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Nyquist criterion for time-delay systems

Nyquist stability criterion

The idea is to

y L(s) e r

—0

» use plot of L(jw) to count the number of closed-loop poles in C.

Namely, assume that L(s) has no pole/zero cancellations in Cy and denote:

1o number of poles of L(s) in C

nc number of poles of

1 e
e N Co

x number of clockwise encirclements of —1 + jO by Nyquist plot of L(jw)
as w runs from —oo to oo

Then

Ne|l = Ng| + X

What is changed for delay systems ?

Nothing, except that

» we might no longer be interested in C, as stability region.

Formal workaround: shift Nyquist contour a bit left or, equivalently,
> plot Nyquist plot of L(« + jo) for some a < 0,

yet by this intuition we have about frequency response gets lost.

We still can use L(jw) if we

» rule out situation with pole chain around jw-axis.
If L(s) = bo(s)+by(s)es"

ao(s)+ap(s)e=sh’
! = ao(s) + ah(s)e_sh
1+ L(s)  (ao(s) + bo(s)) + (an(s) + bp(s))es"

and we should rule out |2:°9%224| — | by considering it unstable.

then closed-loop system is




Dead-time systems

Particularly simple analysis because of simple rules of plotting L,(jw)e .

Just remember that

> if |Li(o0)| = 1, closed-loop systems unstable

no matter how many times the critical point is encircled.
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Roots of quasi-polynomials: general observations




Problem formulation

Consider (characteristic) quasi-polynomial
xn(s) = P(s) + Q(s)e™*"
with
P(s) = 5" + pu—18"" 4+ pis + po,
Q(5) = gms™ + qm-1s""" + -+ @15 + o,  gm #O.

The problem is to
» check whether x5 (s) has all its roots in C \ Cg

for some o < 0.

Continuity of roots

Define

Ay i= sup{Res Dxn(s) = 0}
Then, the following result holds:
Theorem

1. Arp is continuous as a function of h for all h > 0

2. if, in addition, y,(s) is retarded, then A, is continuous ath = 0 as well

Important consequence of this is that

» as h changes, roots of yj(s) may transit LHP-2-RHP (or vise versa) by
crossing jw-axis only.

Assumptions

For

P(s) =" + pp_1s" L+ -+ p1s + po,
O@) = gms™ + gm1s™ '+ -+ qis +q0.  Gm #0.

we assume that
A m<n,
Ay it m =n, then |g,,| < 1,
Aj3: P(s) and Q(s) have no common roots in Cy (i.e., coprime in Cy),
A4 po+qo #0.
because
» A, guarantee ‘%{ < 1 (otherwise unstable for all & > 0).
» if A3 does not hold, y(s) unstable for all & > 0.

» if A4 does not hold, y5(0) = 0 for all & > 0.

Outline

Delay sweeping (direct method)




Idea
To analyze stability y5(s) by

» continuous increase of & starting from h = 0.
Namely, the analysis steps are as follows:
1. locate roots' of yo(s) = P(s) + Q(s);

2. increase h and check for jw-axis crossings? of roots of y(s):

> LHP to RHP crossings called are switches
> RHP to LHP crossings called are reversals

Stability of yx(s) can then be verified by counting switches and reversals.

TAs polynomial xo(s) is finite dimensional, this step is trivial.
2We'll see below that this step can be efficiently performed.

jw crossings

If at some & roots of yj(s) cross jw-axis, we have (mind A3):

P(jw) + Q(ja))e_j“’h =0 <— __Q(ja)) = el®h,

P(jw)
This, in turn, is equivalent to:
1. |% = 1or|P(jw)| = |Q(jw)| (magnitude relation),

2. wh = arg[— %82;] + 27k for some k € Z (phase relation).

Note that:
» for any @ > 0 satisfying 1, equality 2 is always solvable for #;
» if w > 0is solution of 1, then so is —w;

» if o = 0 is solution of 1, equality 2 cannot hold because of Aj.

Conclusion:

> existence of jw roots of characteristic equation completely determined
by magnitude equation and does not depend on delay.

Positive solutions of |A(jw)| = |B(jw)|
This equation can be rewritten as
P(jo) P(=jw) = Q(jw) Q(=jw) =: ¢(w) =0,

which is polynomial equation in 2. Thus, all frequencies w; at which rots
of yn(s) cross jw-axis can be found from positive real roots of ¢(s).

Example
Let P(s) = s2 4+ 0.1s + 1 and Q(s) = qo > 0. Then

¢ (o) = (0 + j0.1o + D) (~w? — j0.lo + 1) — g2
=(1-0??+01%0*-q
=0*-2-09950>+1—¢g; =0
Three situations possible:

1. if0 < go < V1 —0.9952 =~ 0.099875, there are no real solutions;
2. if V1 =0.9952 < g0 < 1, there are two positive real solutions

0} = 0995+ ,/0.9952 — 1 + 2, @] = 0.995 — /0.9952 — 1 + g&:

3. if go > 1, there is one positive real solution

w? = 0.995 + \/0.9952 +q3— 1.




Crossing directions

Depend on o(w) := sgn Re g;l s=jw at (positive) crossing frequencies:
o(w;) > 0 roots migrate from LHP to RHP at w; > 0 (switch) *
o(w;) <0 roots migrate from RHP to LHP at w; > 0 (reversal) X

o(w;) = 0 roots migration depends on higher derivatives j or \k

The question now is

> how to compute sgn Re 2 at jR* solutions of y;(s) =02

Some differential calculus

Note that
dP(s) ds dQ(s) ds osh

Xh() T ant

—sh ds
- 0wt (G +5).

Thus, denoting by ()’ differentiation with respect to s, we have:

ds sQ(s)esh _ (P/(s) 0'(s) —i—h)_l

dh — P'(s) + Q'()e=h —hQ(s)e=sh — T\ P(s) Q)
where equality Q(s)e™" = —P(s) was used. Since sgn Rez ™' = sgnRez,

~ T 1 (Pl() Qo)

otor =ssnite| 5 (56~ Gty +1)]
_ [J (P'(jo) Q'(jo) ho
=ste |3 (56) ~ G )] asltes, =0
~ [ (PGo) Qo)
= st i (G507~ G )] el

which does not depend on /.

Some differential calculus (contd)

Multiplying expression under “sgn” by P(jo)P(—jw) = Q(jw)Q(—jw) > 0,

o(@) = sgnRe [j (dP U®) (o) — 22U2) Q(—jw))]

(‘1(Jw) d(jo)
= sgn Re [dz(i)w)P(— )—dQ(Jw)Q(— )]
Then, since sgn Rez = sgn(z + 2),
d d
7(w) = senke| 02 p(jo) - S 0 jo
dpP
+ I Py - L 0o |
d¢ ()
= S8t dw

Crossing directions (contd)
Thus, we have:

sgn ¢ (w;) > 0 roots migrate LHP-2-RHP at w; > 0 (switch)
sgn ¢ (w;) < 0 roots migrate RHP-2-LHP at w; > 0 (reversal)

sgn ¢ (w;) = 0 roots migration depends on higher derivatives?

N2

o

35till, Walton and Marshall (1987) showed that if ¢ (w) changes its sign from “—" to “+4-”
at w = w;, we have LHP-2-RHP migration, if from “+” to “—"—RHP-2-LHP migration, and
if it doesn’t change sign—no migrations take place (touch point).




Example (contd)
Return to example with P(s) = s + 0.1s + 1 and Q(s) = qo > 0. Here
0(®) = L (w* —2:0.9950% + 1 - ¢2) = 4o(w* — 0.995).
1. ifgo = V1 -0.9952, then w; = w, = 0.995 and
o(w1) =0(w2) =0

(in fact, in this case no jw-axis crossings take place);
2. if V1 -0.9952 < go < 1 (two different crossing frequencies), then

o(wy) = 4w \/0.9952 — 1442 >0,

o(wy) = —4w; \/0.9952 —1+4+4¢2<0

(so that w, is always switch and w, is always reversal);
3. if go > 1 (one crossing frequency), then

o(wy) = 4wy \/0.9952 —144¢3>0

(so that w; is always switch).

Some qualitative observations about crossing frequencies

¢(w) is even real polynomial in w with positive leading coeff. (mind A4 2):

¢ ()

Crossing frequencies solve ¢ (w) = 0 and crossing directions determined by
directions of ¢(w) at zero crossings (for increasing w). This means that

> the largest crossing frequency is always a switch,

» switch and reversal frequencies always interlace
(with possible tangential points, at which no crossings occur, between them)

Crossing delays

It's time to make use of the phase relation at jw-crossing:

wh = arg[— %82;] + 27k, k € Z and such that & > 0. (1)

For each crossing frequency w; this equation yields sequence of delays
hix = hio + (%)—’fk, k €N,

where h; o > 0 is the smallest solution of (1). Then:
> if w; is switch (o(w;) > 0), two poles move LHP-2-RHP at each h; x;
> if w; is reversal (o(w;) < 0), two poles move RHP-2-LHP at each &; .

Thus, if we know poles of xo(s), stability analysis of yx(s) needs
1. sorting all h; x in increasing order?,

2. counting all crossings up to A.

3Smallest delay at which first crossing occurs need not correspond to largest frequency.

Example (contd)

Return to example with P(s) = s2 4+ 0.1s + 1 and Q(s) = go and let g = 0.4
In this case we have w; ~ 1.176 (switch) and w, ~ 0.78 (reversal) and

hix ~ 0.254 + 5.344 k = {0.254,5.598,10.942, 16.286, . . .},
hyk ~ 3.778 + 8.06k = {3.778,11.838,19.898,27.958, .. .}.

This yields the following ordered list of crossing (switch and reversal) delays:

{hl,o, hz,o, h1,1,h1,2, hz,l, h1,3, . . -}-

Since yo(s) = s? + 0.1s + 1.4 is stable, y,(s) is

» stable in i € [0,0.254),

» unstable in i € [0.254,3.778] (two poles went to RHP at & = 0.254),
> stable in i € (3.778,5.598) (two poles returned to LHP at h = 3.778),
>

unstable in i € [5.598, co0) (two poles went to RHP at & = 5.598, then
another two—at & = 10.942, before first two returned at 7 = 11.838).




Example (contd)
Thus, quasi-polynomial x(s) = s2 + 0.1s + 1 + 0.4e~%" is stable in
h € [0,0.254) U (3.778, 5.598).

And now compare with Nichols charts (doesn't it ring a bell ?):
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Some qualitative observations about crossings

The following facts are worth remembering:

> Delay distance between two crossings at the same frequency w; is 2%.

Hence, shortest distance is between two switches, which means that at
some point there is always > 2 RHP poles. Consequently, there

> always exists a delay, say himax, such that y(s) unstable Vi > hpax.
This hmax is calculable.

» If there are no crossing frequencies, then stability /instability properties
are delay independent.

Frequency domain vs. modal analysis

There is some nice interplay between these methods. For example:

> roots crossing frequencies are crossover frequencies of loop frequency
response,

» root crossing delays correspond to delay margins,

> ...

Arguably (I'm rather opinionated on this:-),
» frequency-response analysis provides more insight (cleaner thinking),
» modal analysis easier leads to reliable computations.

What is certain is that one must
» not confine oneself to either one of these approaches,

interplay between them yields better understanding (and is also fun).

Other modal analysis methods

» bilinear (Rekasius) transformation

replace e with 111—2, which covers the same area in C as t grows from —oo to co

» 2D representation
replace e™*" with z and analyze stability with respect to both s € jR and z € T
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Commensurate delays

Example

Let
Kh2(s) =5 + et 4 e,

Like in single-delay case, we look for jw-crossings of roots. As x5 (s) real,
its jw-axis roots coincide with those of x5 »(—s), i.e., they satisfy both
s+e e =0  and —s+eh e =0

—s2h _ _

From the first equation, e s —e~*", then from the second equation:

O=1l+e s =1+ 155+ =142+ +s5)e
This is a single-delay quasi-polynomial with
¢(@) = (1-0’)* (1 +0°) = 0’ (@ -3)
arg 71+J2\/§ T

from which crossing @ = +/3 (switch) and crossing h; o = N
As xo,2(s) stable, yp2(s) stable iff i € [0, ﬁ),

More general observations

Let
Xn2(s) = P(s) + Q1(s)e™" + 0r(s)e™*"

Clearly, sc = joc is root of x4 (s) iff it is root of
e yna(—s) = Qa(=s) + Qi(—s)e™*" + P(—s)e™**"
Hence, this s = jo is also root of
A1 (s) == P(=5) xn2(s) — Q2(s)e™* " yi2(—s)
= P(s)P(=5) — Q2(5) Q2(=5) + (Q1(5) P(=5) — Q2(5) Q1(—s))e ™"

which is single-delay quasi-polynomial. Yet converse not necessarily true:
> xn.1(s) might have more jw-roots* than .1 (s),

which complicates the analysis.

4In fact, jo-roots of xp.1(s) are roots of either y; 2(s) or P(s) P(—s) — Q2(s) Q2(~s).

More general observations (contd)

If sc = joc is crossing point of y5.1(s) such that

|P(joc)| # |1Q2(jwc)l,

then it also crossing point of x5 (s).

Moreover, crosing directions at x5.1(jwc) and xp.2(joc)
» coincide iff | P(joc)| > |Q2(jwc)|
> opposite iff [P(joc)| < |Q2(jwc)l
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Lyapunov’s methods

Lyapunov’s method for finite-dimensional systems

Consider LTI system
X(t) = Ax(r), x(0) =xo

and assume there is (differentiable) V(x) : R* — R* such that®

1. V() =0
2. V(x)>0forall x #0
3. derivative along trajectory V (x) := 3Igix) ‘é—f <0

called Lyapunov function. Then system is stable (in the sense of Lyapunov).

If 3 replaced with

3. V(x) <0
system is asymptotically stable. Yet another way to end up with asymptotic
stability is via LaSalle Invariance Principle

3”. V(x) <0and V(x) = 0implies x(r) = 0.

>In principle, statements like V(x) > 0 should be more specific, yet we proceed with this
sloppiness to simplify exposition.

Lyapunov’s method for finite-dimensional systems (contd)

Let’s choose
V(x) = x'(t)Px(t)

for some P > 0. Then
V(x) = x'(t)Px(t) + X' () Px(t) = X' (t)A' Px(t) + x'(t) PAx(¢)
= x'(t)(A'P + PA)x ()
If we can choose P > 0 satisfying A’P + PA = —C'C for some C,
V(x) =—x'(1)C'Cx(t) <0,

which implies stability. For asymptotic stability we then need observability
of (C, A) as in that case Cx(t) = 0 implies x(¢) = 0. In fact

» 3P > Osuchthat AP + PA <0 <= A Hurwitz
o
and P = / e9C'Ce4?dh > 0 is observability Gramian of (C, A).
0

Adding delays: developing intuition via discrete systems

Consider
[k + 1] = AoX[k] + A1 %[k — A]
As state vector here X, = [X'[k] X[k —1] --- X[k — h]]l, quadratic
Lyapunov function should look like
>0
Poo Poy -+ Pon x[k]
Py P11 - Prip X[k —1]

V(%) = [X'[k] X'[k—1] -+ X[k —h]]

Puo Py -+ Pup | | X[k —h]




Adding delays: Lyapunov-Krasovskii functional

Consider
2(t) = Aox (1) + Ayx (1 — h)

Quadratic Lyapunov function (actually, functional {[—4, 0] = R"} > R) for
this system could be of the form

h ph
V(x) = /0 /0 x'(t —o)P(0,0)x(t —0)dOdo

for some function P(o, #), where 0 < 0,6 < h, such that P(o,0) = P'(0,0)
and foh Oh n' (o) P (o, 0)n(0)dodo > 0 for all n(-) # 0. This functional called
Lyapunov-Krasovskit functional.

Alternative expression:

Vix:) = /ih /ih x'(0)P(t —o,t — 0)x()dbdo

Adding delays: Lyapunov-Krasovskii functional (contd)

Choice regarded sufficiently general is
P(0,0) = PyS(0)8(8) + P{(0)8(0) + P1(0)8(0) + P2(0)8(0 —0) + P3(0 — )

for some matrix Py, matrix functions Py(0) and P,(6) defined in 8 € [0, A],
and matrix function Ps(¢) defined in ¢ € [—h, h]. In this case

h h
V(xe) = x'(t) Pox(t) + / / x'(t —o)P3(0 — 0)x(t — 0)dOdo
h e h
+ 2 (1) f P1(0)x(t — 0)d6 + / X'(t — 0) P, (6)x (1 — 0)d6
0 0

the derivative of which is a mess®. ..

b1t is possible to choose P(a, ) of this form by reverse engineering: choose observable
“measurement operator” for state vector and construct P(o, 8) as observability Gramian.

Delay-independent conditions via LK approach
Consider x(t) = Apx(t) + Apx(t — h) and choose

t
V(x:) = x'(t) Pox(1) +/ x'(0)P,x(0)do
t—h
for some Py > 0 and P, > 0. Then, using Leibniz integral rule,

V(xe) = &' (6) Pox () + x'(£) Pox () + x'(£) Pax (£) — x'(t — h) Pyx (1 — h)

_ / ’ A/P0+P0A0+P2 PoAh )C([)
= [x'(1) x(t—h)][ oot _PZ][x(t_h)}

Thus, if there are Py > 0 and P, > 0 such that

A6P0+P0A0+P2 PyAp <0
A, Py —p, | =7

V(x;) < 0 and system asymptotically stable (mind LaSalle). This is
> Linear Matrix Inequality (LMI), which can be efficiently solved.

Adding delays: Razumikhin approach

Consider again
x(t) = Aox(t) + A1x(t — h)

Lyapunov function for it, V(x.), doesn’t have to be quadratic. We may take

V(x;) = max V(x(t + 1))
t€[—h,0]

for some “Lyapunov function” V (x). In this case IL/(x) may be even positive
at points where V(x) < V(x;). This, relaxed, condition reads as follows:

Theorem (Razumikhin)
System is asymptotically stable if there is V(x) : R" — R* such that
1. V(0) =0
2. V(x)>O0forallx #0
3. V(x) <0 whenever pV(x(t)) = V(x(t + 1)), t € [<h, 0], for some p > 1




Delay-independent conditions via Razumikhin approach
Consider x(t) = Aox(t) + Apx(t — h) and choose
V(x) = X'(t) Px(t)
for some P > 0. For every p > 1 and & > 0 we can define function
Y1) = V@) +a(pV(x@0) = V(x( —h)))
= X' ()Px(1) + X' () P5(t) + a(px' (1) Px(t) — x'(t — h)Px(t — h))

— [y / AP + PAg + apP PA, x(t)
— [x0) x(t—h)][ by _ap][x(l_h)}

At{x(t) : V(x(t + 7)) < pV(x(t))} we have that > V. Thus, if ¥ <0, the
system is stable by Razumikhin arguments. Hence, if there is matrix P > 0
and scalar & > 0 such that

ABP + PAg +aP PAy <0
A, P —aP ’

then the system asymptotically stable.

Lyapunov-Krasovskii vs. Razumikhin (not generic)

If there are P > 0 and o > 0 such that

ALP + PAy+ P PA,
AP I
h

then

|:A6P0 + PoAg + P, PyAj

4P P:|<O for P = P and P, = aP.
rto -2

Thus, the LK condition holds whenever so does the Razumikhin condition,
but not necessarily vise versa. Hence,

> in this case Razumikhin approach is potentially more conservative
(solvability of LK LMI does not necessarily mean that P, = aPy).

Delay-independent stability in scalar case

Consider x(t) = agx(t) + apx(t — h) for x € R. Delay-independent stability
would require stability at # = 0 and no positive crossing frequencies. These
read

ap+ap <0 and w?+aj =a; hasno positive real solutions

or, equivalently,
2 2
ag>a, and a9 <0

(the latter can be interpreted as stability under i — o0).

Scalar case: Lyapunov-Krasovskii and Razumikhin

LK solvability LMI becomes

2
dpo > 0, p» > 0 such that |: doPo + P2 ahp0]<0.

anPo —D2
Taking Schur complement of the (2, 2) term, the last condition equivalent to
2a0po + p2 +a;ps/p2 <0 <= pj +2a0po p2 + a;ps < 0.
The latter reads
ap<0 and agpsy—a;ps >0 < aj >aj,

i.e., we recover exact conditions (LK conservative in general). In scalar case

|:2610P0 + p2 a;,po] <0 [2aop +oap app ] <0
appo —D2 app —up

and Razumikhin result coincides with Lyapunov-Krasovskit one.
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