h
0
e�.sI� QA/�d�QAh I

� �
X.s/

U.s/

�
D � I.C.

�
:

and the characteristic quasi-polynomial �cl.s/ D det�.s/, where

�.s/´
�

sI � A0 � Ahe�sh �B
� QF �QC e� QAh

R h
0
e�.sI� QA/�d�QAh

�
I

�
:

Closed-loop spectrum (contd)

Next,

.sI � QA/
�
QC e� QAh

Z h

0

e�.sI� QA/�d� QAh
�

D sQ � QAQC .e�Ah � e�shI /QAh D Q.sI � A0 � Ahe�sh/;

so that

QC e� QAh
Z h

0

e�.sI� QA/�d�QAh D .sI � QA/�1Q.sI � A0 � Ahe�sh/:

Then

�.s/ D
�

sI � A0 � Ahe�sh �B
� QF .sI � QA/�1Q.sI � A0 � Ahe�sh/ I

�
and

�cl.s/ D det
�
.sI � A0 � Ahe�sh/ � B QF .sI � QA/�1Q.sI � A0 � Ahe�sh/

�
D det

�
I � B QF .sI � QA/�1Q�det.sI � A0 � Ahe�sh/:

Closed-loop spectrum (contd)

Because � QA Q

�B QF I

�
D
� QACQB QF Q

B QF I

��1
;

we have that

det
�
I � QF .sI � QA/�1QB� D det.sI � QA �QB QF /

det.sI � QA/
and thus

�cl.s/ D
det.sI � A0 � Ahe�sh/

det.sI � QA/ det.sI � QA �QB QF /:

In other words,
I spec.˙h;cl/ D

�
spec.˙h/ n spec. QA/

� S
spec. Q̇cl/

(remember, spec. QA/ � spec.˙h/).

Implications

Thus, if we can
I solve (l.c.m.e.) so that QA contains all unstable modes of ˙h,
I find QF so that QACQB QF is Hurwitz (requires stabilizability of . QA;QB/),

the control law

u.t/ D QF
�
Qx.t/C

Z t

t�h
e
QA.t���h/QAhx.�/d�

�
stabilizes ˙h by moving all its unstable modes—those in spec. QA/—to the
eigenvalues of QACQB QF and keeping the other modes of ˙h untouched.



Distributed state / input delays

Let
˙h W Px.t/ D

Z 0

�h

�
˛.�/x.t C �/C ˇ.�/u.t C �/�d�:

Then transformation

Qx.t/´ Qx.t/C
Z t

t�h

Z ��t

�h
e
QA.t��C�/Q

�
˛.�/x.�/C ˇ.�/u.�/�d�d�

with l.c.m.e.
QAQ D

Z 0

�h
e
QA�Q˛.�/d� (l.c.m.e.0)

yields reduced system

Q̇ W PQx.t/ D QA Qx C QBu.t/; where QB ´
Z 0

�h
e
QA�Qˇ.�/d�

and
I spec.˙h;cl/ D

�
spec.˙h/ n spec. QA/

� S
spec. Q̇cl/.

Is it that simple ?

Not quite, solving QAQ D
Z 0

�h
e
QA�Q˛.�/d� is highly nontrivial. Specifically,

I we have to find all troublesome modes of ˙h
(in most cases, have to rely on numerical approaches)

I solve (l.c.m.e.) / (l.c.m.e.0)
(solution is non-unique and not especially elegant)

Only a handful of cases where the steps above can be solved analytically.
One example is

˛.�/ D

2666664
� � � � � � �
0 � � � � � �
:::
:::
: : :

:::
:::

0 0 � � � � �
0 0 � � � 0 �

3777775 ı.�/C
X
i

2666664
0 � � � � � �
0 0 � � � � �
:::
:::
: : :

:::
:::

0 0 � � � 0 �
0 0 � � � 0 0

3777775 ı.� C hi /

in which case spec.˙h/ is finite and (l.c.m.e.0) is solvable with Q D I .

Example

Let
˙h W Px.t/ D �x.t/C x.t � h/C u.t/;

whole characteristic quasi-polynomial is (here s D � C j!)

�h.s/ D s C 1 � e�sh D � C 1C j! � e��he�j!h:

Solutions of �h.s/ D 0 must satisfy the magnitude condition

.� C 1/2 C !2 D e�2�h:

If � > 0, this equation is unsolvable. If � D 0, then ! D 0 is the only option.
Indeed, s D 0 is a root. Then, by L’Hôpital’s rule,

lim
s!0

�h.s/

s
D 1C lim

s!0
1 � e�sh

s
D 1C lim

s!0
h

1
D 1C h;

which implies that s D 0 is a single root.

Example (contd)

Thus, we have only one unstable pole to shift and may pick Qn D 1, QA D 0.
Eqn. (l.c.m.e.) then reads 0 D �q C q, so we may pick q D 1. Then

Q̇ W PQx.t/ D u.t/;

which is stabilized by u.t/ D �k Qx.t/ for any k > 0. Thus

u.t/ D �k
�
x.t/C

Z t

t�h
x.�/d�

�
stabilizes ˙h and renders its closed-loop characteristic polynomial

�h;cl.s/ D
s C k
s

.s C 1 � e�sh/:

In fact, the controller above has the transfer function

C.s/ D �k
�
1C 1 � e�sh

s

�
2 H1:
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Controllers with internal infinite-dimensional feedback

yu QC .s/

˘.s/

Smith controller: ˘.s/ D �Pr.s/.1 � e�sh/ and QC.s/ is designed for Pr.s/

FSA: ˘.s/ D e�Ah
Z h

0

e�.sI�A/�d�B and QC.s/ D F eAh, with F

designed for (rational) QP .s/ D .sI � A/�1B

Reduction: ˘.s/ D e�Ah
Z h

0

e�.sI�A/�d�B and QC.s/ D QF , with QF
designed for (rational) QP .s/ D .sI � A/�1e�AhB

Each of them introduced as a clever trick, but there should be a reason for
I ending up with essentially the same structure. . .
I having essentially the same rationale (prediction) behind ˘.s/. . .

Static state feedback: discrete-time case

Consider
Ṅ
h W NxŒk C 1� D NA NxŒk�C NB NuŒk � h�

and assume that we measure whole Nx. “True” state-space representation:2666664
NuŒk�
NuŒk � 1�

:::

NuŒk � hC 1�
NxŒk C 1�

3777775 D
2666664
0 � � � 0 0 0

I � � � 0 0 0
:::
: : :

:::
:::
:::

0 � � � I 0 0

0 � � � 0 NB NA

3777775

2666664
NuŒk � 1�
NuŒk � 2�

:::

NuŒk � h�
NxŒk�

3777775C
2666664
I

0
:::

0

0

3777775 NuŒk�

and we measure whole state vector NxaŒk� D
� Nu0Œk � h� � � � Nu0Œk � 1� Nx0Œk��0.

Static state feedback in this case is

NuŒk� D � NFu;1 NFu;2 � � � NFu;h NFx �„ ƒ‚ …
NFa

NxaŒk� D NFxxŒk�C
hX
iD1
NFu;i NuŒk � i �;

which is dynamic control law in Nx: NU.´/ D �I �Ph
iD1 NFu;i´�i

��1 NFx NX.´/.

Choice of NFa: what can we do ?

If . NA; NB/ is controllable, then so is the realization2666664
NuŒk�
NuŒk � 1�

:::

NuŒk � hC 1�
NxŒk C 1�

3777775 D
2666664
0 � � � 0 0 0

I � � � 0 0 0
:::
: : :

:::
:::
:::

0 � � � I 0 0

0 � � � 0 NB NA

3777775

2666664
NuŒk � 1�
NuŒk � 2�

:::

NuŒk � h�
NxŒk�

3777775C
2666664
I

0
:::

0

0

3777775 NuŒk�

because its controllability matrix

NMc,a D

2666664
I 0 � � � 0 0 0 � � � 0

0 I � � � 0 0 0 � � � 0
:::
:::
: : :

:::
:::

:::
:::

0 0 � � � I 0 0 � � � 0

0 0 � � � 0 NB NA NB � � � NAn�1 NB

3777775µ
�
I 0

0 NMc

�
2 R.mhCn/�.mhCn/

So, in principle, we can assign closed-loop poles arbitrarily by NFa.



Choice of NFa: what makes sense to do ?

Handling augmented system NxaŒk C 1� D NAa NxaŒk�C NBa NuŒk� as structureless
finite-dimensional system is straightforward, yet

I numerically expensive (computational burden grows rapidly with h)
I conceptually wasteful (there is a plenty of structure to exploit)

Poles of system NPh.´/ D NP0.´/´�h D NP0.´/ � ´�hIm are union of

1. n poles of delay-free system NP0.´/
2. mh, where m´ dim Nu, of delay ´�h at the origin

Poles at the origin are perfectly good, so we
I may only concentrate on poles of NP0.´/

and don’t need to waste our efforts on moving mh poles at ´ D 0.

Approach 1: pole placement via Ackermann’s formula

Assume m D 1 and let required closed-loop characteristic polynomial be

N�cl,a.´/ D ´h N�cl.´/ D ´nCh C Nan�1´nCh�1 C � � � C a1´hC1 C a0´h

By Ackermann’s formula,

NFa D
�
0 � � � 0 1

� NM�1
c,a N�cl,a. NAa/:

Looks cumbersome, yet good news is that
I structure of NAa can be exploited

to obtain tangible results.

Approach 1: exploiting structure of . NAa; NBa/

Straightforward, albeit boring, manipulations yield:

NAa D

266666664

0 0 � � � 0 0 0

1 0 � � � 0 0 0

0 1 � � � 0 0 0
:::
:::
: : :

:::
:::
:::

0 0 � � � 1 0 0

0 0 � � � 0 NB NA

377777775
; NA2a D

266666664

0 � � � 0 0 0 0

0 � � � 0 0 0 0

1 � � � 0 0 0 0
:::
: : :

:::
:::

:::
:::

0 � � � 1 0 0 0

0 � � � 0 NB NA NB NA2

377777775
;

: : : ; NAha D

26664
0 0 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 0 0
NB NA NB � � � NAh�1 NB NAh

37775 D
26664
0
:::

0

I

37775� NB NA NB � � � NAh�1 NB NAh �

Approach 1: exploiting structure of . NAa; NBa/ (contd)

Thus,

NAhCia D

26664
0
:::

0

I

37775 NAi � NB NA NB � � � NAh�1 NB NAh � ; 8i D 0; 1; : : :
Hence,

N�cl,a. NAa/ D

26664
0
:::

0

I

37775 N�cl. NA/
� NB NA NB � � � NAh�1 NB NAh �

and

NM�1
c,a N�cl,a. NAa/ D

26664
0
:::

0

I

37775 NM�1
c N�cl. NA/

� NB NA NB � � � NAh�1 NB NAh � :



Approach 1: state feedback gain

Finally, we have:

NFa D
� NFu;1 NFu;2 � � � NFu;h NFx �

D �0 � � � 0 1
� NM�1

a N�cl. NA/
� NB NA NB � � � NAh�1 NB NAh �

Clearly, NF ´ �
0 � � � 0 1

� NM�1
a N�cl. NA/ is state feedback gain assigning

poles of delay-free system (h D 0) to N�cl.´/. Thus, we end up with

NFa D NF
� NB NA NB � � � NAh�1 NB NAh �

and corresponding control law

NuŒk� D NF
�
NAh NxŒk�C

hX
iD1
NAi�1 NB NuŒk � i �

�
;

which assigns closed-loop poles to N�cl.´/ D ´h det
�
´I � . NAC NB NF /�.

Approach 2: geometric reasonings

Let
Ṅ
0 W NxŒk C 1� D NA NxŒk�C NB NuŒk�

and assume that we’d like to shift only a part of spec. NA/ by state feedback.
An easy way to accomplish this is to use any similarity transform T such that

T NxŒk C 1� D
� NAshift 0
NA21 NAkeep

�
T NxŒk�C

� NBshift
NB2

�
NuŒk�

and then, if . NAshift; NBshift/ controllable, use NuŒk� D NFshift
�
I 0

�
T NxŒk�. In fact,

we do not need T , but only its first block row Tshift ´
�
I 0

�
T verifying

Tshift NA D NAshiftTshift

with any NAshift whose spectrum coincides with the part of spec. NA/ that we
want to shift. Indeed, with NuŒk� D NFshiftTshift NxŒk� we have that

Tshift NxŒk C 1� D . NAshift C TshiftB � NFshift/Tshift NxŒk�:

Approach 2: exploiting structure of . NAa; NBa/

Now, we have2666664
NuŒk�
NuŒk � 1�

:::

NuŒk � hC 1�
NxŒk C 1�

3777775 D
2666664
0 � � � 0 0 0

I � � � 0 0 0
:::
: : :

:::
:::
:::

0 � � � I 0 0

0 � � � 0 NB NA

3777775

2666664
NuŒk � 1�
NuŒk � 2�

:::

NuŒk � h�
NxŒk�

3777775C
2666664
I

0
:::

0

0

3777775 NuŒk�

and want to shift only the modes of NA. Let’s see whether

�
T1 T2 � � � Th Tx

�
2666664
0 � � � 0 0 0

I � � � 0 0 0
:::
: : :

:::
:::
:::

0 � � � I 0 0

0 � � � 0 NB NA

3777775 D NA
�
T1 T2 � � � Th Tx

�

could be solved for some appropriately dimensioned T1; T2; : : : ; Th and Tx.

Approach 2: exploiting structure of . NAa; NBa/ (contd)

Equivalently, we seek for T1; T2; : : : ; Th and Tx satisfying

TiC1 D NATi (i D 1; : : : ; h � 1) and Tx
� NB NA� D NA �Th Tx

�
:

Hence, we need to find T1 and Tx such that Tx NB D NAhT1 and Tx NA D NATx.
An easy guess is Tx D NAh and T1 D NB, so that�

T1 T2 � � � Th Tx
� D � NB NA NB � � � NAh�1 NB NAh �

and we again end up with the feedback gain

NFa D NF
� NB NA NB � � � NAh�1 NB NAh �

and corresponding control law

NuŒk� D NF
�
NAh NxŒk�C

hX
iD1
NAi�1 NB NuŒk � i �

�
;

which assigns closed-loop poles to N�cl.´/ D ´mh det
�
´I � . NAC NB NF /�.



Discrete-time state feedback: interpretation

State-feedback control law can be presented as NuŒk� D NF NxhŒk�, where

NxhŒk�´ NAh NxŒk�C
hX
iD1
NAi�1 NB NuŒk � i �:

At the same time, we know that solution of NxŒk C 1� D NA NxŒk�C NB NuŒk � h� is

NxŒk C h� D NAh NxŒk�C
hX
iD1
NAi�1 NB NuŒk � i �:

This means that
I NxhŒk� is h steps ahead prediction of NxŒk C h�

and therefore control law
I NuŒk� D NF NxhŒk� may be called predictive feedback

so we end up with exactly the same control rationale as in the FSA case.

Continuous-time FSA feedback: rationale

Thus, predictive control law

xu QC .s/

˘.s/

with

˘.s/ D e�Ah
Z h

0

e�.sI�A/�d�B and QC.s/ D F eAh

is nothing but
I a static state feedback
I shifting only the finite modes of the plant to AC BF
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