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General info
I ECTS credits: 7.5

I Prerequisite: any advanced linear control course

I Grading policy: homework 100% (solutions are graded on a scale of
0–100, each must be at least e� � 23:1407, average grade of 5 best out
of 6 assignments must be at least 67)
Homework solutions are to be submitted electronically to mirkin@control.lth.se

I Literature:
1. My slides.

2. J. E. Marshall, H. Górecki, A. Korytowski, and K. Walton, Time-Delay
Systems: Stability and Performance Criteria with Applications. London:
Ellis Horwood, 1992.

3. K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems.
Boston: Birkhäuser, 2003.

4. R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional
Linear Systems Theory. New York: Springer-Verlag, 1995.

Syllabus
1. Introduction

I time delays in engineering applications; system-theoretic preliminaries

2. Mathematical modeling of time-delay systems
I frequency domain & modal analyses; state space; rational approximations

3. Stability analysis
I stability notions; frequency sweeping; Lyapunov’s method

4. Stabilization methods
I fixed-structure controllers; finite spectrum assignment; coprime factorization

5. Dead-time compensation
I Smith predictor and its modifications; implementation issues

6. Handling uncertain delays
I Lyapunov-based methods; unstructured uncertainty embedding

7. Optimal control and estimation (??)
I H 2 optimizations



On a less formal side

What this course is about. . .

I system-theoretic and control aspects of delays in dynamical systems
I exploiting the structure of the delay element
I giving a flavor of ideas in the field
I showing that things are (relatively) simple if the viewpoint is right

. . . and what it isn’t

I digging up most general and mathematically intriguing cases
I answering the very problem that motivated you to take this course
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Time delay element

y D Dh u W y.t/ D u.t � h/ uy Dh

0 t t !h t C h t !

or

Ny D NDh Nu W yŒk� D uŒk � h� NuNy NDh

0 k k !h k C h k !

Why delays?
I Ubiquitous in physical processes

I loop delays
I process delays
I . . .

I Compact/economical approximations of complex dynamics

I Exploiting delays to improve performance



Loop delays: steel rolling

Thickness can only be measured at some distance from rolls, leading to
I measurement delays

Loop delays: networked control

Plant

Controller

Network

Sampling, encoding, transmission, decoding need time. This gives rise to
I measurement delays
I actuation delays

Loop delays: temperature control

Everybody experienced this, I guess. . .

Internal delays: regenerative chatter in metal cutting
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�
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�
;

where T is time of one full rotation of workpiece.



Delays as modeling tool: heating a can

Transfer function of a heated can (derived from PDE model):

G.s/ D 1

J0

�q�s
˛
R
� C 1X

mD1
2

�mRJ1.�mR/
s

sC˛�2m
1

cosh
�q

s
˛
C�2m�L2

� :
Its approximation by G2.s/ D 1

.�1sC1/.�2sC1/e
�sh is reasonably accurate:
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Delays as modeling tool: torsion of a rod

Transfer function of a free-free uniform rod at distance x from actuator:

G.s/ D k

s

e�xhs C e�.2�x/hs

1 � e�2hs
; 0 � x � 1:

Its approximation by Gr.s/e�xhs does capture high-frequency phase lag:
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Exploiting delays: repetitive control

Any T -periodic signal f .t/ satisfies (with suitable initial conditions)

f .t/ � f .t � T / D 0 or, in frequency domain, f .s/ D 1

1 � e�sT

This motivates the configuration, called repetitive control:

y u re
P.s/ C.s/

e�sT

�

which is
I generalization of the internal model controllers (including I)

and guarantees (if stable!)
I asymptotically perfect tracking of any T -periodic reference r

Exploiting delays: preview control

If we know reference in advance, we can exploit it to improve performance:

m
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Linear systems

We think of systems as linear operators between input and output signals:

y D G u:

G is said to be
I causal if ˘�G.I �˘� / D 0, 8� , where ˘� is truncation at time �

uy ˘�

� t !� t !

I time-invariant if it commutes with shift operator: GSh D ShG, 8h

uy Sh

0 t t !h t C h t !

I stable if 9
 � 0 (independent of u) such that kGuk � 
kuk, 8u

LTI systems

Let g.t/ be impulse response of an LTI system G. Then

y.t/ D
Z 1
�1

g.t � �/u.�/d� (convolution integral)

For causal systems g.t/ D 0 whenever t < 0. Then

y.t/ D
Z t

�1
g.t � �/u.�/d�

or even

y.t/ D
Z t

0

g.t � �/u.�/d�

if we assume that u.t/ D 0 whenever t < 0.

Transfer functions

In the s-domain (Laplace transform domain) convolution becomes product:

y.t/ D
Z t

0

g.t � �/u.�/d� ” y.s/ D G.s/u.s/;

where G.s/ D Lfg.t/g ´ R1
0
g.t/e�stdt is called the transfer function of G.

Some basic definitions:
I Static gain: G.0/
I Frequency response: G.j!/´ G.s/jsDj!
I High-frequency gain: lim sup!!1kG.j!/k
I G.s/ is said to be proper if 9˛ > 0 such that sups2C˛ G.s/ <1, where

C˛ ´ fs 2 C W Re s > ˛g D ˛

I G.s/ is said to be strictly proper if lim˛!1 sups2C˛ G.s/ D 0



Transfer functions: causality & L2-stability

Theorem
LTI G is causal iff its transfer function G.s/ is proper.

Some definitions:
I L2-norm of f .t/: kf k2´

�R1
0
kf .t/k2dt�1=2 (kf k22 is energy of f .t/)

I G is said to be L2 stable if kGkL2 7!L2 ´ supkuk2D1kGuk2 <1
I H1´ ˚

G.s/ W G.s/ analytic in C0 and sups2C0kG.s/k <1
	

Theorem
LTI G is causal and L2-stable iff G 2 H1. Moreover, in this case

kGkL2 7!L2 D kGk1´ sups2C0kG.s/k D sup!2RkG.j!/k:

Note that G 2 H1 implies that G.s/ is proper.

Rational transfer functions

A p � q transfer function G.s/ is said to be rational if 8i D 1; p and j D 1; q

Gij .s/ D bmij smij C � � � C b1s C b0
anij snij C � � � C a1s C a0

for some nij ; mij 2 ZC.

System G is finite dimensional iff its transfer function G.s/ is rational.

Some properties greatly simplified when G.s/ is rational:
I rational G.s/ is proper (strictly proper) iff nij � mij (nij > mij ) 8i; j
I rational G 2 H1 iff G.s/ proper and has no poles in C0´ jR [C0

I high-frequency gain of rational G.s/ is kG.1/k

State-space realizations

Any causal LTI finite-dimensional system G admits state space realization in
the sense that there are n 2 ZC and x.t/ 2 Rn (called state vector) such that

y D Gu )
(
Px.t/ D Ax.t/C Bu.t/; x.0/ D x0
y.t/ D Cx.t/CDu.t/

for some A 2 Rn�n, B 2 Rn�m, C 2 Rp�n, D 2 Rp�m, and initial condition
x0. In this case

x.t C �/ D eA�x.t/C
Z �

0

eA.���/Bu.t C �/d�;

implying that
I if we know x.t/ and future inputs, we can calculate future outputs

(i.e., no knowledge of past inputs required). This means that
I state vector is history accumulator,

which is the defining property of state vector.

State-space realizations (contd)

Assume that x0 D 0 (no history to accumulate). Then:
I impulse response of G is g.t/ D Dı.t/C C eAtB,
I transfer function of G is G.s/ D D C C.sI � A/�1B µ

�
A B

C D

�
State-space realization is not unique. There even are realizations of the very
same system with different state dimensions. A realization called

I minimal if no other realizations of lower dimension exist

and .A;B; C;D/ is minimal iff .A;B/ controllable and .C;A/ observable.

Any two minimal realizations connected via similarity transformation:

x.t/ 7! T x.t/ )
�
A B

C D

�
7!
�
TAT �1 TB
CT �1 D

�
;

which changes neither impulse response nor transfer function, obviously.



System properties via state-space realizations

An LTI causal finite-dimensional system is
I L2 stable iff its minimal realization has Hurwitz “A” matrix1.

This is independent of the realization chosen.

The “D” matrix is informative too:

I G.s/ D
�
A B

C D

�
is strictly proper iff D D 0

I High-frequency gain of G.s/ D
�
A B

C D

�
is exactly kDk

1A matrix is said to be Hurwitz if it has no eigenvalues in C0 (closed right-half plane).

State-space calculus

These can be verified via simple flow-tracing:
I Addition: �

A1 B1

C2 D1

�
C
�
A2 B2

C2 D2

�
D
24A1 0 B1
0 A2 B2

C1 C2 D1 CD2

35
I Multiplication:

�
A2 B2

C2 D2

� �
A1 B1

C1 D1

�
D
24 A1 0 B1
B2C1 A2 B2D1

D2C1 C2 D2D1

35 D
24A2 B2C1 B2D1
0 A1 B1

C2 D2C1 D2D1

35
I Inverse (exists iff detD ¤ 0):�

A B

C D

��1
D
�
A � BD�1C BD�1

�D�1C D�1

�

Schur complement

If detM11 ¤ 0,

M D
�
M11 M12

M21 M22

�
D
�

I 0

M21M
�1
11 I

� �
M11 0

0 �11

� �
I M�111 M12

0 I

�
;

while if detM22 ¤ 0,

M D
�
M11 M12

M21 M22

�
D
�
I M12M

�1
22

0 I

� �
�22 0

0 M22

� �
I 0

M�122 M21 I

�
;

where

�11´M22 �M21M
�1
11 M12 and �22´M11 �M12M

�1
22 M21

are Schur complements of M11 and M22, respectively. Consequently,

detM D detM11 det�11 D detM22 det�22;

provided corresponding invertibility holds true.
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Time delay element: continuous time

y D Dh u W y.t/ D u.t � h/
uy Dh

0 t t !h t C h t !

Causality follows by

Dh˘� D ˘�ChDh ) ˘�Dh.I �˘� / D ˘� .I �˘�Ch/Dh:

Since ˘�˘�Ch D ˘� , we have that

˘�Dh.I �˘� / D .˘� �˘� /Dh D 0

Time-invariance follows by

DhS� D DhC� D S�Dh

Impulse response is clearly ı.t � h/

Transfer function of Dh

By the time shifting property of the Laplace transform:

y.t/ D u.t � h/ ” y.s/ D e�shu.s/

Thus
Dh.s/ D e�sh;

which is irrational.

Transfer function of Dh is
I entire (i.e., analytic in whole C)
I bounded in C˛ for every ˛ 2 R

Hence,
e�sh 2 H1

Time delay element: discrete time

Ny D NDh Nu W NyŒk� D NuŒk � h� NuNy NDh

0 k k !h k C h k !

By the time shifting property of the ´-transform:

NyŒk� D NuŒk � h� ” Ny.´/ D ´�h Nu.´/

Thus
NDh.´/ D 1

´h
;

which is rational (of order h, all h poles are at the origin, no finite zeros).
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Frequency response

Obviously,
e�shjsDj! D e�j!h D cos.!h/ � j sin.!h/

Has
I unit magnitude (jej!hj � 1) and
I linearly decaying phase (arg ej!h D �!h, in radians if !—in rad/sec)
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Effects of I/O delay on rational transfer functions

Consider the simplest interconnection:

L.s/ D Lr.s/e
�sh for some rational Lr.s/:

In this case L.j!/ D Lr.j!/e�j!h, meaning that

jL.j!/j D jLr.j!/j and argL.j!/ D argLr.j!/ � !h:

In other words, delay in this case
I does not change the magnitude of Lr.j!/ and
I adds phase lag proportional to !.

Effects of I/O delay: Bode diagram
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Effects of I/O delay: Nichols chart
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It’s not always so easy

If delay not I/O, frequency response plots might be much more complicated.
Consider for example the (stable) system:

G.s/ D 1 � e�2�s

2�s
; with impulse response g.t/ D 1.t/ � 1.t � 2�/

2�
;
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Why to approximate

Delay element is infinite dimensional, which complicates its treatment. It is
not a surprise then that we want to approximate delay by finite-dimensional
(rational) elements to

I use standard methods in analysis and design,
I use standard software for simulations,
I avoid learning new methods,
I . . .



What to approximate: bad news

On the one hand,
I phase lag of the delay element is not bounded (and continuous in !).

On the other hand,
I rational systems can only provide finite phase lag.

Therefore, phase error between e�sh and any rational transfer function R.s/
is arbitrarily large. Moreover, for every R.s/ there always is !0 such that

I arg e�j!h � argR.j!/ continuously decreasing function of !, 8! � !0.
Hence there always is frequency !1 such that

arg e�j!1h � argR.j!1/ D �� � 2�k i.e.,

e�j!1h

R.j!1/

This, together with the fact that je�j!hj � 1, means that
I rational approximation of pure delay, e�sh, is pretty senseless

as there always will be frequencies at which error2 is � 1 (i.e., � 100%).

2Thus, we never can get better approximation than with R.s/ D 0 . . .

What to approximate: good news

Yet we never work over infinite bandwidth. Hence, we
I need to approximate e�sh in finite frequency range

or, equivalently,
I approximate F.s/e�sh for low-pass (strictly proper) F.s/.

This can be done, since
I phase lag of delay over finite bandwidth is finite

and
I magnitude of F.j!/e�j!h decreases as ! increases,

which implies that at frequencies where the phase lag of F.j!/e�j!h large,
the function effectively vanishes.

Also, we may consider h D 1 w.l.o.g., otherwise s ! s=h makes the trick.

Truncation-based methods

General idea is to
I truncate some power series,

which could give accurate results in a (sufficiently large) neighborhood of 0.

Truncation-based methods: naı̈ve approach

Note that

e�s D e�s=2

es=2

and truncate Taylor series of numerator and denominator. We could get:

e�s �
Pn
iD0

1
iŠ2i

.�s/iPn
iD0

1
iŠ2i

si

This yields:

n 1 2 3 4

e�sh � 1� sh
2

1C sh
2

1� sh
2
� s2h2

8

1C sh
2
C s2h2

8

1� sh
2
C s2h2

8
� s3h3

48

1C sh
2
C s2h2

8
C s3h3

48

1� sh
2
C s2h2

8
� s3h3

48
C s4h4

384

1C sh
2
C s2h2

8
C s3h3

48
C s4h4

384

For n D 2 called Kautz formula. But
I becomes unstable for n > 4 !



Truncation-based methods: Padé approximation

Consider approximation

e�s � Pm.s/

Qn.s/
µ RŒm;n�.s/;

where Pm.s/ and Qn.s/ are polynomials of degrees m and n, respectively.
Taylor expansions at s D 0 of each side are

e�s D 1 � s

1Š
C s2

2Š
� s

3

3Š
C � � �

RŒm;n�.s/ D RŒm;n�.0/C
R0
Œm;n�

.0/s

1Š
C
R00
Œm;n�

.0/s2

2Š
C
R000
Œm;n�

.0/s3

3Š
C � � �

The idea of Œm; n�-Padé approximation is to find coefficients of RŒm;n�.s/ via
I matching first nCmC 1 Taylor coefficients

of these two series. If n D m, it can be shown that Pn.s/ D Qn.�s/.

Example: Œ2; 2�-Padé approximation

In this case RŒ2;2�.s/ D s2�q1sCq0
s2Cq1sCq0 and Taylor expansions are

e�s D 1 � s C s2

2
� s

3

6
C s4

24
� � � �

RŒ2;2�.s/ D 1 � 2q1
q0
s C 2q21

q20
s2 � 2.q

3
1 � q1q0/
q30

s3 C 2.q41 � 2q21q0/
q40

s4 � � � �

from which
q0 D 2q1 and

q1 � 2
4q1

D 1

6

and then q1 D 6 and q0 D 12, matching 5 coefficients.

Thus, Œ2; 2�-Padé approximation is

e�s � s2 � 6s C 12
s2 C 6s C 12 D

1 � s
2
C s2

12

1C s
2
C s2

12

:

Truncation-based methods: Padé approximation (contd)

General formula for Œn; n�-Padé approximation is

e�s �
Pn
iD0

�
n
i

�
.2n�i/Š
.2n/Š

.�s/iPn
iD0

�
n
i

�
.2n�i/Š
.2n/Š

si
D
Pn
iD0

.2n�i/ŠnŠ
.2n/Š.n�i/Š iŠ .�s/iPn

iD0
.2n�i/ŠnŠ

.2n/Š.n�i/Š iŠ si

This yields:

n 1 2 3 4

e�sh � 1� sh
2

1C sh
2

1� sh
2
� s2h2

12

1C sh
2
C s2h2

12

1� sh
2
C s2h2

10
� s3h3
120

1C sh
2
C s2h2

10
C s3h3

120

1� sh
2
C s2h2

28
� s3h3

84
C s4h4
1680

1C sh
2
C s2h2

28
C s3h3

84
C s4h4
1680

Using Routh-Hurtitz test one can prove that
I Œn; n�-Padé approximation stable for all n.

Padé approximation: example

Consider Padé approximation of 1
sC1e

�s. This can be calculated by Matlab
function pade(tf(1,[1 1],’InputDelay’,1),N).

e�s
sC1

and its 2nd and 4th order approximations Corresponding approximation errors
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Padé approximation: example (contd)

We may also compare step responses and Nichols charts

e�s
sC1

and its 2nd and 4th order approximations
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From loop shaping perspectives,
I approximation performance depends on crossover requirements.

Padé approximation: example (contd)

Increasing approximation order improves the match between step responses
of 1

sC1e
�s and its Padé approximation:

e�s
sC1

and its 50th order approximation e�s and its 50th order approximation
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Not true for the approximation of the pure delay e�s !
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State equation with input delay

Px.t/ D Ax.t/C Bu.t/ if input delayed by h���������! Px.t/ D Ax.t/C Bu.t � h/
Solution then becomes:

x.t C �/ D eA�x.t/C
Z tC�

t

eA.tC���/Bu.� � h/d�

D eA�

 
x.t/C

Z tC�

t

eA.t��/Bu.� � h/d�
!

D eA�

 
x.t/C

Z t�hC�

t�h
eA.t�h��/Bu.�/d�

!

D eA�

 
x.t/C

Z t

t�h
eA.t�h��/Bu.�/d� C

Z t�hC�

t

eA.t�h��/Bu.�/d�

!

It depends on initial “state” x.t/, future inputs over Œt; t � hC �� (if � > h),
and past inputs over Œt � h; t � (or Œt � h; t � hC �� if � < h).



“In my country there is problem. . . ” (B. Sagdiyev)

. . . and that problem is:
I x.t/ no longer accumulates the history.

This, in turn, implies that x.t/ can no longer be regarded as the “state”.

Intuitively, the “true” state vector at every time instance t should contain
I x.t/

I u.t C �/ for all � 2 Œ�h; 0�—denoted u� .t/

Checking intuition on discrete-time case

Consider
NxŒk C 1� D NA NxŒk�C NB NuŒk � h�:

This system can be thought of as serial interconnection

Nu´�h NuNx NP0.´/ NDh.´/

where

NP0.´/ D
� NA NB
I 0

�
and NDh.´/ D

266666664

0 I 0 � � � 0 0

0 0 I � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � I 0

0 0 0 � � � 0 I

I 0 0 � � � 0 0

377777775

Checking intuition on discrete-time case (contd)

Nu´�h NuNx NP0.´/ NDh.´/

Thus, for NPh.´/´ NP0.´/ NDh.´/ we have:

NPh.´/ D
� NA NB
I 0

�
266666664

0 I 0 � � � 0 0

0 0 I � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � I 0

0 0 0 � � � 0 I

I 0 0 � � � 0 0

377777775
D

266666666664

NA NB 0 0 � � � 0 0

0 0 I 0 � � � 0 0

0 0 0 I � � � 0 0
:::
:::
:::
:::
: : :

:::
:::

0 0 0 0 � � � I 0

0 0 0 0 � � � 0 I

I 0 0 0 � � � 0 0

377777777775

Checking intuition on discrete-time case (contd)

To recover the state vector, write state equation:266666664

NxŒk C 1�
NuŒk � hC 1�
NuŒk � hC 2�

:::

NuŒk � 1�
NuŒk�

377777775
„ ƒ‚ …

NxaŒkC1�

D

266666664

NA NB 0 0 � � � 0
0 0 I 0 � � � 0
0 0 0 I � � � 0
:::
:::
:::
:::
: : :

:::

0 0 0 0 � � � I
0 0 0 0 � � � 0

377777775

266666664

NxŒk�
NuŒk � h�
NuŒk � hC 1�

:::

NuŒk � 2�
NuŒk � 1�

377777775
„ ƒ‚ …

NxaŒk�

C

266666664

0

0

0
:::

0

I

377777775
NuŒk�

Thus, the state vector at time k, NxaŒk�, indeed
I includes both NxŒk� and whole input history NuŒi � in k � h � i � k � 1



State equation with input delay (contd)

Thus, the state vector of

Px.t/ D Ax.t/C Bu.t � h/

at time t is .x.t/; u� .t// 2 .Rn; fŒ�h; 0� 7! Rmg/. This implies (among many
other things) that

I initial conditions for this system are .x.0/; u� .0//,

which is also a function. For example,
I zero initial conditions should read

x.0/ D 0 and u.�/ D 0; 8�Œ�h; 0�:

There is more consistent (and elegant) way to reflect all this via state-space
description, using semigroup formalism. See (Curtain and Zwart, 1995) for
details.

State equation with output delay

Consider
Px.t/ D Ax.t/C Bu.t/

and assume that that we measure delayed x, i.e., y.t/ D x.t � h/.
Discrete counterpart looks like this:

NuNx´�h Nx NP0.´/NDh.´/

with

NPh.´/ D

266666664

0 I 0 � � � 0 0

0 0 I � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � I 0

0 0 0 � � � 0 I

I 0 0 � � � 0 0

377777775
� NA NB
I 0

�
D

266666666664

0 I 0 � � � 0 0 0

0 0 I � � � 0 0 0
:::
:::
:::
: : :

:::
:::
:::

0 0 0 � � � I 0 0

0 0 0 � � � 0 I 0

0 0 0 � � � 0 NA NB
I 0 0 0 � � � 0 0

377777777775

State equation with output delay (contd)

266666664

NxŒk � hC 1�
NxŒk � hC 2�

:::

NxŒk � 1�
NxŒk�
NxŒk C 1�

377777775
„ ƒ‚ …

NxaŒkC1�

D

266666664

0 I 0 � � � 0 0

0 0 I � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � I 0

0 0 0 � � � 0 I

0 0 0 � � � 0 NA

377777775

266666664

NxŒk � h�
NxŒk � hC 1�

:::

NxŒk � 2�
NxŒk � 1�
NxŒk�

377777775
„ ƒ‚ …

NxaŒk�

C

266666664

0

0
:::

0

0
NB

377777775
NuŒk�

Thus, the state vector at time k, NxaŒk�,
I includes whole history of NxŒi � in k � h � i � k � 1

State equation with output delay (contd)

Returning to continuous-time case, state vector of(
Px.t/ D Ax.t/C Bu.t/
y.t/ D x.t � h/

at time t is x� .t/ 2 fŒ�h; 0� 7! Rng (may be convenient to write .x.t/; x� .t//).

The
I initial condition is then the function x� .0/

and zero initial conditions would mean

x.�/ D 0; 8� 2 Œ�h; 0�:



State delay equations

If we use a P controller u.t/ D Ky.t/, the closed loop system becomes

Px.t/ D Ax.t/C BKx.t � h/:

This kind of equations called retarded functional differential equation.

If we use a D controller u.t/ D K Py.t/, the closed loop system becomes

Px.t/ D Ax.t/C BK Px.t � h/ or Px.t/ � BK Px.t � h/ D Ax.t/

This kind of equations called neutral functional differential equation.

Homogeneous LTI state equations: classification

(Lumped-delay) retarded equation:

Px.t/ D
rX
iD0

Aix.t � hi /; 0 D h0 < h1 < � � � < hr D h

(Lumped-delay) neutral equation:

rX
iD0

Ei Px.t � hi / D
rX
iD0

Aix.t � hi /; 0 D h0 < h1 < � � � < hr D h

Distributed-delay retarded equation:

Px.t/ D
Z 0

�h
˛.�/x.t C �/d�

If ˛.�/ DPi Aiı.t C hi /, we have the lumped-delay equation above.

I In all cases the “true” state is x� .t/ 2 fŒ�h; 0� 7! Rng.

Adding inputs and outputs

(Still not the most) general form:
„
Px.t/C

Z 0

�hx
�.�/ Px.t C �/d� D

Z 0

�hx
˛.�/x.t C �/d� C

Z 0

�hu
ˇ.�/u.t C �/d�

y.t/ D
Z 0

�hx

.�/x.t C �/d� C

Z 0

�hu
ı.�/u.t C �/d�

with the state “vector” .x� .t/; u� .t// 2
�fŒ�hx; 0� 7! Rng; fŒ�hu; 0� 7! Rmg�.

Important special (lumped-delay) case:

† rxX
iD0

Ei Px.t � hi / D
rxX
iD0

Aix.t � hi /C
ruX
iD0

Biu.t � hi /

y.t/ D
rxX
iD0

Cix.t � hi /C
ruX
iD0

Diu.t � hi /

with E0 D I and 0 D h0 < h1 < � � � < hmaxfrx ;rug D h.

The same in s domain (with zero initial conditions)

(Still not the most) general form:
„
s

�
I C

Z 0

�hx
�.�/e�sd�

�
X.s/ D

Z 0

�hx
˛.�/e�sd�X.s/C

Z 0

�hu
ˇ.�/e�sd�U.s/

Y.s/ D
Z 0

�hx

.�/e�sd�X.s/C

Z 0

�hu
ı.�/e�sd�U.s/

with zero initial conditions x.�/ D 0 (� 2 Œ�hx; 0�), u.�/ D 0 (� 2 Œ�hu; 0�).

Important special (lumped-delay) case:

†
s

rxX
iD0

Eie
�shiX.s/ D

rxX
iD0

Aie
�shiX.s/C

ruX
iD0

Bie
�shiU.s/

Y.s/ D
rxX
iD0

Cie
�shiX.s/C

ruX
iD0

Die
�shiU.s/

with E0 D I and 0 D h0 < h1 < � � � < hmaxfrx ;rug D h.
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Characteristic equation

Distributed-delay equation

s

�
I C

Z 0

�hx
�.�/e�sd�

�
X.s/ D

Z 0

�hx
˛.�/e�sd�X.s/C

Z 0

�hu
ˇ.�/e�sd�U.s/

(or its lumped-delay counterpart) can be rewritten as

X.s/ D ��1.s/
Z 0

�hu
ˇ.�/e�sd�U.s/ or X.s/ D ��1.s/

ruX
iD0

Bie
�shiU.s/;

where

�.s/´
Z 0

�hx

�
s.I C �.�// � ˛.�/�e�sd� or �.s/´

rxX
iD0
.sEi � Ai /e�shi

called the characteristic matrix. Then equation

detŒ�.s/�µ �.s/ D 0

called characteristic equation.

Example 1

Consider

Px.t/ D
�
0 1

0 �1
�
x.t/ �

�
0 0

k1 k2

�
x.t � h/

Then

�.s/ D s
�
1 0

0 1

�
�
�
0 1

0 �1
�
C
�
0 0

k1 k2

�
e�sh D

�
s �1

k1e�sh s C 1C k2e�sh
�

and
�.s/ D s2 C s C .k2s C k1/e�sh

Example 2

Consider

Px.t/C
�
0 0

k1 k2

�
Px.t � h/ D

�
0 1

0 �1
�
x.t/

Then

�.s/ D s
�
1 0

0 1

�
C s

�
0 0

k1 k2

�
e�sh �

�
0 1

0 �1
�
D
�

s �1
sk1e�sh s C 1C sk2e�sh

�
and

�.s/ D s2 C s C .k2s2 C k1s/e�sh



Example 3

Consider

Px.t/ D
�
0 1

0 �1
�
x.t/ �

�
k1 0

0 k2

�
x.t � h/

Then

�.s/ D s
�
1 0

0 1

�
�
�
0 1

0 �1
�
C
�
k1 0

0 k2

�
e�sh D

�
s C k1e�sh �1

0 s C 1C k2e�sh
�

and
�.s/ D s2 C s C �.k1 C k2/s C k1�e�sh C k1k2e�2sh

Quasi-polynomials

General form:

det

 
rxX
iD0
.sEi � Ai /e�s Qhi

!
D P.s/C

X
i

Qi .s/e
�shi

for polynomials P.s/ 6� 0 and Qi .s/ (9j , Qj .s/ 6� 0) and delays hi > 0.

Classification by delay pattern:

1. single-delay: P.s/CQ.s/e�sh
2. commensurate-delay: P.s/CPi Qi .s/e�sih

3. incommensurate-delay: if at least one of hi
hj

is irrational

Classification by principal degrees of s:

1. retarded: degP.s/ > degQi .s/, 8i
2. neutral: degP.s/ � degQi .s/, 8i , and 9j s.t. degP.s/ D degQj .s/

3. advanced: 9j s.t. degP.s/ < degQj .s/

Roots of quasi-polynomials

Apparently, the simplest example is

1C ke�sh; k > 0:

It is readily seen that it has
I infinite number of roots,

those at

s D ln k

h
C j

.1C 2i/�
h

; i 2 Z

(all these roots are in NC0 iff k � 1 and in C n NC0 iff 0 < k < 1).

This is generic property, i.e.,
I quasi-polynomials have infinite number of roots.

Roots of quasi-polynomials: where are they located

Some fundamental properties:

1. there is a finite number of roots within any finite region of C
(meaning there are no accumulation points for roots of quasi-polynomials)

2. roots for large values of jsj belong to a finite number of areasˇ̌
Re s C ˇi lnjsj

ˇ̌
< 


for some 
 > 0 and ˇi 2 R. For
I retarded quasi-polynomials ˇi > 0
I neutral quasi-polynomials ˇi D 0
I advanced quasi-polynomials ˇi < 0

3. retarded quasi-polynomials have a finite number of roots in C˛ for all ˛



Rightmost root: retarded case

Consider

Px.t/ D
rxX
iD0

Aix.t � hi /; x� .0/ D �.�/

and let �.s/ be its characteristic quasi-polynomial. Define

�r ´ maxfRe s W �.s/ D 0g

Theorem
For any � > �r there is a � > 0 such that

kx.t/k � � e�t max
�2Œ�h;0�

k�.�/k; 8t 2 RC

for all continuous initial conditions �.

Rightmost root: neutral case

Consider

rxX
iD0

Ei Px.t � hi / D
rxX
iD0

Aix.t � hi /; x� .0/ D �.�/

and let �.s/ be its characteristic quasi-polynomial. Define

�r ´ supfRe s W �.s/ D 0g

Theorem
For any � > �r there is a � > 0 such that

kx.t/k � � e�t max
�2Œ�h;0�

.k�.�/k C k P�.�/k/; 8t 2 RC

for all continuous and differential initial conditions �.
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Simple special case

Special (SISO single-delay) case:

G.s/ D N0.s/

M0.s/CMh.s/e�sh
;

for some real polynomials M0.s/, Mh.s/, N0.s/ such that degM0 � degMh

and degM0 � degN0. This transfer function
I is proper
I is analytic on C n�, where � is set of roots of M0.s/CMh.s/e

�sh D 0
I has only poles as its singularities

To further simplify matters, assume also that there is
I no pole / zero cancellations in G.s/



Asymptotic poles location

Let 
a ´ Pa.1/, where Pa ´ Mh
M0

(j
aj is the high-frequency gain of Pa).

Theorem
As jsj ! 1, poles of G.s/ are asymptotic to points with Re s D lnj
aj

h
.

Proof.
Poles are solutions of the characteristic equation M0.s/CMh.s/e

�sh D 0 or

esh D �Pa.s/ D �
a CO
�
1
s

�
By Rouché’s arguments, as jsj ! 1 roots approach solutions of esh D �
a,
i.e., sh D ln.�
a/C j2�k, k 2 Z. Thus,

sh!
(
lnj
aj C j2k� if 
a < 0

lnj
aj C j.2k C 1/� if 
a > 0

which for 
a ¤ 0 approaches vertical line with Re s D lnj
aj and for 
a D 0
approaches Re s D �1.

j
aj < 1
In this case, G.s/ has at most finitely many unstable poles. Moreover, the
following result can be formulated:

Lemma
Let j
aj < 1. Then G 2 H1 iff G.s/ has no poles in NC0.

Proof (outline).
If G.s/ has a pole in NC0, it does not belong to H1.
If G.s/ has no poles in NC0, there is a bounded S � NC0 such that in NC0 n S

1. M0.s/ has no roots

2. jPa.s/j < 
b and
ˇ̌
N0.s/
M0.s/

ˇ̌
< 
c for some j
aj � 
b < 1 and 
c > 0.

Thus, jG.s/j is bounded in S (no poles and the set is bounded) and

jG.s/j D jN0.s/=M0.s/j
j1C Pa.s/e�shj

<

c

1 � 
b
<1; 8s 2 NC0 n S:

Hence, G.s/ is analytic and bounded in C0.

j
aj > 1
In this case, G.s/ has infinitely many unstable poles. Hence, the following
result can be formulated:

Lemma
Let j
aj > 1. Then G 62 H1.

Proof.
Obvious.

j
aj D 1: example 1

Let G.s/ D 1
sC1C.sC2/e�s . This transfer function

I has infinitely many poles in C0, hence unstable.

To see this, consider its characteristic equation at s D � C j!:

e�ej! D �� C j! C 2
� C j! C 1 H) e� D

s
.� C 2/2 C !2
.� C 1/2 C !2

Right-hand side here > 1 iff � > �3
2
. Hence, whenever � > �3

2
, e� > 1 or,

equivalently, � > 0. Since roots accumulate around � D 0, there might be
only a finite number of roots in � � �3

2
.



j
aj D 1: example 2

Let G.s/ D 1
sC1Cse�s . This transfer function

I has no poles in NC0.

To see this, consider its characteristic equation at s D � C j!:

e��e�j! D �� C j! C 1
� C j!

H) e�� D
ˇ̌̌̌
1C 1

� C j!

ˇ̌̌̌
�
ˇ̌̌̌
1C �

�2 C !2
ˇ̌̌̌

If � D 0, 1 D 1C 1=j!j: unsolvable. If � > 0, e�� � 1: contradiction.

j
aj D 1: example 2 (contd)

We know that there is a sequence fskg 2 C n NC0 of poles of G.s/ satisfying

sk C 1C ske�sk D 0; with limk!˙1jskj D 1 W

Then

G.�sk/ D 1

1 � sk � skesk
D 1

1 � sk C s2k=.1C sk/
D 1C sk;

so that jG.�sk/j ! 1Cj2kC1j� . Thus, G.s/ unbounded on f�skg 2 C0, so
I G 62 H1 and hence unstable.

j
aj D 1: example 3

Let G.s/ D 1
.sC1/.sC1Cse�s/ . In this case

I G 2 H1
(in fact, kG.s/k1 D 2). Hence,

I G.s/ is stable.

In general, if j
aj D 1, the transfer function N0.s/

M0.s/CM1.s/e�sh 2 H
1 only if3

degM0.s/ � degN0.s/C 2:

3For proof and further details see “H1 and BIBO stabilization of delay systems of neutral
type,” by Partington and Bonnet, Systems & Control Letters, 52, pp. 283–288, 2004.

j
aj D 1: on the safe side

Thus, we saw that in this case G.s/ might be stable. Yet this
I stability is fragile (extremely non-robust).

Indeed,
I infinitesimal increase of jPa.1/j leads to instability.

It is thus safe to regard such systems as practically unstable.



Internal stability and high-frequency gain

wu

wyyu

Pr.s/e�sh

C.s/

This feedback system called internally stable if transfer matrix
�
wy
wu

� 7! �
y
u

�
,

1
1�Pr.s/C.s/e�sh

�
1 Pr.s/e�sh

C.s/ Pr.s/C.s/e�sh

�
2 H1

Its .1; 1/ entry, the sensitivity function, is of the form

1
1�Pr.s/C.s/e�sh

µ 1
1�Lr.s/e�sh

D ML.s/
ML.s/�NL.s/e�s µ

N0.s/
M0.s/�M1.s/e�s ;

for which degM0.s/ D degN0.s/ (6� degN0.s/C 2). Thus, if jLr.1/j D 1,
I this system cannot be internally stable.

Summary

So far we learned that
I if j
aj < 1, G 2 H1 iff it has no poles in NC0,
I if j
aj > 1, G 62 H1 because it has infinitely many poles in C0

I if j
aj D 1, G.s/ practically unstable

Important point:
I classical “no poles in NC0” stability criterion might fail

Slight modification doing the trick

Theorem
Transfer function

G.s/ D N0.s/

M0.s/CMh.s/e�sh
; degM0 � max

˚
degMh;degN0

	
;

is (practically) stable iff 9˛ < 0 such that G.s/ has no poles in NC˛.

This result says that in time-delay systems (both retarded and neutral)
I poles play essentially the same role as in the rational case,

we just should slightly redefine stability region ( NC0 ! NC˛, for some ˛ < 0).
This, in turn, makes it possible to

I extend classical stability analysis methods to time-delay systems.

We still may use NC0, yet make sure that
I no pole chain is asymptotic to Re s D 0.


	Course info
	Time-delay systems in control applications
	System-theoretic preliminaries
	Basic properties
	Delay systems in the frequency domain
	Rational approximations of time delays
	State space of delay systems
	Modal properties of delay systems
	Stability of transfer functions and roots of characteristic equations

