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Smith controller

The scheme

C(s)

Introduced by Otto J. M. Smith more than half a century ago (in 1957).
» C(s) called primary controller

> Pi(s)(1 —e~*") called Smith predictor
(note that & = (r — y) — Pr(1 —e™*")u = r — Pu, which is “prediction” of e with h = 0)

The magic

C(s)

Closed-loop signal trailing:
u=C((r— P u) - P.(1—e"u) = C(r — Pu)
from which the closed-loop systems from r to u and y are

C(s)

_ and T(s) = PS)CG) e™sh
14+ P(s)C(s)

fuls) = =T POCH)

respectively. Thus, delay is eliminated from the characteristic equation and
» stabilization of (P,e ™", C) reduces to delay-free stabilization of (P, 0).




s it that simple ?

Consider the effect of the input disturbance d:
U= C’((r — Pe My — Pee™d) — P(1 — e_Sh)u) =C(r— Pu— Pe™"d)
from which the transfer function from d to y is

P.(s)

T 1+ P(\C(s) C _ a—shy)a—sh
S5 Rwim | T EOROA D)

Ta(s)

which might be unstable if so is P;.

Preliminary conclusions

e

r

Example 1

In this case C does stabilize P,, so that

2(s — 1 2
Shul)) and T(s) = e sh
s+ 1 s+ 1

Tu(s) =
are stable. Yet

Ta(s) =

2 1+2(1—e—sh) osh_ 2 s+1—2e—she_sh
s+1 s—1 s+ 1 s—1

is unstable.

Pe(s)(1 — ™)
C(s)
Smith controller
» works if P,(s) is stable
(stabilization problem reduces then to that for delay-free plant)
» does not necessarily work if P;(s) is unstable
(might lead to unstable loop)
Example 2
e r

In this case C does stabilize P,, so that

1
Tu(S) = ss? and T(S) = s e_Sh

are stable. Oddly enough,

1 1 —esh
Tals) = - — (1 + )e_Sh

. . _a—Sh
is stable too (since 1 < = e H™).




Extensions

The idea of Smith can be extended to
» more general class of i/o delays
> unstable systems (e.g., the modified Smith predictor)

We'll study some of these extensions in due course. ..
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Finite spectrum assignment

Preliminary: state feedback revised

Let
X(t) = Ax(t) + Bu(t), x(0) = xo

and u(t) = Fx(t). Rewrite this set of equations in s-domain as

sI —A =B |[X(s)| _|[xo
—F I |lus| o]
The characteristic equation of this system is'

sl —A —B

X(s)=det[ F g :|=det(sI—A—BF)=0,

so the closed-loop system stable iff A + BF is Hurwitz.

'Remember, det [ 4!! 42 ] = det(A2;) det(A11 — A1243) A21) whenever det(A2,) # 0.

Preliminary: Laplace transform of distributed delay

Let ;
() = / (i — 6)E(6)d6
t—h

for some function @. This can be seen as the convolution ¢ = @ x &, where
(1) := D(t)jou(t), where T4 is the indicator function of A C RY.

Then
E{/t qb(t—e)g(e)de} = L{D}L{E} = /wcﬁ(t)e_”dta‘(s)
t—h 0

h
2/ D(t)e 'dt E(s)
0




Problem statement

Let

Xp:x(t) = Ax (1) + Bu(t —h),  (x(0),u(0)) = (x0.0)

and we measure x (7). We look for u(z) stabilizing X, for any given h.

Motivation

If at each r € R we measured x (¢ + h), the control law
u() = Fx(t+h)

would stabilize Xj, whenever A + BF is Hurwitz. Although x(z + &) cannot
be measured, we may try to use its calculated (predicted) values

t+h
xp(1) := ex (1) + / eAt+h=9 By (9 — h)de

t

t
= el x(1) +/ A= By (9)do
t—h

h
= et x (1) +/ e Bu(r — 0)do
0

instead (think of observer-based feedback). Will it work ?

Characteristic equation
In s-domain,
sX(s) — xo = AX(s) + Be™*"U(s)

h
U(s) = Fe'"X(s) + F f e GI=D990B U(s)
0

or

sl — A —Besh X)) [xo
—Feth | — F[le6I=0040p || Us)| ~ | 0|

Hence, the characteristic quasi-polynomial is

_ _ —sh
a(s) = det [sl A Be ] '

—Fefh [ F [l e 6I=H0q9B

Characteristic equation (contd)

Now,
sI—A —Bes [ —e4h [l e=GI-0qg B
—Fefh [ — F [l e~ 6I=H049B || 0 I
_[s1—A4 —Be™h —eAh(sI - A)foh e~ 6I-949 B
| —Fedh I
s -4 —e4hp
T =Fet o

because
h
_eAh(sy — A)/ e~ GI=A0 g — o= Ah(o~GI-Ah _ [y _ g=sh] _ o=dh
0
Hence,

xn(s) = det(s] — A —e #"BFe") = det(e™*"(s] — A — BF)e?")
= det(s] — A — BF).




Characteristic equation (contd)
Thus,

» characteristic quasi-polynomial is actually a polynomial

and the characteristic equation,
det(s] —A— BF) =0,
is finite dimensional. In other words, (predictive) control law
u(t) = Fxp(1)

keeps the closed-loop spectrum finite. Hence the terms
» finite spectrum assignment (FSA).

Problem solution

Theorem
The FSA control law

u(t) = F(eAhx(t) + /
0

h
e Bu(t — 9)d6)

stabilizes
x(t) = Ax(t) + Bu(t — h)

iff A+ BF is Hurwitz.

Note that

» stabilizability of X, is equivalent to that of its delay-free version X.

Extensions

Was extended to the cases when

> we measure y(t) = Cx(t)
In this case observer-predictor of the form

(1) = (A+ LC)X(t) + Bu(t —h) — Ly ()
h
u(t) = F(eAhfc(t) +/ e Bu(r —e)de)
0
should be used.

» there are multiple / distributed input delays
» there are limited classes of state delays

Historical remarks

» First proposed by Mayne (1968) for single input delay, y = Cx
(effectively forgotten; as of April 2012, is cited once according to Google Scholar; as

of November 2012, 4 more citations were added)

» Independently derived by Kleinman (1969)
(as a solution to delayed LQG, not credited with the invention of FSA either)

> Solving the case of measured x is credited to Manitius & Olbrot (1979)

(general input delays and some classes of state delay)

» Observer-predictor proposed by Furukawa & Shimemura (1983)




Outline

Alternative viewpoint on FSA: Kwon-Pearson-Artstein reduction

Problem statement

Let
Tp:x(t) = Ax(@) + Bu@ —h), (x(0),uc(0)) = (xo,0)

and we measure x(t). We look for u(t) stabilizing X}, for any given h.

Preliminary: Leibniz integral rule

b(t)

d
— 0,t)do
dt a(t) f( )

b(t) () ()
:/am S f(O.0d0 + == f(b(0).1) = == f(@(®).1)

Reduced system

Introduce

h t
(1) = x(1) + / AP Byt — 0)do = x (1) + / eAC=9-M By (9)do
0 t—h

—Ah

(note that ¥ = e™*"xy). Then, using Leibniz rule, we have:

() =x@t)+ A /t eAC=0-M By (6)d0 + e Bu(r) — Bu(t — h)
t—h

t
= Ax(t)+ A / eAC=9=1 By (9)d6 + e~ 4" Bu(r)
t—h
_ ~ —Ah
= _A_F0 + <V Bu)
i B
i.e.,

> X(1) satisfies ordinary (delay-free) differential equation.

We call this finite-dimensional system reduced system and denote it as .

Stabilization via reduced system

It can be proved that
» X is controllable iff X, is (absolutely?) controllable

» if the control law
h
u(t) = Fx(t) = F(x(t) + / A= By (r — 0)d9)
0

stabilizes ¥, then if stabilizes X}, as well.

2 Absolute controllability means the controllability of the whole (x(¢), u;(t)).




FSA property

The transformation

() =x@) + / ih eAU=0=1 By (9)dH

can be rewritten in the s-domain as

X(s)] _[1 e[l e CI=D049 B[ X(s)
o)=L )

(haven’t we already seen it?). If u = F %, the closed-loop reduced system is
sI —A —e 4"B7[ X (s) | xo
—F I Us)| | o
so that

|:SI —4 —e‘AhBi| [1 oA e_(”_A)ed@B} |:X(s)i| _ |:x0i|

—F I 0 I U(s) 0

FSA property (contd)

Thus, using the equality
h
eAh(s] — A)/ o~ GI=A0 g9 _ oAk _ o~sh ]
0

again, we have the following closed-loop equations for X:

sl — A —ehB X(@s) | | xo
—F I —Fe At [l e GI=D0qgB || Us)| ~ [ 0]
In other words, the control law u = F% applied to ¥, yields a closed-loop
system with finite spectrum. Moreover,
spec(Zpq) = spec(£q) = spec(d + e 4 BF)

and the choice F = FeA” returns us to FSA.

Extension to distributed input delay

Let now 0
Xy ox(t) = Ax() + / B(r)u(t + t)dr.
—h
Introduce
t 0—t

S ) — A(t—0+1)

x(t):=x() + /t—h /—h e B(t)dr u(6)do
Then

. t 60—t
x(1) = x(t) +/ h(A/h eA(’_0+’)ﬂ(r)dr—,B(6—t)—O)u(H)dO
= - 0
+/ eA*B(r)dru(t) — 0
—h

0
= A%(1) + / ) eATB(r)dr u(r)

0
and we only need to stabilize ¥ with A = A and B = / eA*B(1)dr.

Historical remarks

» Roots in optimal control, e.g., (Bate, 1969; Slater & Wells, 1972)

» First explicitly proposed by Kwon & Pearson (1980) for systems of the
form x(t) = Ax(t) + Bou(t) + Bpu(t — h)

(motivated by finite-horizon minimum energy control with zero final constraints)

» Extended by Artstein (1982) to rather general class of input delays and
to time-varying systems

» Extended by Fiagbedzi & Pearson (1986, 1990) to state / measurement
delays

(although details of the algorithm are less elegant in general)
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Fiagbedzi-Pearson reduction

Nontrivial complication
So far, we studied problems in which X}, has finite spectrum. Let now
X x(t) = Aogx(t) + Apx(t — h) + Bu(t),

which might have

» infinite number of open-loop poles <«—  complicates matters

Workaround:
» move only part of these eigenvalues by feedback,
namely, unstable ones (we know that there is only a finite number of them).

Yet another transformation

Consider

X(t) = Ox(1) + /t ih eAU=0-1 ) 4, x(6)dd

for some A € R**" and Q € R"™*". Then,

ft)=0%(@)+ 4 / iheff(‘—e—mQAhx(e)de + e MO Aux(t) — QApx(t — h)

= QAox(t) + QBu(t) + A /, th AT=0-1 0 4, % (0)d0 + e A Q Apx (1)
= A%(t) + QBu(t) — (AQ — QAo — e Q 4})x (1).
If we can choose A satisfying the left characteristic matrix equation
AQ = 040 + e QA,, (l.c.m.e.)

X, reduces to
Y x(t) = AX(1) + OBu(1).

Properties of solutions of l.c.m.e. AQ = QA4, + e=4hQ 4,

Let A € spec(A) and 7 be the corresponding left eigenvector. Then
A0 = AQ = 71040 +ije " 04, = 1O(Ao + e 4y).

In other words, ﬁQ(;\I — A — e_ihAh) = 0, so that
» whenever 1 := 7jQ # 0, every eigenvalue of 4 is a pole of X},
(remember, those poles are the roots of y;,(s) = det(sI — Ao — Ape™")).




Closed-loop spectrum

Suppose we can solve (l.c.m.e.) in A and Q. Then

ut) = Fx(t) = F(Qx(z) + / t eff(’—"—h)QAhx(e)de)
t—h

for some F leads to the closed-loop system

[ sI — Ao — Ape™" —B][X(S)] = [1C].

—FQ— Feah [T e=6I=D64904;, 1 || U(s)
and the characteristic quasi-polynomial y(s) = det A(s), where

Als) = sI — Ag — Ape™sh —B
T -F(Q 4 e [l 6I=D04004,) 1

Closed-loop spectrum (contd)

Next,

- h -
(SI _ /I)(Q + e—Ah/ e—(sI—A)QdQ QAh)
0
=50 —AQ + (e —e7* 1) QA = O(sT — Ag — Ape™"),
so that

- rh ~ -
Q +e / e 6I=D940 04, = (s1 — A)7'Q(sI — Ag — Ape™M).
0

Then
Als) = sl — Ag — Apesh —B
T =F(sI —A)Q(I — Ag — Ape™h) T

and
Xei(s) = det((s] — Ao — Ape™") — BF (sI — A) "' Q(sI — Ao — Ape™"))
= det(I — BF (s — A)™' Q) det(s] — Ap — Ape™").

Closed-loop spectrum (contd)

Because

A |0 _[A+0BF|o]"
- L BF 1]~
we have that

det(I — F(sI — A" QB) = det(;;;;:f%BF)

and thus

det(sI — Ag — Ape™")
det(sI — A)

Xl(s) = det(sI — A — OBF).

In other words,

> spec(Z,q1) = [spec(Zy) \ spec(A)] U spec(Ze)
(remember, spec(A) C spec(Zy)).

Implications

Thus, if we can

» solve (l.c.m.e.) so that A contains all unstable modes of X},

» find F so that A + QBF is Hurwitz (requires stabilizability of (4, QB)),
the control law

u(t) = F(Qx(z) + /t ih eff(’—e—h)QA,,x(e)de)

stabilizes X, by movingNall its unstable modes—those in spec(A4)—to the
eigenvalues of A + QBF and keeping the other modes of ¥, untouched.




Distributed state / input delays

Let 0
Xy ox(t) = / (a(r)x(t + 1)+ B(v)u(t + r))dr.
—h

Then transformation

t 60—t
@) = Ox(1) + / / A=) 9 (a(t)x (0) + B(r)u(h))drdd
t—h J—h
with l.c.m.e.
~ 0 g
AQ::/ e Qa(r)de (l.c.m.e.)
—h
yields reduced system
0
Y X(t) = A% + Bu(r), whmeg:::/ e 0B(r)dr
—h

and
> spec(Zy.q) = [spec(Zn) \ spec(A)] U spec(Z).

s it that simple ?

0
Not quite, solving AQ = / e* Qa(r)dr is highly nontrivial. Specifically,
—h
» we have to find all troublesome modes of X,
(in most cases, have to rely on numerical approaches)

» solve (l.c.m.e.)/ (l.c.m.e.)

(solution is non-unique and not especially elegant)

Only a handful of cases where the steps above can be solved analytically.
One example is

* ok 0 x -
0 % - 00 - % %
a@ = 8@ 8
00 - % % 100 -+ 0 %
(00 - 0 % (00 - 00]

in which case spec(X}) is finite and (l.c.m.e.’) is solvable with Q = I.

Example

Let
Xhix@)=—x@®)+x@—h)+u(@),

whole characteristic quasi-polynomial is (here s = 0 + jo)
() =s+1—e*" =0+ 1+ jo—eteion
Solutions of y(s) = 0 must satisfy the magnitude condition
0+ 1) + 0? = e 200,

If o > 0, this equation is unsolvable. If & = 0, then w = 0 is the only option.
Indeed, s = 0 is a root. Then, by L'Hopital’s rule,

1— —sh
lim 1n(s) =14 lim ©
s—>0 S s—0 S

h
=1+1lim—-=1+h,
s—0 1

which implies that s = 0 is a single root.

Example (contd)

Thus, we have only one unstable pole to shift and may pick i = 1, 4 = 0.
Eqgn. (I.c.m.e.) then reads 0 = —g + ¢, so we may pick ¢ = 1. Then

2 x(0) = u(),
which is stabilized by u(t) = —kx(t) for any k > 0. Thus
t
u(t) = —k (x(t) + / x(@)d@)
t—h
stabilizes X, and renders its closed-loop characteristic polynomial

k
S (s +1—e*h).
s

Xh,cl(s) =

In fact, the controller above has the transfer function

—sh

C(s) = —k(l + ) € H®.
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“Just because you can explain it doesn’t mean it’s not still a miracle.”

Controllers with internal infinite-dimensional feedback
I1(s)

Smith controller: IT(s) = —Py(s)(1 —e™*") and C (s) is designed for P.(s)

h
FSA: I1(s) = e~ 4" / e~ 6I=D940B and C(s) = Fe4", with F
0

designed for (rational) P(s) = (s — A)"'B
h
Reduction: I(s) = e_Ah/ e~ 6I=D949B and C(s) = F, with F
0

designed for (rational) P(s) = (sI — A)"'e™4"B

Each of them introduced as a clever trick, but there should be a reason for
» ending up with essentially the same structure. ..
» having essentially the same rationale (prediction) behind I1(s). ..

Static state feedback: discrete-time case

Consider
Xy X[k + 1] = Ax[k] + Biilk — h]

and assume that we measure whole x. “True” state-space representation:

i[k] 0-- 00 07 [aufk—1] I
ik —1] I - 00 0]]|afk—-2] 0
: =1 o : + | ¢ | ulk]
ik —h + 1] 0 -~ I 0 0]||ik—h] 0
Xk + 1] 0--- 0B A ¥ [k] 0

and we measure whole state vector X,[k] = [u/[k —h] -+ w'[k — 1] )’c’[k]]/.

Static state feedback in this case is

h
ﬁ[k]:[ﬁu,l Fu,2 Fu,h Fx]xa[k]:Fxx[k]+zﬁu,iﬂ[k_i]a
i=1

F,

which is dynamic control law in %: U(z) = (I = Y1, Fu,iz_i)_lﬁx)f(z).

Choice of F,: what can we do?

If (4, B) is controllable, then so is the realization

C o alk] ] 0-- 00 07 [ak—1]7 I

ik — 1] I - 00 0|]|ak-2] 0
: =1: "o : + | | ulk]
ik —h + 1] 0 o 1 0 0||ifk—hl 0
Xlk+1] | |0 .-+ 0 B AL x[k] | 0]
because its controllability matrix

10+ 010 0 0

0r/f--00 0 -~ 0
ca o Coe . . . 0 MC

00 ;0 0 - 0

00 -+ 0B AB --- A"'B

So, in principle, we can assign closed-loop poles arbitrarily by F,.




Choice of F,: what makes sense to do ?
Handling augmented system %a[k + 1] = A,Xa[k] + Baii[k] as structureless
finite-dimensional system is straightforward, yet
» numerically expensive (computational burden grows rapidly with &)
» conceptually wasteful (there is a plenty of structure to exploit)

Poles of system P, (z) = Po(z)z™" = Py(z) - 27" I, are union of
1. n poles of delay-free system Py (z)
2. mh, where m := dim 1, of delay z " at the origin

Poles at the origin are perfectly good, so we
» may only concentrate on poles of Py(z)

and don’t need to waste our efforts on moving mh poles at z = 0.

Approach 1: pole placement via Ackermann’s formula
Assume m = 1 and let required closed-loop characteristic polynomial be

Fea(@) = 2"7a@) = 2" 4 @p 2" b a2 g
By Ackermann’s formula,

Fo=[0 -+ 0 1]MZ! 7ara(Aa).

Looks cumbersome, yet good news is that
» structure of A, can be exploited
to obtain tangible results.

Approach 1: exploiting structure of (4,, B.)

Straightforward, albeit boring, manipulations yield:

00--00 07 0 -+ 00 0 07
10--000 0---00 0 O
i} 01---000 _ 1---00 0 0
Aa: . . . ’ Agz P . . ’
00--100 0--10 0 0
(00 --- 0B A | 0 B AB A2 |
0 0 0 07 0
AR = 3 : = [B AB --- A''B A%]
0 0 0 0 0
B AB AR AR I

Approach 1: exploiting structure of (4,, B,) (contd)
Thus,

0
At = | P | A'[B AB ... A"'B A"], Vvi=0,1,...
0
I
Hence,
0
Xcl,a(fia)z O )?d(/f)[é AB . A"1B /Ih]
I
and
0
M;;Xcl,a(fia): : MC_IXCI(I‘D[B AB - A"'B /Ih]




Approach 1: state feedback gain

Finally, we have:

Fa:[Fu,l u2 °°° Fu,h Fx]
—[0 - 0 1]M ' za(A)[B AB - A'B A"]

Clearly, F:=[0 --- 0 1] M3 (A) is state feedback gain assigning
poles of delay-free system (h = 0) to y(z). Thus, we end up with

Fo=F[B AB ... "B "]

and corresponding control law
h
ulk] = F(/Ihx[k] +> AT Bilk - i]),
i=1

which assigns closed-loop poles to j(z) = z" det(z] — (A + BF)).

Approach 2: geometric reasonings

Let
Yo : X[k + 1] = Ax[k] + Bi[k]

and assume that we'd like to shift only a part of spec(A4) by state feedback.
An easy way to accomplish this is to use any similarity transform 7' such that

- | Ashie O - Bahit | -
Tx[k+1]—[1421 Akeep]Tx[k]—i—[ 4 ]u[k]

and then, if (Aghift, Bshirt) controllable, use i[k] = Fyy[I 0] TX[k]. In fact,
we do not need 7', but only its first block row Tg := [I 0] T verifying

TenitA = Aghitt Tonift

with any Ag,i whose spectrum coincides with the part of spec(4) that we

want to shift. Indeed, with i[k] = Fnis TsniseX [k] we have that

Ttk [k + 1] = (Aghire + ToniteB + Fenist) TohieX [k]-

Approach 2: exploiting structure of (4,, B.)

Now, we have

ulk] 0 -+ 00 07 [ulk—1] I
ilk — 1] I -~ 00 0] alk-2] 0
: =0 o : + | | ulk]
ulk —h +1] 0 -+ 1 00 |]|ulk—n] 0
Xk +1] 0--- 0B A %[k] 0
and want to shift only the modes of A. Let’s see whether
[0 --- 0 0 07
I --- 000
[Tl T - Ty Tx] el s s o= _[Tl T - Ty Tx]
0--- 7100
[0 --- 0 B A
could be solved for some appropriately dimensioned Ty, 75, ... ., Ty, and Ty.

Approach 2: exploiting structure of (4,, B,) (contd)

Equivalently, we seek for Ty, T, ..., T, and Ty satisfying
T =AT; i =1,..., h—1) and Ty [B A]=A[Ty Tx].

Hence, we need to find Ty and T, such that Ty B = A"T, and T, A = AT,.
An easy guess is Ty = A" and Ty, = B, so that

[Ty T -+ Ty Tx|=[B AB --- A""'B AM]

and we again end up with the feedback gain

F,=F[B AB --- A"'B A"]
and corresponding control law
h
alk] = F(/fhi[k] + Y A Bilk - i]),
i=1

which assigns closed-loop poles to j(z) = 2" det(z] — (A + BF)).




Discrete-time state feedback: interpretation

State-feedback control law can be presented as ii[k] = Fxp[k], where

h
Xplk] := APx[k] + ) A Bilk — i),

i=1

At the same time, we know that solution of X[k + 1] = Ax[k] + Bii[k — h] is

h
X[k +h) = A"x[k] + Y A" Bilk —i].
i=1

This means that

> Xplk] is h steps ahead prediction of X[k + h]
and therefore control law

» i[k] = Fx,[k] may be called predictive feedback
so we end up with exactly the same control rationale as in the FSA case.

Continuous-time FSA feedback: rationale

Thus, predictive control law

u X

— 1
11(s)

h
M(s) = e 4" f e GI=D949B and C(s) = Fet”
0

with

is nothing but
> a static state feedback
» shifting only the finite modes of the plantto A + BF
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