
Lund, 8 December 2011

CasADi tutorial –
Advanced concepts in CasADi

Joel Andersson Johan Åkesson

Department of Electrical Engineering (ESAT-SCD) &
Optimization in Engineering Center (OPTEC)

Katholieke Universiteit Leuven

OPTEC (ESAT – SCD) – Katholieke Universiteit Leuven



Outline

1 Advanced symbolics, the MX class

2 Optimal control with CasADi

3 What else is in CasADi?

4 Help & support

5 Exercise



Advanced symbolics, the MX class

Recall – SX symbolics

On Tuesday:

Created symbolic variables using the function: ssym("name",n,m)

Returns an n-by-m SXMatrix with symbolic scalar variables
SXMatrix is a general sparse matrix type
Elements of SXMatrix can also be expressions or constants

We used SXMatrix expressions to define SXFunction functions

f = SXFunction([x1,x2,x3],[y1,y2])

SXFunction was part of a larger family of ”functions”

SXFunction can be evaluated (numerically and) symbolically

[y1,y2] = f.eval([x1,x2,x3])

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Advanced symbolics, the MX class

SX symbolics – what was ’cool’?

Look-and-feel of CAS types . . . (cf. Maple, Symbolic Toolbox for Matlab)

. . . but as ”economic” and fast as AD-types (e.g. adouble in ADOL-C)

≈ 5 times slower than optimized C code

Generate complete Jacobians and Hessians

Sparsity exploitation

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Advanced symbolics, the MX class

SX symbolics – how it works

Expressions are represented internally as
directed acyclic graphs of simple unary &
binary operations

E.g.: +,−, ∗, sin, cos, etc.
As in AD tools (ADOL-C, CppAD)

When we evaluate a function symbolically
(e.g. with eval), we copy all the new nodes
to a new expression

x

*

y

sin

+

f(x,y)

Example: f (x , y) =
x y + sin(x y)

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Advanced symbolics, the MX class

SX – limitations

Expression graphs get very large

E.g.: If ODE/DAE requires 106 operations and we wish to
evaluate it in 4 · 20 time points, NLP constraint function graph
might contain some 108 nodes, it’s Jacobian 1011 etc.
Conventional AD-tools tackle this problem with checkpointing

Not all functions can be expanded in elementary operations

ODE/DAE integrator
External C function

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Advanced symbolics, the MX class

MX symbolics

CasADi’s solution: a second, more general graph formulation

Elementary operations in graph are: multiple sparse matrix-valued
input, multiple sparse matrix-valued output

E.g. Function evaluation, matrix multiplication, . . .
⇒ graph can contain many calls to the same function!

Automatic differentiation with MX

Uses chain rule for matrix operations

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Advanced symbolics, the MX class

MX symbolics - syntax

Create symbolic variables using the function: msym("name",n,m)

Returns an n-by-m MX symbolic expression
MX is a general sparse expression
(Almost) the same syntax as SXMatrix

We can use MX expressions to define MXFunction functions

Syntax: f = MXFunction([x1,x2,x3],[y1,y2])

MXFunction uses the same syntax as SXFunction

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Advanced symbolics, the MX class

Why not only use MX then?

Technically yes, but:

Extra generality = slower speed

Less features

Currently not as stable

You cannot mix SX and MX graphs

But an MX graph can contain calls to an SXFunction

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Advanced symbolics, the MX class

The user decides whether to work with SX or MX

Idea:

SX for low-level operations – called often
MX for high-level operations – the ”glue”

Expanding MX ⇒ SX

An MXFunction which does not contain calls to e.g. ODE
integrators, can be automatically converted into an
SXFunction.

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Advanced symbolics, the MX class

Exercise, part 1:

Working with MX symbolics

⇒ You need it for OCP

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Outline

1 Advanced symbolics, the MX class

2 Optimal control with CasADi

3 What else is in CasADi?

4 Help & support

5 Exercise



Optimal control with CasADi

Recall: Optimal control problem (OCP)

minimize

∫ T

t=0

L(x , u, p), dt + E (x(T ), p)

subject to
ẋ(t) = f (x(t), u(t), p), t ∈ [0,T ]
x(0) = x0(p)
xmin ≤ x(t) ≤ xmax, t ∈ [0,T ]
umin ≤ u(t) ≤ umax, t ∈ [0,T ]
pmin ≤ p ≤ pmax

(1)

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Optimal control with CasADi

Optimal control methods

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Optimal control with CasADi

Optimal control with CasADi

CasADi can be used efficiently for . . .

Direct single-shooting
Direct multiple-shooting
Direct collocation
Pseudospectral methods
Indirect methods

Recommended work flow:

Use an existing OCP solver (⇒ JModelica.org) . . .
. . . or modify an example in CasADi’s examples collection

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Outline

1 Advanced symbolics, the MX class

2 Optimal control with CasADi

3 What else is in CasADi?

4 Help & support

5 Exercise



What else is in CasADi?

Parallelization

Normal (serial) function call (x1, x2, x3 ∈ MX):
[y1,y2] = f.call([x1,x2,x3])

Parallel function call:
[[y11,y12],[y21,y22]] = \

f.call([[x11,x12,x13],[x21,x22,x23]])

Parallel function evaluation ⇒ parallel Jacobian evaluation

Uses OpenMP or (soon) MPI

CasADi will ensure that evaluation is thread-safe

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



What else is in CasADi?

C code generation

Generates very efficient C code

Currently only for SX, MX possible extension

The C code can be compiled and loaded during execution

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Outline

1 Advanced symbolics, the MX class

2 Optimal control with CasADi

3 What else is in CasADi?

4 Help & support

5 Exercise



Help & support

What do I do if . . .

. . . discover a bug?
⇒ check the FAQ, isolate the issue, post a simple script to forum

. . . my solution is very slow
⇒ check the speed-up tricks, isolate the issue, post to forum

. . . IPOPT does not converge
⇒ read the IPOPT docs, mail their mailing list

More support

Happy to do joint projects

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Help & support

Other existing interfaces

ODE/DAE integrators: CVODES/IDAS, ACADO Integrators, GSL

NLP solvers: IPOPT, KNITRO, (SNOPT) . . .

QP solvers: qpOASES, OOQP, (CPLEX)

Newton-method: KINSOL

Linear solvers: LAPACK, CSparse, (SuperLU), . . .

Adding more interfaces

(Usually) not much work

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Help & support

Optimal control modelling framework

Allows symbolic reformulation of OCP:s

Sort states & equations
Eliminating algebraic states (DAE ⇒ ODE)

Import models from Modelica via XML

FMI – standard format, supported by different tools
Currently uses the modified FMI format used in JModelica.org

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson



Outline

1 Advanced symbolics, the MX class

2 Optimal control with CasADi

3 What else is in CasADi?

4 Help & support

5 Exercise



Exercise

Exercise

Get some experience using MX symbolics

Implement direct single-shooting and direct multiple-shooting

Modify Van-der-Pol oscillator example

If time permits, have a look at direct collocation example

CasADi tutorial – Advanced concepts in CasADi — Joel Andersson Johan Åkesson


	Advanced symbolics, the MX class
	Optimal control with CasADi
	What else is in CasADi?
	Help & support
	Exercise

