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Inaugurated by D. Bernoulli (1700-1782), the analysis of epidemics and their dis-
semination have been studied by various mathematicians. The bene�ts from epidemic
modelling are three-fold: understanding mechanisms of spread of epidemics, predicting
their future course and developing strategies to control them.

Recently, epidemic algorithms (also known as gossip algorithms) have been proposed
as means to disseminate information in large scale settings, such as the Internet, or
�Peer-to-Peer� networks. Such algorithms operate by letting desired information spread
in a distributed system as an epidemic would spread throughout a group of susceptible
individuals. Their study has provided a renewed impetus in the study of epidemics.

This course will give an introduction to deterministic and stochastic models of epi-
demics; with a special focus on coupling methods, Poisson approximation and branching
processes. This will be illustrated by examples of human diseases, spread of rumours and
dissemination of information.
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Chapter 1

Di�erential equation approximation

1.1 Introduction

Di�erential equations and Markov procecsses are the basic models of dynamical systems
in a deterministic and, respectively, probabilistic context. Since the analysis, both math-
ematical and computational, of di�erential equations is often more feasible and e�cient,
it is of interest to understand in some generality when the sample paths of a Markov
chain can be guaranteed to lie, with high probability (whp), close to the solution of a
di�erential equation.

We are interested in certain families of jump processes depending on a parameter n
usually interpreted as the total population size. In what follows we approximate certain
jump Markov processes as the parameter n becomes large. It is worth mentioning that
the techniques presented here can be applied to a wide range of problems such as epidemic
models, models for chemical reactions and population genetics, as well as other processes.
More precisely the states of these systems can be normalised and interpreted as measuring
population densities.

1.2 Kurtz's theorem

We begin with the de�nition of a density dependent family of Markov processes. Consider
(el)l=1,...,I such that el ∈ Zd I ∈ N, and let βl : Rd → R+, for l ∈ {1, . . . , I}. We de�ne
the Markov jump process X on Zd with jump direction (el)l=1,...,I and transition rates
λx,y = β(el)(x), x ∈ Z

d, and y = x+ el, i.e.

P(X(t+ h) = x+ el | X(t) = x) = hβl(x/n) + o(h)

P(X(t+ h) = x | X(t) = x) = 1− h
∑
l∈I

βl(x/n) + o(h) .

Let (Nl)l∈Zd be independent standard Poisson processes. Then we can construct the
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6 CHAPTER 1. DIFFERENTIAL EQUATION APPROXIMATION

process (X(t))t∈R as follows

X(t) = X(0) +
I∑

l=1

el Nl

(∫ t

0
βl

(
X(s)/n

)
ds
)
. (1.1)

Indeed, ifX(t) = x, then there will be a jump inNl

(∫ t
0 βl

(
X(s)/n

)
ds
)
during (t, t+h)

with probability hβl(x/n) + o(h).
Now let F (x) =

∑I
l=1 elβl(x) and Xn(t) = X(nt)/n, we have

Xn(t) = Xn(0) +
I∑

l=1

1
n
el N l

(
n

∫ t

0
βl

(
Xn(s)

)
ds
)
+
∫ t

0
F (Xn(s))ds , (1.2)

where N l(u) = Nl(u)− u is a centered Poisson process.

Theorem 1.2.1 (Kurtz's theorem). Suppose that maxl=1,...,I |el| = e ∈ (0,∞) and

max
l=1,...,I

sup
x∈Rd

βl(x) = β ,

is �nite and that there exists a non-negative constant M such that F is M -lipschitz, i.e.

|F (x)− F (y)| ≤M |x− y| , ∀x, y.

Assume that limn→∞Xn(0) = x(0), a.s. and let x : R → R
d be the solution to the

integral equation

x(t) = x(0) +
∫ t

0
F
(
x(s)

)
ds . (1.3)

Then, almost surely,

P( sup
0≤s≤t

|Xn(s)− x(s)| ≥ ε) ≤ 2e−nTβh
(

εe−MT

2ITβe

)
,

where h(t) = (1 + t) log(1 + t)− t. Moreover,

lim
n→∞

sup
0≤s≤t

|Xn(s)− x(s)| = 0, a.s. (1.4)

Kurtz's work provides a law of large numbers for density dependent families. Indeed
imagine starting both the deterministic and stochastic system from the same point for
a small period of time. Since the jump rates given by F are initially the same, they
will have nearly the same behaviour. Now suppose that if two points are close in the
stochastic system then their transition rates are also close, due to the Lipschitz condition.
Therefore even after the two processes separate, if they remain close, they will still have
nearly the same behaviour. We now give a proof for Kurtz's theorem.

Lemma 1.2.1: Let N be a standard Poisson process. For ε > 0 and T > 0

P( sup
0≤t≤T

| N (t)− t| ≥ ε) ≤ 2e−Th(ε/T ) ,

where h(t) = (1 + t) log(1 + t)− t.
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Proof. Let θ > 0, we have

P( sup
0≤t≤T

| N (t)− t| ≥ ε) ≤ P( sup
0≤t≤T

(N (t)− t) ≥ ε) + P( sup
0≤t≤T

(t−N (t)) ≥ ε)

= P( sup
0≤t≤T

eθ(N (t)−t) ≥ eθε) + P( sup
0≤t≤T

eθ(t−N (t)) ≥ eθε) .

Noting that both (N (t)−t)t≥0 and (t−N (t))t≥0 are martingales, we have by Jensen's
inequality that the processes (eθ(N (t)−t))t≥0 and (eθ(t−N (t)))t≥0 are non-negative sub-
martingales. Therefore, by applying Doob's inequality, we obtain that

P(eθ(N (t)−t) ≥ eθε) ≤ e−θεE(eθ(N (T )−T ))
P(e−θ(N (t)−t) ≥ eθε) ≤ e−θεE(e−θ(N (T )−T )) . (1.5)

We are going to focus our attention on the submartingale (eθ(N (t)−t))t≥0 for the bound
in (1.5) can be derived following the same lines,

P(eθ(N (t)−t) ≥ eθε) ≤ e−θ(ε+T )E(eθN (T ))

≤ e−θ(ε+T )eT (eθ−1)

= exp
(
−θ(ε+ T ) + T (eθ − 1)

)
.

By optimising −θ(ε + T ) + T (eθ − 1) over the positive parameter θ, we easily see that
θ = log (1 + ε/T ) realises the minimum. Hence,

P( sup
0≤t≤T

(N (t)− t) ≥ ε) ≤ e−Th(ε/T ) ,

where h(t) = (1 + t) log (1 + t)− t. Similarly, one can derive that

P( sup
0≤t≤T

(t−N (t)) ≥ ε) ≤ e−Th(−ε/T ) ,

and we conclude combining these bounds and the fact that h(−x) ≥ h(x), for x ≥ 0.

Proof. First, note that

|Xn(t)−x(t)| ≤ |Xn(0)−x(0)|+
∫ t

0
|F
(
Xn(s)

)
−F
(
x(s)

)
|ds+

I∑
l=1

|el|
n
|N
(
n

∫ t

0
βl

(
Xn(s)

)
ds
)
.

Using the fact that limn→∞Xn(0) = x(0), a.s. and that F is M -Lipschitz, we have, for
large n

|Xn(t)− x(t)| ≤ ε+M

∫ t

0
|Xn(s)− x(s)|+

I∑
l=1

1
n
εn,l(t), a.s ,

where εn,l(t) = |el| .
∣∣∣N(n ∫ t

0 βl

(
Xn(s)

)
ds
)∣∣∣.



8 CHAPTER 1. DIFFERENTIAL EQUATION APPROXIMATION

Thence,

|Xn(t))− x(t)| −M

∫ t

0
|Xn(s))− x(s)|ds ≤ ε+

I∑
l=1

1
n
εn,l(t) . (1.6)

Applying Lemma 1.2.1, we can derive the following bound,

P
(

sup
0≤t≤T

I∑
l=1

1
n
εn,l(t) ≥ ε

)
≤ P( sup

0≤t≤nTβ

Ie|N (t)| ≥ nε)

≤ 2e−nTβh
(

ε
ITβe

)
(1.7)

(1.8)

Combining Lemma 1.2.1 and (1.7) yields for large n

P
(

sup
0≤t≤T

|Xn(t))− x(t)| −M

∫ t

0
|Xn(s))− x(s)|ds ≥ 2ε

)
≤ 2e−nTβh

(
ε

ITβe

)
.

By Gronwall's Lemma applied to the function |Xn(t))− x(t)| we conclude that

P
(

sup
0≤t≤T

|Xn(t)− x(t)| ≥ 2εeMT
)
≤ 2e−nTβh

(
ε

ITβe

)
,

or alternatively,

P
(

sup
0≤t≤T

|Xn(t))− x(t)| ≥ ε
)
≤ 2e−nTβh

(
εe−MT

2ITβe

)
.

Hence
∑

n∈NP
(
sup0≤t≤T |Xn(t))− x(t)| ≥ ε

)
<∞ and the almost sure convergence

in (1.4) follows immediately from (1.3) and Borel-Cantelli lemma.

1.3 Applications

1.3.1 Logistic model

The populations consists of only susceptible and infectives. A susceptible that is infected
will stay infectious inde�nitely. This model is usual referred to as the logistic model of
population growth.

In this context n can be seen as the area of a region occupied by a certain population.
If the population size is k then the population density is k/n. We assume that birth and
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deaths occur singly with intensities proportional to the population size. More precisely
the intensities are given by

P
(
Xn(t+ h) = k + 1 | Xn(t) = k

)
= kλ

(k
n

)
P
(
Xn(t+ h) = k − 1 | Xn(t) = k

)
= kµ

(k
n

)
If we let λ(x) = a and µ(x) = b + cx, we recover the deterministic logistic model given
by

d

dt
x = (a− b)x− cx2 .

Alternatively, one can suppose that we have a closed population of size n. Let x(t) and
y(t) denote the number of susceptibles and infectives at time t. Hence x(t) + y(t) = n
and we assume that y(0) ≥ 1. Then assuming that the population is homogeneously
mixing, i.e. a given individual has contact with any other individual in the population,
we have

dy

dt
= βxy = βy(n− y) , (1.9)

where β is the infection rate. This di�erential equation known as the logistic growth
equation can be transformed into

dy

y(n− y)
=
(1
y

+
1

n− y

)dy
n

= βdt ,

integrating,

log
y(t)

n− y(t)
− log

y(0)
n− y(0)

= βnt ,

or alternatively

y(t) =
y(0)n

y(0) + (n− y(0))e−βnt
.

First notice that as expected when t goes to ∞, y(t) → n, meaning that all individual
become infected, causing the end of the epidemic.

Moreover we can derive the actual time T1 when all the individuals are infected given
by

T1 = inf{t : y(t) > n− 1} ,

which solves the following equation, since y is increasing,

y(0)n
y(0) + (n− y(0))e−βnT1

= n− 1 ,

and

T1 =
1
βn

log
((n− 1)(n− y(0)

y(0)

)
.
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1.3.2 Contact model

Denote by Yn(t) the number of infectives at time t. Then Yn is a simple continuous time
birth and death process having the following transitions

P
(
Yn(t+ h) = k + 1 | Yn(t) = k

)
= λk

n− k

n
)

P
(
Yn(t+ h) = k − 1 | Yn(t) = k

)
= γk

Applying the above result, we have

dy

dt
= λ(1− y)y − γ .

or (1
y

+
λ

(λ− γ)− λy

)
dy = (λ− γ)dt ,

integrating

log
y(t)

(λ− γ)− λy(t)
− log

y(0)
(λ− γ)− λy(0)

= (λ− γ)t ,

alternatively

y(t) =
(λ− γ)e(λ−γ)ty(0)

(λ− γ)− λy(0)(1− e(λ−γ)t)
.

Hence

• if λ > γ, then y(t) → (1− γ
λ) as t→∞,

• while if λ < γ, then y(t) → 0 as t→∞.

1.3.3 General epidemic

We assume that initially there are m infectives ad n scuceptibles. The infection period
of di�erent infectives are i.i.d. 
During its infectious period an infective makes contact
with a given individual at the time points of a time homogeneous Poisson process with
intensity λ/n 1. Once its infectious period terminated an individual is removed and plays
no further role in the epidemic spread.

We are now going to derive a triangular system of equations for Pn = (Pn
1 , . . . , P

n
n ),

where Pn
k is the probability that k of the initial susceptibles are ultimately infected.

Theorem 1.3.1. Consider the SIR epidemic En,m(λ, I). Denote by Pn
k the probability

that the �nal size of the epidemic is equal to k. Then

l∑
k=0

(
n− k

l − k

)
Pn

k[
φ
(

λ(n−l)
n

)]k+m
=
(
n

l

)
, 0 ≤ l ≤ n .

1in order to keep the rate at which a given infective makes contact with other (initially susceptible)
individuals constant equals λ, independently of the size of the population.
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Proof. Recall that Z be the �nal size of the epidemic, an de�ne A as the total pressure
of the epidemic, i.e.

A =
λ

n

∫ ∞

0
Y (u)du =

λ

n

Z∑
j=−(m−1)

Ij .

De�ne φ(θ) = E(e−θI) the Laplace transform of I. Then

(φ(λθ/n))n+m = E
[
exp

(
−λθ
n

n∑
j=−(m−1)

Ij

)]

= E
[
exp

(
−θ
(
A+

λ

n

n∑
j=Z+1

Ij

))]
= E

[
e−θA(φ(λθ/n))n−Z

]
,

where the last identity follows since {Ij , j ≥ Z + 1} is independent of Z and A. This
yields the following Wald's identity

E
[ e−θA

(φ(λθ/n))Z+m

]
= 1 , θ ≥ 0 . (1.10)

We are now in position to derive the system of equations for Pn. To this end, we need
to introduce some more notations. First let [k] = {1, . . . , k} and note that if we denote
by Pn

[k], then by symmetry Pn
k =

(
n
k

)
Pn

[k]. Now �x 0 ≤ k ≤ l ≤ n. the event that

an epidemic within [n] infects precisely the set [k] is the same as the event that a sub-
epidemic within [l] infects precisely [k] and that these k new infectives together with the
initial m infectives fail to infect the set [n] [l]. It follows that

Pn
[k] = P l

[k]E[e−Al(n−l)|Z l = k] ,

where Z l and Al are respectively the �nal size of the sub-epidemic and the total epidemic
pressure within [l]. This in turn is equivalent to(

l
k

)
Pn

k(
n
k

) = P l
kE[e−Al(n−l)|Z l = k] . (1.11)

Using Wald's identity (1.10) with θ = n− l and conditioning on the �nal size Z l, we get

l∑
k=0

P l
kE[exp (−Al(n− l))|Z l = k]

[φ(λ(n− l)/n)]k+m
= 1 . (1.12)

Combining (1.11) and (1.12) gives us

l∑
k=0

(
l
k

)
Pn

k(
n
k

)
[φ(λ(n− l)/n)]k+m

= 1 .

We conclude by noticing that
(

l
k

)
/
(
n
k

)
=
(
n−k
l−k

)
/
(
n
l

)
.
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If the infectious period has the lack-of-memory property (the infectious period Iis
exponential with intensity γ for example) then the process (Xn, Yn), where Xn(t) and
Yn(t) is the number of susceptibles and the number of infectives, respectively, at time
t, is a Markov process. Then the process (X,Y ) is governed by the following transition
intensities

P
(
(Xn(t+ h), Yn(t+ h)) = (i− 1, j + 1) | (Xn(t), Yn(t)) = (i, j)

)
= hλ

ij

n
+ o(h)

P
(
Xn(t+ h), Yn(t+ h)) = (i, j − 1) | (Xn(t), Yn(t)) = (i, j)

)
= hγj + o(h) .

Let Xn(0) = n and Yn(0) = µnThence the deterministic solution that approximates the
trajectory of (Xn, Yn) is governed by the the following pair of di�erential equations

dx

dt
= −λxy , x(0) = 1

dy

dt
= λxy − γy , y(0) = µ .

This di�erentiaConsider a general equation was the �rst deterministic epidemic model
presented by Kermack and McKendrick in 1927.

Theorem 1.3.2 (Kermack and McKendrick (1927)). Consider the general epidemic
model evolving according to

dx

dt
= −λxy , x(0) = 1

dy

dt
= λxy − γy , y(0) = µ

dz

dt
= γy , z(0) = 0

• When the infection ultimately ceases spreading, a positive number x∞ of susceptibles
remain uninfected, and the total number z∞ od individuals ultimately infected and
removed equals n− x∞ and it is the unique root of the equation

n− z∞ = x(0)e−z∞/rho , (1.13)

where ρ = γ/λ is the relative removal rate, and y(0) < z∞ < n.

• A major outbreak occurs if and only if dy
dt (0) > 0; this happens only if the initial

number of susceptibles x(0) > ρ.

• It x(0) = ρ + ν, and if the initial number of infectives y(0) is small relative to ν,
then the �nal number of susceptibles left in the population is approximately ρ − ν
and d

dtx is roughly 2ν

1.3.4 Rumour models



Chapter 2

Galton-Watson branching processes

2.1 Introduction

Model introduced by Sir Francis Galton in 1873. Characterised by o�spring distribution
on N, {pk}k∈N. Starting from one individual at generation 0, note Zn: number of
individuals at generation n. Then:

Zn =
Zn−1∑
i=1

ξn,i,

where ξn,i: number of o�spring from i-th individual of n−1-th generation. The {ξi,n}i,n∈N
are i.i.d., distributed according to {pk}.

2.2 Depth-�rst view

Draw the tree, as in Figure 2.1, where there is one edge from each individual to each
of its o�spring. Call T the corresponding tree, rooted at the ancestor. Conditionally
on Z1 (the number of daughters of the ancestor), T is obtained by connecting the root
to the individual roots of Z1 rooted trees, T1, . . . , TZ1 , that are mutually independent,
and distributed as T . Note pext the extinction probability, i.e. the probability that after
some �nite n, Zn = 0. Note |T | the number of nodes of a tree T . We thus have

pext = P(|T | <∞)
=
∑∞

k=0 pkP(|T1| <∞, . . . , |Tk| <∞)
=
∑∞

k=0 pkp
k
ext.

Thus, de�ning φ(s) :=
∑

k∈N pks
k, the characteristic function of the o�spring distribu-

tion, we have

pext = φ(pext). (2.1)

13
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Figure 2.1: Galton-Watson tree

2.3 Breadth-�rst view

i.e., look at process generation after generation. De�ne

φn(s) := E[sZn ].

Then:

φn(s) = E
[
s
PZn−1

i=1 ξi,n

]
= φn−1 (φ(s)) . (2.2)

This will be used to show the following:

Theorem 2.3.1. If p0 = 0, then pext = 0. Assume thus p0 > 0.
If E[ξ] ≤ 1, then pext = 1. If E[ξ] > 1, pext is the unique solution in ]0, 1[ of Equation
(2.1).

Proof. Assume p0 > 0. φ is convex, and increases from p0 to 1 as s goes from 0 to 1.
The slope of s→ φ(s) at s = 1 is E[ξ]. Thus, if E[ξ] < 1, the graph of φ is strictly above
the line y = x on [0, 1[. The unique root to (2.1) in [0, 1] is thus pext = 1.

If E[ξ] = 1, then φ is strictly convex; it is strictly above its tangent at s = 1 on [0, 1[
and again the unique root of (2.1) on [0, 1] is pext = 1.

If E[ξ] > 1, necessarily the graph of φ crosses the line y = x in ]0, 1[, at one and only
one point; denote it p∗. Let pext,n = P(Zn = 0). This is the probability that extinction
has occured in less than n generations. By monotone convergence, pext,n → pext as
n → ∞. Note that pext,n = φn(0), and thus by (2.2), pext,n = φ(pext,n−1). Using
pext,0 = 0, it follows by induction that pext,n ≤ p∗. Thus necessarily,

lim
n→∞

pext,n = pext ≤ p∗.

Thus pext must coincide with p∗.

De�ne Fn = σ(Z1, . . . , Zn). Then (exercise):

E[Zn|Fn−1] = (E[ξ])Zn−1, n > 0.

Equivalently,
Mn := (E[ξ])−n Zn (2.3)

is a martingale. Recall:

De�nition 2.3.1. A family {Zs}s∈S of random variables, indexed by some arbitrary set
S, is equi-integrable if:

lim
a→+∞

sup
s∈S

E
(
|Zs|1|Zs|>a

)
= 0.
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Lemma 2.3.1: A su�cient condition for equi-integrability of {Zs}s∈S is that, for some
ε > 0,

sup
s∈S

E
(
|Zs|1+ε

)
< +∞.

Proof. Note that:

E
(
|Zs|1|Zs|>a

)
≤ E

(
|Zs|1+ε

)
a−ε.

Theorem 2.3.2. (martingale convergence theorem) A discrete time martingale
{Mn}n≥0 is such thatMn converges almost surely, as n→∞, to a limiting random vari-
able M∞. Furthermore, if the family of random variables {Mn}n>0 is equi-integrable,
one has the identity

Mn = E (M∞|Fn) .

(for a proof see XXX). Application to �branching martingale� (2.3): for subcritical
branching (i.e. E[ξ] < 1) we know that pext = 1. Hence necessarily, M∞ = 0 a.s.;
martingale can therefore not be equi-integrable.

Exercise 2.3.1. 1) Show that

Var(Zn) =

{
nvar(ξ) if E[ξ] = 1,
var(ξ) (E(ξ))n−1 (Eξ)n−1

Eξ−1 if E(ξ) 6= 1.

2) Show that the branching martingale {Mn}n≥0 as de�ned in (2.3) is equi-integrable
when E(ξ) > 1.

2.4 The one-by-one, or random walk view

Starting with the ancestor node at step 1, at each step: pick a node that has been
unveiled in preceding steps, but whose o�spring has not yet been unveiled; then unveil
its o�spring nodes. Let a node be active at step n if it has already been unveiled, but
not its o�spring. Denoting by An the number of active nodes at step n, one has the
recursion:

An = An−1 − 1 + ξn,

initialised with A0 = 1, and where the ξn are iid, distributed according to the o�spring
distribution.

Let

T = inf{n > 0 : An = 0}.

Proposition 2.4.1. The total population size of the branching process equals T .
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Proof. For all t ≤ T , it holds that

At = A0 − t+
t∑

i=1

ξi.

At T , for the �rst time we exhaust active nodes; the total population size must then be
the number of o�spring distributions seen so far, that is

∑T
i=1 ξi, plus A0 = 1 to account

for the initial ancestor. However, since AT = 0, from the previous equation we have that:

T = A0 +
T∑

i=1

ξi.

The �rst application of the random walk approach is to characterise the behaviour of
super-critical (i.e. with Eξ > 1) branching processes, conditionally on extinction taking
place.

De�nition 2.4.1. A history of the branching process is a sequence {A0, . . . , AT } such
that A0 = 1, for all t = 1, . . . , T ,

At = At−1 − 1 + ξt

for some ξt ∈ N, At > 0 for t < T , and AT = 0.

Let a reference o�spring distribution {qk}k≥0 be given, such that q0 > 0, and the
corresponding mean o�spring size Eq(ξ) equals 1. De�ne for positive parameter λ > 0
the tilted o�spring distribution

pk(λ) := qk
λk

φ1(λ)
, k ≥ 0,

where
φ1(λ) =

∑
k≥0

qkλ
k.

Note that the {pk(λ)}k≥0 de�ne a subcritical, or super-critical branching process accord-
ing to whether λ > 1 or λ < 1 respectively.

Remark 2.4.1. If instead a super-critical distribution {pk}k≥0 is given initially, provided
p0 > 0, one can always determine {qk}k≥0 satisfying the above assumptions and such that
{pk}k≥0 is an exponential tilting of {qk}k≥0 with some tilting parameter λ > 1.

Example 2.4.1: With qk = e−1/k! the unit mean Poisson distribution, one has:
φ1(λ) = e−1+λ, and thus the tilted distribution pk(λ) is the Poisson distribution with
parameter λ.
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De�nition 2.4.2. Given the reference distribution {qk}k≥0, and λ > 1, denote by pext(λ)
the extinction probability associated with o�spring distribution {pk(λ)}k≥0. One says that
parameter µ is conjugate to λ if

φ1(λ)
λ

=
φ1(µ)
µ

·

Lemma 2.4.1: Given λ > 1, there is a unique conjugate parameter µ 6= λ. It satis�es:
µ < 1, and is given by

µ = λpext(λ). (2.4)

Proof. De�ne

f(x) := φ1(x)/x =
∑
k≥0

qkx
k−1.

This is a strictly convex function, and such that f ′(1) = φ′1(1)−φ1(1) = 0. Also, f(0+) =
+∞ since q0 > 0. This implies existence and uniqueness of a conjugate parameter µ 6= λ,
and the fact that µ < 1. Moreover, the extinction probability pext(λ) satis�es, in view of
(2.1):

pext(λ) =
∑
k≥0

qk
[λpext(λ)]k

φ1(λ)
·

Equivalently, φ1(λpext(λ)) = φ1(λ)pext(λ). This implies that µ := λpext(λ) is conjugate
to λ.

We can now characterise the distribution of the history of a super-critical branching
process conditionally on its extinction:

Theorem 2.4.1. The distribution of the history {A1, . . . , AT } under o�spring distribu-
tion {pk(λ)}k≥0, conditioned on extinction, coincides with the distribution of the history
under o�spring distribution {pk(µ)}k≥0, where µ is the conjugate parameter of λ.

Proof. Given a �nite historyH = {A1, . . . , AT }, let {ξ1, . . . , ξT } be the o�spring numbers
associated to it via

At = At−1 − 1 + ξt.

According to the de�nition of a history, one has
∑T

i=1 ξi = T − 1. Thus the probability
of this history under o�spring distribution {pk(λ)}k≥0, conditioned on extinction, is:

Pλ(H|Extinction) = 1
pext(λ)

∏T
i=1 pξi

(λ)

= 1
pext(λ)

∏T
i=1 qξi

λξi

φ1(λ)

= 1
pext(λ)

λT−1

φ1(λ)T

∏T
i=1 qξi

= µT−1

φ1(µ)T

∏T
i=1 qξi

=
∏T

i=1 pξi
(µ),
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where we used the conjugacy relation between λ and µ. This last expression is precisely
the probability of history H under o�spring distribution {pk(µ)}k≥0.

The next application of the random walk representation of branching processes is to
obtain bounds on the total population in the sub-critical case E(ξ) < 1. The main tool
is the Cherno� bound:

Lemma 2.4.2: (Cherno� bound) Given i.i.d. random variables X1, . . . , Xn, for any
a ∈ R, one has:

P

(
n∑

i=1

Xi ≥ na

)
≤ e−nh(a),

where

h(a) = sup
θ≥0

[
θa− log E

(
eθX1

)]
.

Proof. For all θ ≥ 0, by Tchebitchev's inequality, one has:

P(
∑n

i=1Xi ≥ na) = P (exp(θ
∑n

i=1Xi) ≥ exp(nθa))
≤ E[exp(θ

∑n
i=1Xi)]e−nθa

≤ exp
(
−n
[
θa− log E(eθX1)

])
.

The result follows by optimising this bound over θ ≥ 0.

This bound is useful when there exists some b > 0 such that E(exp(bX1)) < +∞,
and a > E(X1). Under the �rst condition, the function θ → θa− log E[exp(θX1)] is �nite
and di�erentiable in the interval [0, b[. Its derivative at θ = 0+ equals a−E(X1), which
is positive under the second assumption. Thus under the two conditions, the exponent
h(a) is strictly positive.

A direct application of Cherno�'s bound yields:

Lemma 2.4.3: The total population T of the branching process veri�es

P(T ≥ t) ≤ exp(−th(1)),

where h(x) = supθ≥0 [θx− log E(exp(θξ))].

Proof. One has:

P(T ≥ t) = P(A1 > 0, . . . , At > 0)
≤ P(At > 0)
= P(A0 +

∑t
i=1 ξi > t)

= P(
∑t

i=1 ξi ≥ t).

The claimed bound then follows directly from Cherno�'s bound.
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Example 2.4.2: If the o�spring distribution is Poisson(λ), one has:

h(x) = supθ≥0

[
θa− log

(∑
k≥0 e

−λ (λeθ)k

k!

)]
= supθ≥0

[
θa− λ(eθ − 1)

]
.

Upon di�erentiating, one �nds that the optimal value is at θ = log(a/λ), giving:

h(a) = λh1(λ/a),

where h1(u) = u log(u)− u+ 1.

2.5 Yule process
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Chapter 3

Erd®s-Rényi graphs and Reed-Frost

epidemics

3.1 Introduction

The Reed-Frost model is a particular example of an SIR (susceptible-infective-removed)
epidemic process. Its basic version is as follows. A set of N individuals is given, indexed
by i ∈ {1, . . . , N}. At step 0, a single individual is infected (say). Once infected, an
individual is infectious during the subsequent time slot, after which it is removed (either
dead, or immunised). While infectious, it will succeed in infecting a target node with
probability p, and this independently for all target nodes and infectious nodes. Thus the
model's parameters are the number of nodes, N , and the infection probability, p.

A more formal description is as follows. Let Zu(t) ∈ {S, I,R} denote the state of node
u during step t. Then the process Z(t) = {Zu(t)}u∈{1,...,N} is a homogeneous discrete

time Markov process. Given two states z, z′ in {S, I,R}N , a transition from z to z′ can
take place only if for all i = 1, . . . , N , zi ∈ {I,R} ⇒ z′i = R: all nodes are removed after
being infected, and remain removed afterwards; and zi = S ⇒ z′i ∈ {S, I}. Noting I(z)
(respectively, S(z), R(z)) the number of infectious (respectively, susceptible, removed)
nodes in state z, provided the pair of states z, z′ satis�es the above constraints, the
transition probability is given by:

P(Z(t+ 1) = z′|Z(t) = z) = (1− p)I(z)S(z′)[1− (1− p)I(z)]I(z′).

A related model is the Erd®s-Rényi (ER) random graph model. The G(N, p) random
graph model is a graph on N nodes {1, . . . , N}, in which for each pair (u, v) of nodes,
u < v, the edge (u, v) is present with probability p, independently of the presence of
other edges. Let ξuv = 1 if edge (u, v) is present and ξuv = 0 otherwise.

The Reed-Frost epidemics can then be constructed from the G(N, p) model, in the
following manner. Assume node u is infected during step t. Then for any other node v,
u will successfully infect node v during step t + 1 if ξuv = 1 (in case u < v; if v < u,
use variable ξvu instead). Note that if the target node v is already infected or removed,

21
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it will already have �used� the random variable ξuv, but this is of no consequence since
then node u can't infect v anymore.

The corresponding state of the Reed-Frost epidemics at time t, if initiated from a sin-
gle infectious node u ∈ {1, . . . , N}, can be described purely in graph-theoretic properties
of G(N, p).

Let dG(u, v) denote the shortest number of hops in a path connecting u to v in graph
G. De�ne the i-neighborhood of node u as

Γi(u) := {v : dG(N,p)(u, v) = i}.

Then the state of the Reed-Frost epidemics started at u, at time t is given by: Zv(t) = R
if dG(N,p)(u, v) < t, Zv(t) = I if dG(N,p)(u, v) = t, that is if v ∈ Γt(u), and Zv(t) = S
otherwise.

3.2 Emergence of the giant component

We shall study the size of the largest component of the graph G(N, p) as N → ∞,
assuming the particular scaling that p also depends on N , in such a way that Np ≡ λ > 0
as N →∞. We denote by C1 the largest connected component of G(N, p) (the size being
measured in number of constituent vertices), by C2 the second largest component, etc.
We then have:

Theorem 3.2.1. i) Consider the subcritical regime, that is when λ < 1. Then for some
constant A depending on λ, we have the following:

lim
N→∞

P (|C1| ≥ A log(N)) = 0. (3.1)

ii)Consider the supercritical regime, that is when λ > 1. Denote by pext(λ) the extinction
probability of a Galton-Watson branching process with Poisson(λ) o�spring distribution,
that is the unique root in ]0, 1[ of the equation x = exp(−λ(1 − x)). Then for some
constant A′ > 0 depending on λ, and all δ > 0, one has the following:

lim
N→∞

P
(∣∣∣∣ |C1|

N
− (1− pext(λ))

∣∣∣∣ ≤ δ and |C2| ≤ A′ log(N)
)

= 1. (3.2)

Thus, in the subcritical regime (λ < 1) all connected components are of logarithmic
size; in the supercritical regime (λ > 1) a �giant component� has appeared, whose size
rescaled by N converges in probability as N →∞ to 1−pext(λ), while other components
remain of logarithmic size.

The next lemma will be used in the proof of the theorem:

Lemma 3.2.1: Let L(1) denote the size of the connected component to which node 1
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belongs. One then has:

(i) If λ < 1,∃β > 0 such that P(L(1) ≥ t) ≤ e−βt, t ∈ N;
(ii) P(L(1) = t) ≤ P(Bin(N − 1, 1− (1− p)t) = t− 1), t ∈ N.

Proof. We construct the size of the connected component C(1) in the following manner,
reminiscent of the random walk approach to the exploration of Galton-Watson branching
processes.

Denote by At the set of active nodes after the exploration of t nodes, starting with
A0 = {1}. Denote by Bt the set of nodes that have been expored after t steps, starting
with B0 = ∅.

To go from step t− 1 to step t we pick an arbitrary node (say the one with smallest
label), ut, in At−1, and determine the set of its neighbours in {1, . . . , N}\{At−1∪Bt−1},
that we denote by Dt. We then update the sets as follows:

At = At−1 ∪Dt \ {ut}, Bt = Bt−1 ∪ {ut}.

Let Yt be the size of At, and ξt the size of Dt. We thus have:

Yt = Yt−1 − 1 + ξt.

The size L of the connected component is determined by:

L = inf{t > 0 : Yt = 0}.

Indeed, this exploration process terminates when for the �rst time t, there is no active
node to consider, that is when for the �rst time, Yt = 0. The size of the component is
then given by 1 plus the sum of the numbers of neighbours discovered at each step, that
is:

L = 1 +
t∑

i=1

ξi.

Since At = 0 = 1 +
∑t

i=1 ξi − t, the announced characterisation of L follows.
The distribution of the number of newly discovered neighbours, ξt, conditionally on

the outcome of the previous explorations, D1, . . . , Dt−1, has a binomial distribution with
parameters (p,N − Yt−1 − t+ 1): indeed, there are Yt−1 active nodes yet to explore, and
|Bt−1| = t− 1 nodes already explored within the cluster.

The �rst half of the lemma follows by an application of the Cherno� bounding tech-
nique. For �xed θ > 0, one has:

P(L > t) ≤ P(Yt > 0) = P(ξ1 + . . .+ ξt ≥ t) ≤ E
(
eθ
Pt

1 ξi−θt
)

≤
(
1− p+ peθ

)tN
e−θt

≤ exp
(
−Npt

(
1− eθ

))
e−θt

= exp
(
−t
(
θ − λ

(
1− eθ

)))
.
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In the second step we increased the parameter of the binomial variables ξi, and in the
third step we used the inequality 1 + x ≤ exp(x), valid for all x ∈ R. For λ < 1 and
θ > 0 small enough, the exponent θ−λ(1−exp(θ)) is positive; it provides the announced
coe�cient β > 0 in the �rst part of the lemma.

To establish the second half, consider the following speci�c construction of the con-
secutive sets Ai, Bi. Let i.i.d. Bernoulli random variables {ξi,v}i>0,v=1,...,N be given, all
with parameter p. A speci�c node v will be incorporated in the set Di if and only if ξi,v
equals 1, and it has not been incorporated in any of D1, l . . . , Di−1.

LetXt denote the number of nodes not incorporated in the connected component C(1)
by step t. It then follows thatXt is Binomial, with parameters (N−1, (1−p)t). Indeed, for
each node v = 2, . . . , N , it fails to be incorporated by t if and only if ξ1,v = . . . = ξv,t = 0,
which happens with probability (1− p)t, and this independently for all such v.

Then, using the identity N = Xt + Yt + t, we �nally have that Yt + t− 1 is Binomial
with parameters (N − 1, 1− (1− p)t).

It follows that:

P(L = t) = P(A1, . . . , At−1 > 0, At = 0)
≤ P(At = 0)
= P

(
Bin(N − 1, 1− (1− p)t) = t− 1

)
,

as announced.

3.2.1 Subcritical phase (λ < 1)

The �rst half of Theorem 3.2.1 is established as follows. The number of connected
components of size at least k is not larger than

N∑
i=1

1|C(i)|≥k.

The expectation of the latter sum is NP(L ≥ k). For k ≥ β−1(1 + δ) log(N), where β is
obtained from the Lemma, this expectation tends to 0, hence the probability that there
is a connected component of size larger than β−1(1 + δ) log(N) tends to 0.

3.2.2 Supercritical phase (λ > 1)

We shall use the following version of Cherno�'s bound:

Lemma 3.2.2: Le X be a sum of independent, not necessarily identically distributed,
{0, 1}-valued random variables. Let X̄ = E(X). Then for all ε > 0, it holds that

P(X − X̄ ≥ εX̄) ≤ e−X̄h(ε), P(X − X̄ ≤ εX̄) ≤ e−X̄h(−ε), (3.3)

where h(x) := (1 + x) log(1 + x)− x.

Proof is a combination of the Cherno� technique, and the upper bound 1 + x ≤ ex.
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The main step in the analysis of the supercritical case is the following:

Lemma 3.2.3: Let λ > 1 be given. Then for all ε > 0, δ > 0, there exists some δ′ > 0
and some t0 > 0 such that, for N large enough, and all p such that |Np− λ| ≤ δ′:

pext(λ)− ε ≤ P(C(1) < t0) ≤ pext(λ) + ε,
1− pext(λ)− ε ≤ P(|C(1)−N(1− pext(λ))| ≤ δN) ≤ 1− pext(λ) + ε.

Proof. Remark that in the above statement we allow for the possibility thatNp is actually
distinct from λ. Let ε, δ > 0 be �xed.

Let δ′ > 0 be chosen so that |pext(λ ± δ′) − pext(λ)| ≤ ε/2. Recall the previous con-
struction of a connected component C(1), and the fact that the conditional distribution
of ξt given ξ1, . . . , ξt−1 is Binomial with parameters (N − 1 − ξ1 − . . . − ξt−1, p). The
probability that the corresponding sequence Y1, . . . , Yt �rst hits zero before some t0 is
monotonic decreasing in p, for given N . Denote by p± = λ±/N where λ± = λ ± δ′ are
the two end-points of the range in which Np will be allowed to vary.

For any �xed t, the vector (ξ1, . . . , ξt) under parameters N, p± converges in distrib-
ution to a vector of independent Poisson random variables with common parameter λ±.
Indeed, this follows from the evaluation:

PN,p± (ξ1 = a1, . . . , ξt = at) =
∏t

i=1

(
N−1−

Pi−1
j=1 aj

ai

)
(p±)ai(1− p±)N−1−

Pi−1
j=1 aj

→
∏t

i=1 e
−λ± (λ±)ai

ai!
as N →∞,

valid for all (a1, . . . , at) ∈ Nt. This weak convergence ensures the following, for all �xed
t0 > 0:

PN,p±(|C(1)| ≤ t0) = PN,p±(for some t ≤ t0, ξ1 + . . .+ ξt ≤ t− 1).
→ P(population size of G.W. process with Poisson(λ±) o�spring ≤ t0)

as N →∞. Thus, as this limiting value converges to pext(λ±) when t0 →∞, there exists
t0 such that, for su�ciently large N ,

PN,p±(|C(1)| ≤ t0) ∈ [pext(λ±)− ε/2, pext(λ±) + ε/2] ⊂ [pext(λ)− ε, pext(λ) + ε],

by our choice of λ±. Finally, for any p ∈ [p−, p+], one has:

PN,p(|C(1)| ≤ t0) ∈
[
PN,p+(|C(1)| ≤ t0),PN,p−(|C(1)| ≤ t0)

]
⊂ [pext(λ)− ε, pext(λ) + ε].

Lemma 3.2.1 (ii) says that

P(|C(1)| = t) ≤ P(Bin(N − 1, 1− (1− p)t) = t− 1).

The ratio of the mean X̄t := (N − 1)[1− (1− p)t] of this variable to the value t− 1 reads

(1 + o(1))φ(t/N),
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where φ(x) := x−1[1 − e−(Np)x]. By di�erentiating it is easily seen that the function
φ is decreasing from Np > 1 to 1 − e−Np as x increases from 0 to 1. This readily
implies the existence of a positive constant κ > 0 such that, for all p ∈ [p−, p+], and
all t ≤ [1 − pext(λ)) − δ]N , (t − 1)/X̄t < 1 − κ, and for all t ≥ [1 − pext(λ)) + δ]N ,
(t− 1)/X̄t > 1 + κ. Thus Lemma 3.2.2 yields:

P (|C(1)| > t0, ||C(1)| − (1− pext(λ))N | > δN) ≤
∑
t≥t0

2e−κ′t,

for some other positive constant κ′. For su�ciently large t0, this quantity can be made
arbitrarily small; the second result of the lemma follows.

All the ingredients are there to conclude the proof of Theorem 3.2.1. Pick an ar-
bitrary node (say node 1) of the original graph, and extract its connected component,
C(1). If |C(1)| ≤ t0 proceed to next step; if ||C(1)| − (1 − pext(λ))N | ≤ δN , stop the
procedure, claiming a successful identi�cation of the giant component. If none of the
two conditions prevails, stop the procedure, admitting failure of the identi�cation of the
giant component.

Repeatedly extract such connected components, until either success (i.e. component
of size L: |L − (1 − pext(λ))N | ≤ δN) or failure (not success, and a component of size
> t0) occurs, up to k times, for some k to be determined. After i extractions, which have
been neither failures nor successes, we are left with an E-R graph with parameters N ′

and p, where

N ′ ∈ [N − it0, N − i],

since we have removed at most t0 nodes in each extraction. Thus at each step, the
previous lemma applies to the remaining graph, since for bounded k, the product N ′p
remains in the range [λ, λ+]. Note that the probability of a success is at each step at
least 1− pext(λ)− ε, and the probability of failure at each step is at most 2ε. Thus the
probability of success in at most k steps is at least

P(success) ≥
∑k

i=1(1− pext(λ)− ε)(pext(λ)− ε)i−1

= (1− pext(λ)− ε)1−(pext(λ)−ε)k

1−pext(λ)+ε .

By choosing k such that (pext(λ)− ε)k ≤ ε, we ensure that this probability of success is
at least 1−O(ε).

To conclude, conditionally on success, we have one giant component of the right size,
up to k components of size at most t0, and the remaining graph is an E-R graph with
N ′ nodes, where

N ′ ∈ [N(pext(λ)− 2δ), N(pext(λ) + δ)].

Note now that the corresponding product N ′p is close to pext(λ)λ, that is the conjugate
parameter of λ, from the discussion of conjugate branching processes. Therefore, this
remaining E-R graph is subcritical, and by the �rst half of Theorem 3.2.1 its largest
component is of logarithmic size.
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3.2.3 The critical case (λ = 1)

Theorem 3.2.2. Let (Cj)j≥1 denote the size of the connected components of G(N, 1/N)
ordered in decreasing order. For any N large enough, we have

E
∑
j≥1

C2
j ≤ 3N4/3 .

In particular, for A > 0

P(L1 ≥ AN2/3) ≤ 3
A2

.

Proof. From the exploration process

Yi+1 = Yi − 1 + ξi+1 . (3.4)

Let τ = min{i ≥ 1 : Yi = 0} which gives the size of the giant component. To prove
the theorem, we will couple (Yi)i to a random walk with shifted binomial increments.
More precisely, We consider a sequence (Xi)i≥1 of i.i.d. Bin(N, 1/N) random variables,
such that ξi ≥ Zi for all i.

Let (Si)i≥1 the random walks de�ned by S0 = 1 and for i ≥ 1

Si = Si−1 + ξi − 1 = 1 +
i∑

j=1

(Xj − 1) . (3.5)

Fix H > 0 and de�ne γ by

γ = min{i ≥ 1 , Si ≥ H or Si = 0} .

By induction, we check that Si ≥ Yi for all i ≤ γ.

Since (Si)i is a martingale, the optional stopping theorem gives

E(S0) = E(Sγ) ≥ HP(Sγ ≥ H) .

Consequently,

P(Sγ ≥ H) ≤ 1
H
. (3.6)

We will now need the following result.

Lemma 3.2.4: LetX be distributed according to Bin(N, 1/N) and let f be an increasing
function. Then

E[f(Sγ −H) | Sγ ≥ H] ≤ Ef(X) . (3.7)
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Proof. Let X be a random variable with Bin(N, 1/N) distribution. We can write X as a
sum of n Bernoulli independent random variables (Ij)j=1...N with parameter 1/N . Let

J be the minimal index such that
∑J

k=1 Ik = r + 1, i.e.

J = min{j ≥ 1,
j∑

k=1

Ik = r + 1} .

Given J the conditional distribution of X − r+ 1 is Bin(N − J, 1/N) which is obviously
dominated by Bin(N, 1/N). Let f be an increasing real function, using the fact that
{X ≥ r + 1} = {J ≤ N}

E[f(X −H) | X ≥ r + 1] =
1

P(X ≥ r + 1)
E(f(

N∑
j=J+1

Ij)1{X≥r+1})

=
1

P(J ≤ N)
E(

N∑
i=1

f(
N∑

j=i+1

Ij)1{J=i})

≤ 1
P(J ≤ N)

N∑
i=1

E(f(
i∑

j=1

I ′j +
N∑

j=i+1

Ij)1{J=i}) ,

where (I ′j)j≥1 are i.i.d. bernoulli r.v. with parameter 1/N which are independent of
(Ij)j≥1. Therefore, by the independence property,

E[f(X − (r + 1)) | X ≥ r + 1] ≤ 1
P(J ≤ N)

E(f(
N∑

j=1

Ij)
N∑

i=1

E(1{J=i}) = Ef(X) .

Now let l ∈ Z+ and, r ∈ {1, . . . ,H−1}. Given {γ = l}∩{Sγ ≥ H}∩{Sγ−1 = H−r},
we have

E[f(Sγ −H) | Sγ ≥ H] = E[f(X − (r + 1)) | X ≥ r + 1]
≤ E[f(X)] .

Apply (3.7) with f(x) = 2Hx+ x2 to obtain

E[2H(Sγ −H) + (Sγ −H)2 | Sγ ≥ H] ≤ E[ξ2 + 2Hξ]

= 1 +
n− 1
n

+ 2H

≤ 2H + 2 .

Write S2
γ = H2 + 2H(Sγ −H) + (Sγ −H)2 and

E(S2
γ | Sγ ≥ H) ≤ H2 + 2H + 2 ≤ H2 + 3H . (3.8)
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Noting that S2
i − (1− 1

n)i is a martingale and applying the optional stopping theorem
we have

E[S2
γ − (1− 1

n
)γ] = 1 .

Combing this with (3.6) and (3.8) we obtain

(1− 1
n

)Eγ = E(S2
γ) = P(Sγ ≥ H)E[S2

γ | Sγ ≥ H] ≤ H + 3 .

Hence for H < n− 3 we have

Eγ ≤ n− 1
n

(H + 3) ≤ H + 3 . (3.9)

Let τ0 = min{i ≥ 0 , Yγ+i = 0}. First note that if Sγ = 0 then τ ≤ γ. Therefore
τ ≤ γ + τ01{Sγ≥H}, so

Eτ ≤ Eγ + E(τ0 | Sγ ≥ H)P(Sγ ≥ H) . (3.10)

Since ξi is distributed according to Bin(n − Yi − i − 1, 1/n) which is stochastically
dominated by Bin(n− i, 1/n) we have

E(ξi − 1) ≤ n− i

n
− 1 = − i

n
.

Thus the process ηi = Yγ+i +
∑i

j=1
i
n is a supermatingale. By the optional stopping

theorem

E(ητ0 | Sγ ≥ H) ≤ E(η0 | Sγ ≥ H) = E(Yγ | Sγ ≥ H)
≤ E(Sγ | Sγ ≥ H) ≤ H + 1 .

By the obvious inequality

ηi ≥
i∑

j=1

j

n
=
i(i+ 1)

2n
≥ i2

2n
,

we have
E(τ2

0 | Sγ ≥ H)
2n

≤ H + 1 .

By Jensen's inequality (E[τ1{Sγ≥H}])2 ≤ E[τ21{Sγ≥H}]. Hence,

E(τ0 | Sγ ≥ H) ≤
√

2n(H + 1) . (3.11)

By (3.6), (3.9), (3.10) and (3.11)

Eτ ≤ H + 3 +
1
H

√
2n(H + 1) ≤ H + 2

√
n/H − 1 , (3.12)
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where the second inequality holds if n/H is large. To minimise the right-hand side, take
Hdn1/3e so that (3.11) is valid for large n (n > 1000 su�ces). This yields

E[|C(v)|] = Eτ ≤ 3n1/3 . (3.13)

Finally, let {v1, . . . , vn} be the set of all nodes. By symmetry,

E[|C(v)|] =
1
n
E[

n∑
i=1

|C(vi)|] =
1
n
E[
∑

j

C2
j ] ,

where the second inequality follows from the fact that in the middle term we Cj

exactly Cj times, for every j ≥ 1. Thus, by (3.13),

E[C2
1 ] ≤ E[

∑
j

C2
j ] ≤ 3n4/3 .

By the Markov's inequality

P(C1 ≥ An2/3) ≤ E[C2
1 ]

A2n4/3
≤ 3
A2

.



Chapter 4

Connectivity and Poisson

approximation

To analyse the emergence of connectivity in th E-R graph, we �rst introduce the Stein-
Chen method for approximation of sums of {0, 1}-valued random variables by Poisson
distributions.

4.1 The Stein-Chen method

First recall the following

De�nition 4.1.1. The variation distance between two probability measures µ1, µ2 on the
same measurable space (Ω,F) is de�ned as

dvar(µ1, µ2) = 2 sup
A∈F

|µ1(A)− µ2(A)|.

This admits the alternative characterisation:

Proposition 4.1.1. Let a measure µ be such that both µ1 and µ2 are absolutely continu-
ous with respect to µ (by de�nition this means that for all A ∈ F , µi(A) > 0 ⇒ µ(A) > 0;
e.g. the measure µ = µ1 + µ2 satis�es this). Then the variation distance veri�es

dvar(µ1, µ2) =
∫

Ω

∣∣∣∣dµ1

dµ
(ω)− dµ2

dµ
(ω)
∣∣∣∣µ(dω),

where dµi/dµ is the Radon-Nykodim derivative of µi with respect to µ.
In particular, for probability measures on N, taking for µ the counting measure∑

n≥0 δn, it holds that

dvar(µ1, µ2) =
∑
n∈N

|µ1(n)− µ2(n)| .

31
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Proof. For any A ∈ F , it holds that

2 |µ1(A)− µ2(A)| = |µ1(A)− µ2(A)|+ |µ2(Ā)− µ1(Ā)|
=

∣∣∣∫Ω 1A(ω)
[

dµ1

dµ − dµ2

dµ

]
dµ
∣∣∣

+
∣∣∣∫Ω 1Ā(ω)

[
dµ1

dµ − dµ2

dµ

]
dµ
∣∣∣

≤
∫
Ω

∣∣∣dµ1

dµ − dµ2

dµ

∣∣∣ dµ.
Conversely, de�ning

A =
{
ω :

dµ1

dµ
(ω) >

dµ2

dµ
(ω)
}
,

one has ∫
Ω

∣∣∣dµ1

dµ − dµ2

dµ

∣∣∣ dµ = µ1(A)− µ2(A) + µ2(Ā)− µ1(Ā)
= 2|µ1(A)− µ2(A)|.

Another useful property of variation distance is the following:

Proposition 4.1.2. Assume that for a sequence of probability measures {µn}n>0, there
exists a probability measure µ∞ such that

lim
n→∞

dvar(µn, µ∞) = 0.

Then µn converges weakly to µ∞ as n→∞.

Proof. Indeed, the announced weak convergence holds by de�nition if, for all bounded
and continuous function f , it holds that:

lim
n→∞

∫
Ω
f(ω)µn(dω) =

∫
Ω
f(ω)µ∞(dω).

However, for any two measures ν1, ν2, and any bounded measurable function g,∣∣∣∣∫
Ω
g(ω)µ(dω)−

∫
Ω
g(ω)ν(dω)

∣∣∣∣ ≤ sup
ω∈Ω

|g(ω)|dvar(µ, ν).

Indeed, this follows by writing, for some measure µ such that both ν1 and ν2 are absolutely
continuous with respect to it:∣∣∫

Ω g(ω)µ(dω)−
∫
Ω g(ω)ν(dω)

∣∣ ≤
∫
Ω |g(ω)|

∣∣∣dν1
dµ (ω)− dν2

dµ (ω)
∣∣∣µ(dω)

≤ supω∈Ω |g(ω)|dvar(ν1, ν2),

where we used the previous characterisation of variation distance. Thus convergence of
variation implies convergence in distribution.
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Let X =
∑

v∈V Iv, where V is a countable set, and each Iv is {0, 1}-valued. We then
have

Theorem 4.1.1. Let

πv := E(Iv), λ = E(X) =
∑

v

πv. (4.1)

Assume that there exist random variables Jv,w de�ned on the same probability space as
the random variables Iv and such that for all v ∈ V we have the equality of distributions:

L ({Jvw}w 6=v) = L ({Iw}w 6=v| Iv = 1) . (4.2)

Then the following bound on the variation distance between (the distribution of) X and
the Poisson distribution with parameter λ, that is Pλ, holds:

dvar (X,Pλ) ≤ 1− e−λ

λ

∑
v∈V

πv

πv +
∑
w 6=v

E |Jvw − Iw|

 . (4.3)

Remark 4.1.1. Note that the term (1− e−λ)/λ in the right-hand side of (4.3) is upper-
bounded by min(1, λ−1). The result is often stated with the latter term instead of the
former.

Proof. De�ne for all A ⊂ N the function fA by fA(0) = 0 and

fA(i+ 1) = λ−1Pλ(A ∩ Ci)− Pλ(A)Pλ(Ci)
Pλ({i})

, i ≥ 0, (4.4)

where Ci = {0, . . . , i}. We then have the following lemma, whose proof will be given
after the end of the current proof:

Lemma 4.1.1: For all A ⊂ N, the function f = fA veri�es the following properties:

(i) supi≥0 |f(i)| <∞,

(ii) ∆f := supi≥0 |f(i+ 1)− f(i)| ≤ 1−e−λ

λ ,
(iii) λf(i+ 1)− if(i) = 1A(i)− Pλ(A), i ∈ N.

In view of (iii), for all A ⊂ N, one has

P(X ∈ A)− Pλ(A) = E [λf(X + 1)−Xf(X)]
=

∑
v∈V πvE

[
f(X + 1)− f(

∑
w 6=v Jvw + 1)

]
.

The Lipschitz property (ii) of f then implies:

|P(X ∈ A)− Pλ(A)| ≤ 1−e−λ

λ

∑
v∈V πvE

∣∣∣∑w∈V Iw −
∑

w 6=v Jvw

∣∣∣
≤ 1−e−λ

λ

∑
v∈V πv

{
πv +

∑
w 6=v E |Iw − Jvw|

}
.
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The upper bound does not depend on A, and is thus an upper bound on the variation
distance dvar(X,Pλ).

Proof of Lemma 4.1.1 (i) Rearrangin terms in de�nition (4.4) de f yields:

f(i+ 1) =
1

λPλ(i)
{
Pλ(A ∩ Ci)Pλ(Ci)− Pλ(A ∩ Ci)Pλ(Ci)

}
,

from which expression it easily follows that

|f(i+ 1)| ≤ 2Pλ(Ci)
λPλ(i)

,

hence

|f(i+ 1)| ≤ 2
∑
j>i

λj−i−1 i!
j!
≤ 2eλ.

(ii) Consider �rst the case i = 0, for which:

f(1)− f(0) = f(1) =
1
λ

(1A(0)− Pλ(A)) ,

hence

|f(1)− f(0)| ≤ 1− e−λ

λ
.

Next, for i > 0, write:

f(i+ 1)− f(i) = Pλ(A∩Ci)−Pλ(A)Pλ(Ci)−λ
i
[Pλ(A∩Ci−1)−Pλ(A)Pλ(Ci−1)]

λPλ(i)

= Pλ(A∩Ci−1)
λPλ(i)

{
Pλ(Ci)− λ

i Pλ(Ci−1)
}

+Pλ(A∩{i})
λPλ(i)

{
Pλ(Ci) + λ

i Pλ(Ci−1)
}

+Pλ(A∩Ci)
λPλ(i)

{
−Pλ(Ci) + λ

i Pλ(Ci−1)
}
.

Remark that the terms in curly brackets have the following signs:

Pλ(Ci)− λ
i Pλ(Ci−1) =

∑
j>i e

−λλj
[

1
j! −

1
(j−1)!

1
i

]
< 0,

Pλ(Ci) + λ
i Pλ(Ci−1) > 0,

−Pλ(Ci) + λ
i Pλ(Ci−1) = e−λ

{
−
∑i

j=0
λj

j! +
∑i−1

j=0
λj+1

j!i

}
≤ e−λ

∑i
j=1

λj

(j−1)!

[
1
i −

1
j

]
< 0.

This implies that the di�rence f(i + 1) − f(i) is maximal for A = {i}, and minimal for
A = N \ {i}. Thus:

f(i+ 1)− f(i) ≤ 1
λ

1− e−λ +
i∑

j=1

e−λ λj

(j − 1)!

[
1
j
− 1
i

] ≤ 1− e−λ

λ
,



4.2. EMERGENCE OF CONNECTIVITY IN E-R GRAPHS 35

and:

f(i+ 1)− f(i) ≥ −Pλ(Ci)+
λ
i
Pλ(Ci−1)

λ

≥ −1−e−λ

λ ,

which together imply (ii).

(iii) For i = 0, the relation holds in view of

λf(1) = Pλ(A ∩ {0})/Pλ(0)− Pλ(A).

For i > 0, one has:

λf(i+1)−if(i) =
1

Pλ(i)
{Pλ(A ∩ Ci)− Pλ(A)Pλ(Ci)− Pλ(A ∩ Ci−1) + Pλ(A)Pλ(Ci−1)} ,

hence the result.

4.2 Emergence of connectivity in E-R graphs

4.2.1 The number of isolated nodes

Recall that the degree of a node is the number of its graph neighbours, and that a node
is isolated if it has zero degree, i.e. no neighbours. Clearly, when the graph contains an
isolated node, the graph cannot be connected; the study of the presence or not of isolated
nodes will thus give us upper bounds on the probability that the graph is connected.

Let Iv equal 1 if node v is isolated, and 0 otherwise. Recalling that ξuv ∈ {0, 1}
indicates the presence of edge (u, v), it thus holds that

Iv =
∏
w 6=v

1ξvw=0,

The number of isolated nodes is thus:

X =
∑

v

Iv.

We then have the following

Theorem 4.2.1. Assume that for some �xed c ∈ R, Np = log(N)+ c+ o(1). Then the
distribution of X converges in variation, as N → ∞, to the Poisson distribution with
parameter e−c.

Proof. We use Stein-Chen's method. Set

Jvw =
∏

u 6=v,w

1ξuw=0, v ∈ {1, . . . , N}, w 6= v.
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Note that conditioning on Iv = 1 is equivalent to conditioning on ξvw = 0 for all w 6= v.
Conditionally on this event, all other edge indicator variables are left una�ected, by
independence. We therefore have the equality of distributions

L({Jvw}w 6=v) = L({Iw}w 6=v|Iv = 1).

Let π = E(Iv) = (1− p)N−1, and λ = E(X) = Nπ. Equation (4.3) gives us

dvar(X,Pλ) ≤ min(1, λ−1) Nπ

π +
∑
w 6=v

E|Iw − Jvw|

 .

Note that

E|Iw − Jvw| = E

ξvw

∏
u 6=v,w

(1− ξuw)

 = p(1− p)N−2.

This then yields

dvar(X,Pλ) ≤ min(1, λ−1)λ (π + p(N − 1)π/(1− p)) ≤ π + λ
p

1− p
·

As N →∞, Nπ → e−c, and thus this upper bound is of order e−c log(N)/N as N →∞,
hence the convergence

lim
N→∞

dvar(X,Pλ) = 0.

The triangle inequality further yields

dvar(X,Pe−c) ≤ dvar(Pe−c , Pλ) + dvar(X,Pλ).

It remains to show that dvar(Pe−c , Pλ) → 0 as N →∞. This will follow from the Lemma
below.

Lemma 4.2.1: For λ, λ′ ≥ 0, it holds that:

dvar(Pλ, Pλ′) ≤ 2|λ− λ′|.

Proof. Assume without loss of generality that λ ≥ λ′. Let X, Y be two independent
Poisson random variables with respective parameters λ′, λ − λ′. Thus X ′ := X + Y is
Poisson with parameter λ. For any A ⊂ N, write

2|Pλ(A)− Pλ′(A)| = 2|P(X + Y ∈ A)−P(X ∈ A)|
= 2|P(Y = 0)P(X ∈ A)−P(X ∈ A) + P(Y > 0, X + Y ∈ A)|
≤ 2P(Y > 0).

The latter upper bound is independent of A, and equal to 2(1 − e−|λ−λ′|). The result
follows.
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4.2.2 Connectivity

Theorem 4.2.2. Let c ∈ R be given, and assume that p is such that Np = log(N) +
c+ o(1). One then has the limit

lim
N→∞

P(G(N, p) connected) = e−e−c
. (4.5)

Proof. We �rst show that the probability that the graph contains connected components
of sizes between 2 and N/2 goes to zero under the theorem's assumptions. This will
entail that the probability that the graph is connected is asymptotically equivalent to
the probability that it has no isolated edges. By the previous theorem 4.2.1, it holds that

P(G(N, p) has no isolated nodes) = P(X = 0) ∼ e−e−c
,

hence the announced result.
Let us �rst check that with high probability, the graph has no connected components

of size 2:

P(∃connected component of size 2) ≤ N(N−1)
2 P((u, v)connected component of G(N, p))

= N(N−1)
2 p(1− p)2(N−2).

By the inequality 1− x ≤ e−x, this expression is not larger than

N2 p

(1− p)4
e−2Np.

This last term is of order p ∼ log(N)/N , and thus asymptotically negligible.
We now show that the probability of having a connected component of size between

3 and N/2 vanishes asymptotically. To this end, we shall rely on Cayley's theorem (see
below) according to which the number of trees on a set of r labelled nodes is exactly
rr−2. For any r ∈ {3, . . . , N/2}, and an arbitrary set C of r nodes, the probability that
this set is a connected component of G(N, p) is then not larger than∑
trees T on C

P(edges in T present and no edge between C and C̄) ≤ rr−2pr−1(1−p)r(N−r).

Summing over all r ∈ {3, . . . , N/2} and all size r components C, one obtains the upper
bounded on the probability π that there is a connected component of such a size in
G(N, p):

π ≤
dN/2e∑
r=3

(
N

r

)
rr−2pr−1(1− p)r(N−r).

Using
(
N
r

)
≤ N r/r! and Stirling's formula, one obtains:

π ≤
dN/2e∑
r=3

N r 1√
r

(e
r

)r
rr−2pr−1e−pr(N−r).
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Upon simpli�cation, using the fact that N − r ≥ N/2 for r in the summation range, this
yields:

π ≤ 1
p

dN/2e∑
r=3

r−5/2er{1+log(Np)−(1/2)Np}.

The exponent in curly brackets is equivalent to (1/2)Np; also, 1/p ≤ N . Thus, for all
ε > 0, one has:

π ≤ N
∑dN/2e

r=3 r−5/2e−r(1/2−ε)Np

≤ N
∑

r≥3 e
−r(1/2−ε)Np

= N e−3(1/2−ε)Np

1−e−(1/2−ε)Np

= O
(
N−1/2+3ε

)
,

which concludes the proof of the theorem.

4.2.3 Cayley's theorem

We now show that the number of trees on a set {0, . . . , r−1} is rr−2, that is the statement
of Cayley's theorem. To this end we construct a bijection between sequences of r − 2
integers in {0, . . . , r − 1} and the set of trees on this set.

Given a tree T , one determines φ(T ) = {w1, . . . , wr−2} as follows. By convention,
node 0 is the root of the tree. The degree 1 nodes distinct from the root are called the
�leaves� of the tree. One starts by picking the leaf with the smallest label, say v1, and let
w1 be the label of the node v1 attaches to. One then examines the leaves of the reduced
tree T \ {v1}, picks its smallest leaf, say v2, and then w2 is the label of the neighbour
of v2 in T \ {v1}. One repeats this procedure until only one leaf remains, that is after
having extracted r − 2 labels.

To show that function ψ is bijective, let us see how the tree T is determined by ψ(T ).
The �rst leaf v1 that has been removed must be the smallest integer in {1, . . . , r−1} which
does not appear in the sequence ψ(T ) = {w1, . . . , wr−2}. One can thus reconstruct the
edge (v1, w1). Similarly, the node removed next, v2, is the smallest integer in {1, . . . , r−
1}\{v1} which does not appear in {w2, . . . , wr−2}, and we can thus reconstruct the edge
(v2, w2). Iterating, we next reconstruct (v3, w3), . . . , (vr−2, wr−2). There only remains
one element in {1, . . . , r − 1} \ {v1, . . . , vr−2}, say vr−1. Necessarily, this last element
is connected to the root 0, hence the edge (vr−1, 0) is also in tree T . We have thus
reconstructed the r − 1 edges of the tree T .



Chapter 5

Diameter of Erd®s-Rényi graphs

5.1 Introduction

Given a graph G, and two vertices u, v, the graph distance dG(u, v) is by de�nition the
minimal length (in number of hops) of a path connecting u to v. The diameter of the
graph G is then de�ned as the supremum over pairs of nodes u, v of the distance dG(u, v).
It is denoted D(G):

D(G) = supvertices u,vdG(u, v).

In the case of the E-R graph, recall that it captures the dynamics of the Reed-Frost
epidemics started at a source node u, with Γt(u) := {v : dG(u, v) = t} representing the
set of infectious nodes after t time steps. The epidemics will infect all nodes if and only
if the graph is connected, which is equivalent to the diameter being �nite. In that case,
the diameter provides an upper bound on the time it takes for the Reed-Frost epidemics
to reach all nodes.

The diameter of a graph is also interesting when the graph represents a network over
which goods (information e.g.) need to be transported: it then gives an upper bound
on the time for goods to travel from any location u to any other location v, provided
shortest paths between locations are used.

The following result illustrates an interesting relation between the diameter, the num-
ber of nodes and the maximal node degree of a graph:

Lemma 5.1.1: Given a graph G on N nodes, such that the maximal node degree is at
most ∆, its diameter D veri�es

N ≤ 1 + ∆
(∆− 1)D − 1

∆− 2
·

Equivalently, one has

D ≥
log
(
N
[
1− 2

∆

]
+ 2

∆

)
log(∆− 1)

·
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Proof. Recall that di(u) = |Γi(u)|. It is easily seen that, when the maximal node degree
is at most ∆, for any u, d1(u) ≤ ∆, and for all i ≥ 2, di(u) ≤ ∆(∆ − 1)i−1. If the
diameter is not larger than D, then necessarily,

N = 1 + d1(u) + . . .+ dD(u) ≤ 1 + ∆
{
1 + (∆− 1) + . . .+ (∆− 1)D−1

}
.

The result follows.

An important class of graphs that approaches this bound is that of de Bruijn graphs.
For two integers k, `, the de Bruijn graph B(k, `) has k` nodes, that are identi�ed with
the `-letter words on the alphabet {1, . . . , k}. A node x1 . . . x` is connected to nodes
yx1 . . . x`−1 and x2 . . . x`y for all y ∈ {1, . . . , k}. Thus its degree is at most ∆ = 2k.
Finally, between any two nodes x1 . . . x`, y1 . . . y` there is an `-hop path, going through
x2 . . . x`y1, x3 . . . x`y1y2, . . ., x`y1 . . . y`−1.

For the de Bruijn graph B(k, `) we thus have

D ≤ ` =
log(N)
log(k)

=
log(N)

log(∆)− log(2)
·

As we shall see now, E-R graphs also achieve a diameter close to optimal, given their
maximal degree and number of nodes.

5.2 Diameter of E-R graphs

Theorem 5.2.1. Let δ = (N − 1)p denote the average node degree of G(N, p). Assume
that

log(N) << δ <<
√
N. (5.1)

Noting

D′ =
⌈

log(N)
2 log(δ)

⌉
, (5.2)

it holds that:

lim
N→∞

P
(
D(G(N, p)) ∈ {2D′ − 3, 2D′ − 2, . . . , 2D′ + 1}

)
= 1.

Thus, the diameter of G(N, p) takes with high probability at most 5 distinct values in
the assumed parameter range.

Remark 5.2.1. The best possible result, given in Bollobás [4], establishes that in fact D
can take at most two values, and identi�es the probability of each value occuring.
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5.3 Key lemma: control of neighborhood growth

Given some ε > 0, de�ne the quantities

d±j =
{

(1± ε)jδj if j = 1, 2,
(1± ε)2

(
1± ε

δ

)j−2
δj if j = 3, . . . , D′.

(5.3)

The key ingredient in the proof of the theorem is the following:

Lemma 5.3.1: Let ε > 0 be �xed. De�ne for all u ∈ {1, . . . , N} and all i = 1, . . . , D′,
the event Ei(u) by

Ei(u) = {d−i ≤ di(u) ≤ d+
i }.

Assume that condition (5.1) holds. Then for any �xed K > 0, for large enough N , it
holds that:

P(Ei(u)) ≥ 1−N−K , u ∈ {1, . . . , N}, i = 1, . . . , D′. (5.4)

Proof. Let u ∈ {1, . . . , N} and i ∈ {1, . . . , D′} be �xed. Note that, conditionally on
d1(u), . . . , di−1(u), di(u) admits a binomial distribution with parameters:

L(di(u)|d1(u), . . . , di−1(u)) = Bin
(
N − 1− d1(u)− . . .− di−1(u), 1− (1− p)di−1(u)

)
.

Denote by Ēi(u) the complementary event of Ei(u). From the above it readily follows
that:

P(Ēi(u)|E1(u), . . . , Ei−1(u)) ≤ P
(
Bin(N, 1− (1− p)d+

i−1) ≥ d+
i

)
+P

(
Bin(N − 1− d+

1 − . . .− d+
i−1, 1− (1− p)d−i−1) ≤ d−i

)
.

(5.5)
Note that, for all j < D′, one has:

d−j ≤ d+
j ≤ d+

D′−1 ≤
(

δ(1+ε)
δ+ε

)2
(δ + ε)log(N)/(2 log(δ))

≤ 4
√
Nelog(N)/(δ log(δ))

= O(
√
N),

(5.6)

in view of the assumption that δ >> log(N). This can be used to establish the following
estimates as N →∞:

N
(
1− (1− p)d+

i−1

)
= (1 + o(1))δd+

i−1,(
N − 1− d+

1 − . . .− d+
i−1

) (
1− (1− p)d−i−1

)
= (1 + o(1))δd−i−1,

where the o(1) term can be chosen independently of i ≤ D′. Indeed, the term 1−(1−p)d±i−1

also reads
1− exp

(
−pd±i−1 +O(p2d±i−1)

)
= pd±i−1 +O

(
(pd±i−1)

2
)

= pd±i−1 +O(p2N)
= pd±i−1 +O(δ2/N),
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and the latter term is o(1) as we assumed δ = o(
√
N). Furthermore, the term N −

1 − d+
1 − . . . d+

i−1 is larger than N −D′O(
√
N) = N − O(

√
N log(N)), and thus equals

N(1 + o(1)).
The Cherno� bound lemma 3.2.2 for sums of independent {0, 1}-valued random vari-

ables, applied to the right-hand side of (5.5), thus yields

P(Ēi(u)|E1(u), . . . , Ei−1(u)) ≤ e−(1+o(1))δd−i−1h(−εi) + e−(1+o(1))δd+
i−1h(εi), (5.7)

where h(x) = (1 + x) log(1 + x)− x, and

εi =
d+

i

δd+
i−1

− 1 = 1−
d−i
δd−i−1

,

and is given by ε for i = 1, 2, and by ε/δ for i > 2.
For i = 1 or 2, the exponents in the right-hand side of (5.7) are larger than cδ for

some constant c > 0. Since we have assumed that δ >> log(N), for any �xed K > 0,
the right-hand side of (5.7) is, in this case, less than N−K for N large enough.

For i > 2, using the fact that h(x) = (1 + 0(x))x2/2, the exponents in the right-hand
side of (5.7) are in this case larger than cδδ±i−1δ

−2 for some constant c > 0, and thus
again of order at least δ. Thus for i > 2 as well, for any �xed K > 0, the right-hand side
of (5.7) is less than N−K for N large enough.

The claim of the lemma is �nally established by writing:

P(E1(u), . . . , Ei(u)) ≥ P(E1(u), . . . , Ei−1(u))−P(Ēi(u)|E1(u), . . . , Ei−1(u))
≥ 1−

∑i
j=1 P(Ēj(u)|E1(u), . . . , Ej−1(u))

≥ 1−D′N−K

for N large enough. The result follows.

5.4 Proof of Theorem 5.2.1

5.4.1 The upper bound

Let us �rst establish that, with high probability, D(G(N, p)) ≤ 2D′+1. For two arbitrary
nodes u, v, note that:

P(dG(u, v) > 2D′ + 1|Γ1(u), . . . ,ΓD′(u),Γ1(v), . . . ,ΓD′(v)) ≤ (1− p)dD′ (u)dD′ (v).

Indeed, given the neighborhoods Γi(u), Γi(v) for i = 1, . . . , v, either they have non empty
intersection, in which case dG(u, v) ≤ 2D′, or they do not intersect, in which case all of
the dD′(u)dD′(v) edges must be absent for dG(u, v) > 2D′ + 1 to hold. We thus obtain:

P(dG(u, v) > 2D′ + 1) ≤ P(ĒD′(u)) + P(ĒD′(v)) + (1− p)2(d
−
D′ )

2

.
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The last term in the right-hand side is evaluated as follows:

(1− p)2(d−
D′ )

2

≤ exp
(
−2p

[
1−ε

1−ε/δ

]4
(δ − ε)log(N)/ log(δ)

)
≤ exp

(
−Ω(1)pN1−ε/(δ log(δ))(1+o(1))

)
≤ exp (−δΩ(1)) .

Since δ >> log(N), combined with the Lemma's result, we get that for all K > 0, and
su�ciently large N ,

P(dG(u, v) > 2D′ + 1) ≤ N−K .

Finally,

P(D(G(N, p)) > 2D′ + 1) ≤
∑
u 6=v

P(dG(u, v) > 2D′ + 1) ≤ N2 ×N−K .

By choosing K > 2, the desired upper bound follows.

5.4.2 The lower bound

Its proof relies on the following lemma:

Lemma 5.4.1: Given a set of N items, and two subsets C1, C2 both of size r << N ,
selected independently, and uniformly at random from sets of that size, it holds that

P(C1 ∩ C2 = ∅) = (1 + o(1)) exp
(
−r

2

N
+O(r3/(N − 2r)2))

)
.

Proof. The probability that the intersection is empty equals(
N−r

r

)(
N
r

) =
(N − r)!(N − r)!
N !(N − 2r)!

·

Stirling's formula yields the following equivalent:

P(C1 ∩ C2 = ∅) = (1 + o(1)) exp ((N − 2r) log(1 + r/(N − 2r)) +N log(1− r/N)) ,

hence the result.

Let C = D′−2. Conditioning on the neighborhood sizes d1(u), . . . , dC(u), d1(v), . . . , dC(v),
we have that:

P(dG(u, v) ≤ 2C|d1(u), . . . , dC(u), d1(v), . . . , dC(v)) ≤ P(C1 ∩ C2 6= ∅),

where C1 and C2 are sampled as in the previous lemma from an N -items set, and have
sizes

|C1| = 1 + d1(u) + . . .+ dC(u), |C2| = 1 + d1(v) + . . .+ dC(v).
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Indeed, we may construct the successive neighborhoods for the two nodes u, v as follows.
First determine Γ1(u), . . . ,ΓC(u). Let N ′ be the set of nodes not in any of these neigh-
borhoods. Conditionally on these neighborhoods, there are no edges between Γi(u) and
N ′ for all i = 1, . . . , C − 1; the distribution of the edges internal to N ′, and between
N ′ and ΓC(u) is una�ected by the conditioning. For convenience, we also introduce the
notation N ′′ := N ′ ∪ ΓC(u).

Introduce the notation:
Bk(v) = ∪0≤i≤kΓi(v).

Pick now v at random from the total node set. If it falls in N ′, construct its �rst
neighborhood Γ1(v) by picking at random a set of size d1(v) from N ′′ \ {v}. If this does
not intersect ΓC(v), choose Γ2(v) as a random set of size d2(v) taken from N ′′ \ B1(v).
Proceed until either all C neighborhoods are constructed, or one does intersect ΓC(v).

The probability that this occurs is easily seen to be as claimed the probability of
intersection of two independently, randomly selected sets of sizes |BC(u)| and |BC(v)|
respectively.

To conclude, by Lemmas 5.4.1 and 5.3.1, it holds that:

P(dG(u, v) ≤ 2C) ≤
∑C

i=1 P(Ēi(u)) + P(Ēi(v)) +O
(

(1+d+
1 +...+d+

C)2

N

)
≤ 2 log(N)N−K +O

(
(d+

D′−2
)2

N

)
≤ log(N)N−K +O((δ + ε)−2),

where we have used the fact (5.6) that d+
D′−1 = O(

√
N). Thus the right-hand side in the

last display goes to zero as N →∞.



Chapter 6

Small worlds

6.1 Background

In 1967, the sociologist Stanley Milgram published [11] results of a letter-relaying exper-
iment of his design. The now famous experiment required a source individual to forward
a letter to a destination individual, about whom were disclosed informations such as
address, name and profession. However, each source individual was forbidden to post
the letter directly to the target person. Instead she was required to forward the letter
to someone known on a �rst-name basis, who in turn was allowed to forward it only to
such familiar contacts.

The outcome was that a signi�cant fraction of letters reached their destination. More-
over, they did so in at most six hops, justifying the term �six degrees of separation�. This
fact is also often referred to as the �small world phenomenon�.

Viewing the social world as a graph, with edges between acquainted persons, certainly
if any individual could relay information to any other in a small number of hops as in
Milgram's experiment, the corresponding graph must have a small diameter. As we just
saw, the E-R graph does have a small diameter (logarithmic in the number of nodes).
However this is not a realistic model of social graphs, as it does not possess any structure,
whereas social graphs are certainly a�ected by geographic location of individuals and area
of professional activity among many factors. The model we discuss in this section is a
variant of some of the models studied by physicists Strogatz and Watts (see e.g. [15])
to illustrate how graphs with spatial structure can also exhibit small diameters, hence
providing more realistic models of social graphs.

6.2 Small world according to Strogatz and Watts

Given some integer m > 0, the node set of the graph is the set of points (i, j) ∈
{1, . . . ,m} × {1, . . . ,m}. There are thus N = m2 nodes. These nodes are connected
via two types of edges: local edges to grid neighbours (see Figure 6.1), and thus between
2 and 4 such edges per node (accounting for boundary e�ects), and �shortcut� edges.
The latter are generated as follows. The model features a second parameter, p ∈]0, 1[.
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Figure 6.1: Strogatz-Watts graph, and in-
duced graph G′

Each node u, with probability p, creates a shortcut edge, whose other end-point is cho-
sen uniformly at random from the node set. We denote by SW (N, p) the corresponding
random graph.

Note that without the addition of shortcuts, the diameter of the graph would be
2m = 2

√
N . We now show that for any �xed p > 0, the presence of shortcuts will

radically reduce the graph's diameter:

Theorem 6.2.1. Let p > 0 be �xed. Then for some constant A depending on p, the
diameter D(SW ) of the graph SW , veri�es

lim
N→∞

P(D(SW (N, p)) ≤ A log(N)) = 1.

Proof. For some integer k such that kp > 1, cut the grid into squares of k nodes (we
assume here that

√
k is an integer which divides m; this restriction looses no generality;

exercise...). We shall work on the graph G′ whose nodes correspond to these squares;
neighboring squares are connected by local edges; each square generates a random number
of shortcut edges, whose distribution is now Binomial with parameters (k, p). The other
end-points of these shortcuts are uniformly drawn from the node set of G′. We shall
denote by N ′ the vertex set of G′, and let N ′ = N/k be the number of vertices.

Note that the diameters of SW and G′ satisfy:

D(SW ) ≤ 2
√
k(2 +D(G′)).

Indeed, given two nodes u′, v′ of SW , let u, v denote the corresponding nodes in G′.
Given a path in G′ of length not larger than D(G′), one can construct from it a path
with not more than 2

√
k(D(G′) + 2) hops, hence the result. From now on we aim to

bound the diameter of G′.
Let Γ1(u) denote a group of nodes containing u, of size C log(N) for some suitable

constant C, and such that the nodes of Γ1(u) are all connected via grid edges. We
shall denote by Γ2(u) the nodes reached from nodes in Γ1(u) via shortcuts generated
from Γ1(u), and similarly we de�ne Γi(u) for i > 2 as the sets of new nodes reached by
shortcuts created within Γi−1(u). As in the study of the E-R graph, for vertices u ∈ N ′

of G′, and i ≥ 0, we note
di(u) = |Γi(u)|.

The following result is the counterpart of Lemma 5.3.1 in the present context:

Lemma 6.2.1: Let ε > 0 be �xed, such that

kp(1− ε) > 1, (6.1)
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and
log(kp(1 + ε))
log(kp(1− ε))

< 2. (6.2)

The constant C > 0 can be chosen so that, for all u ∈ N ′, with probability 1− o(N−2),
the following inequalities hold:

kp(1− ε) ≤ di(u)
di−1(u)

≤ kp(1 + ε), i = 2, . . . , D, (6.3)

where D = dlog(N)/2 log(kp(1− ε))e+ 1.

Before giving the Lemma's proof, we state the so-called Azuma-Hoe�ding inequality,
which will relay the Cherno� bound 3.2.2, since we need to deal with correlated indicator
variables rather than independent ones.

Theorem 6.2.2. (Azuma-Hoe�ding inequality) Let {Mt}t=0,...,T be a martingale such
that for all t = 1, . . . , T ,

|Mt −Mt−1| ≤ cT almost surely (6.4)

for positive constants c1, . . . , cT . Then for all x > 0, one has

P(MT −M0 ≥ x) ≤ exp

(
− x2

2
∑T

t=1 c
2
t

)
. (6.5)

Proof. Fix θ > 0. Tchebitchev's inequality yields:

P(MT −M0 ≥ x) ≤ E [exp(θ(MT−1 −M0))E (exp(θ(MT −MT−1))|FT−1)] e−θx, (6.6)

where Ft = σ(M0, . . . ,Mt}. Note that, in view of (6.4), for some Z ∈ [0, 1], one has:(
N ′ − 1− d1(u)− . . .− di−1(u)

)
(1− (1− 1/N ′)T ).MT −MT−1 = ZcT + (1− Z)(−cT ).

Thus by convexity of the function y → eθy, one has

exp(θ(MT −MT−1)) ≤ ZeθcT + (1− Z)e−θcT .

Furthermore, by the martingale property E(MT − MT−1|FT−1) = 0. Equivalently,
E(Z|FT−1) = 1/2, so that

E (exp(θ(MT −MT−1))|FT−1) ≤
eθcT + e−θcT

2
·

Expanding the right-hand side in power series of θcT , it can be seen that this is less than
or equal to exp((θcT )2/2). Repeating the argument, we obtain from (6.6):

P(MT −M0 ≥ x) ≤ exp

(
θ2
∑T

t=1 c
2
t

2

)
exp(−θx).

Optimising over θ > 0 yields the result (6.5)
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A useful corollary is the following:

Corollary 6.2.1. Let f : Ω1 × · · · ×ΩT → R be a measurable function such that, for all
x1, . . . , xT ∈ Ω1 × · · · × ΩT , all t ∈ {1, . . . , T}, and all yt ∈ ΩT , one has:

|f(x)− f(x1, . . . , xt−1, yt, xt+1, . . . , xT )| ≤ ct. (6.7)

Then, given independent random variables X1, . . . , XT taking their values in Ω1, . . . ,ΩT

respectively, the random variable Y := f(X1, . . . , XT ) veri�es for all x > 0:

P(Y −E(Y ) ≥ x) ≤ exp

(
− x2

2
∑T

t=1 c
2
t

)
.

Proof. Let for all t = 0, . . . T : Mt = E(Y |X1, . . . , XT ). In particular, M0 = E(Y ) and
MT = Y . Let us verify that the martingale {Mt}0≤t≤T satis�es assumption (6.4). Let
pt(·) denote the probability distribution of Xt. For all t = 1, . . . , T , one has

|Mt −Mt−1| =
∣∣∣∫Ωt×···×ΩT

pt(dyt)× · · · × pT (dyT )
[
f(Xt

1y
T
t+1)− f(Xt−1

1 yT
t )
]∣∣∣

≤ ct

in view of assumption (6.7), where we used the notation

(xt
1y

T
t+1) = (x1, . . . , xt, yt+1, . . . , yT ).

The result follows.

We now return to the proof of Lemma 6.2.1. Note that, conditionally on d1(u), . . . , di−1(u),
the number of shortcuts generated from Γi−1(u) follows a binomial distribution with pa-
rameters (kdi(u), p). Let T denote this number of shortcuts.

Condition on this number T , and on the sets Γ1(u), . . . ,Γi−1(u ), and let At, . . . , AT

denote the locations to which these shortcuts connect. Writing di(u) = f(A1, . . . , AT ),
it is readily seen that function f satis�es condition 6.7 of Corollary 6.2.1 with ct = 1.
Indeed, di(u) counts the number of occupied bins, among N ′ − 1− d1(u)− . . .− di−1(u)
available, after throwing T balls at random. Changing the location of one ball can change
the number of occupied bins by at most 1. We thus have:

P(di(u)− d̄i(u) ≥ x|T,Γ1(u), . . . ,Γi−1(u)) ≤ exp
(
− x2

2T

)
,

where d̄i(u) = E(di(u)|T,Γ1(u), . . . ,Γi−1(u)). The same upper bound holds for devia-
tions of di(u)− d̄i(u) below −x, by symmetry. Note that

d̄i(u) =
(
N ′ − 1− d1(u)− . . .− di−1(u)

)
(1− (1− 1/N ′)T ).

Denote by Ei(u) the event

Ei(u) = {(1− ε)kp ≤ di(u)/di−1(u) ≤ (1 + ε)kp}.
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Let I := [kpdi−1(u)(1− ε/2), kpdi−1(u)(1 + ε/2)]. We then have:

P
(
Ēi|E2(u), . . . , Ei−1(u)

)
≤ P(T /∈ I|E2(u), . . . , Ei−1(u))

+P
(

di(u)
di−1(u) ≥ kp(1 + ε)|T ∈ I, E2(u), . . . , Ei−1(u)

)
+P

(
di(u)

di−1(u) ≤ kp(1− ε)|T ∈ I, E2(u), . . . , Ei−1(u)
)
.

(6.8)
On the event ∩i−1

j=2Ej(u), since kp(1− ε) > 1 by assumption (6.1), it holds that di−1(u) ≥
C log(N). Thus, by Lemma 3.2.2, the �rst term in the right-hand side of the above
expression is bounded by exp(−C log(N)h(ε/2)). For suitably large C, this is less than
N−K for any desired K > 0.

Azuma-Hoe�ding inequality yields the following bound on the second term in the
right-hand side:

sup
T∈I

exp(−x2/(2T )),

where

x = di−1(u)kp(1 + ε)−
(
N ′ − 1− d1(u)− . . .− di−1(u)

)
(1− (1− 1/N ′)T ).

Using Condition (6.2), it can be shown that for all i ≤ D, on the event ∩i−1
j=2Ej(u),

one has di−1(u) = o(N). It follows that x, in above expression, is lower-bounded by
di−1(u)kp(1 + ε) − (1 + o(1))T , and eventually the Azuma-Hoe�ding bound is in turn
upper-bounded by exp−ε′C log(N) for some suitable ε′ > 0. The third term in the right-
hand side of (6.8) is dealt with in a similar manner. Eventually, we obtain that for any
K > 0, and for a suitable choice of C, for all u and all i = 1, . . . , D,

P(Ēi|E2(u), . . . , Ei−1(u)) ≤ N−K .

The result of Lemma 6.2.1 readily follows.

The proof of Theorem 6.2.1 is now concluded as follows. Given any two nodes u, v,
we have:

P(dG′(u, v) > 2D + 2C log(N)) ≤ P
(
∩D

i=2Ei(u)
)

+ P
(
∩D

i=2Ei(v)
)

+ π,

where π is the probability that two sets of sizes C log(N)kp(1− ε)D, picked uniformly at
random from a set of N nodes, have an empty intersection. Note that

C log(N)kp(1− ε)D ≥ r = C log(N)
√
N,

by our choice of D. In view of Lemma 5.4.1, we thus have that

π ≤ (1 + o(1)) exp
(
−C2 log(N)2(1 + o(1))

)
.

Thus certainly, P(dG′(u, v) > 2D+2C log(N)) = o(N−2). Summing this evaluation over
all pairs (u, v) ensures that with high probability, the diameter of G′ is O(log(N)).
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6.3 Small world according to Kleinberg

In a recent article [7], Kleinberg revisited the small world phenomenon. His key observa-
tion is that while models such as that of Strogatz and Watts can explain the presence of
short paths between nodes, they do not explain how individuals managed to e�ciently
determine such short paths in Milgram's experiment.

He proposes a model related to that of Strogatz and Watts, but where the distribu-
tion of the destination of shortcuts is not necessarily uniform. A critical parameter, α,
characterizes this distribution of shortcuts. Kleinberg showed that, for a critical value α∗

of α, individuals can determine paths of length at most a power of the logarithm of the
number of nodes. He also established that, for α < α∗, short paths exist, but individuals
cannot determine them in a decentralised manner. When α > α∗, short paths no longer
exist. As a result, unless α = α∗, in this model it takes a number of steps that is of the
order of a power of the number of nodes, instead of its logarithm, for an individual to
determine another one.

6.3.1 The model

Nodes are again identi�ed with the points of the grid {1, . . . ,m} × {1, . . . ,m}. Nodes u
and v are grid neighbours if their L1 distance |u− v| = |u1− v1|+ |u2− v2| equals 1. An
additional parameter q determines the number of shortcuts generated by each individual.
Finally, a node u chooses another node v as the destination of a shortcut with probability
|u−v|−α/

∑
w 6=u |u−w|−α, for some parameter α ≥ 0. Here, |u−v| refers to the minimal

number of hops from u to v using grid edges only, or equivalently to L1 distance.
Note that when α = 0, shortcuts are again selected uniformly at random. Thus, by

the analysis of the model of Strogatz and Watts, we know that, in this case, the diameter
is logarithmic in the number of nodes N = m2.

6.3.2 E�cient routing for critical α

We now show the following

Theorem 6.3.1. Assume α = 2. Consider the following greedy routing scheme. A
node u, trying to reach a node v, forwards the request to the node w from its grid and
shortcut neighbours which is closest (according to L1 distance) to target v. Then, for
all nodes u, v, the number of steps Tgreedy(u, v) used by this scheme to reach v from u
veri�es

E(Tgreedy(u, v)) ≤ A log(N)2 (6.9)

for some constant A.

Proof. Let the source and destination nodes u, v be �xed. Let u(t) be the node at which
the greedy algorithm is after t steps. We shall say that the algorithm is in phase j at
time t if

2j < |u(t)− v| ≤ 2j+1.
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At each step spent in phase j, at least one new shortcut is discovered (recall that there
q ≥ 1 shortcuts created from each node; also, the presence of grid edges guarantees that
the greedy algorithm moves closer to destination at each step). Given that u(t) belongs
to phase j, the probability that a shortcut towards a node w leads to a phase k < j
admits the lower bound

min
u(t):2j<|u(t)−v|≤2j+1

∑
w:|v−w|≤2j |u(t)− w|−2∑

u′ 6=u(t) |u(t)− u′|−2
·

The upper term is in turn lower-bounded by

(2j+1 + 2j)−2
j−1∑
i=1

≥ 1/36,

while the lower summation is upper-bounded by

2m∑
i=1

(4i)i−2 ≤ 4
(

1 +
∫ 2m

1

1
x
dx

)
≤ 4(1 + log(2m)).

Thus the probability of moving to a better phase is at least

1
144 (1 + log(2m))

·

This entails that the number of steps spent in a given phase j is dominated by a geometric
random variable with parameter 1/[144(1 + log(2m))]. Since there are at most log2(2m)
phases, the average number of steps to reach the destination veri�es

E(T (u, v)] ≤ 144 (1 + log(2m))
log(2m)
log(2)

= O((log(N))2),

as announced.

6.3.3 Impossibility of e�cient routing, α < 2

In the present context, we say that a routing algorithm is decentralised if the routing
decision made at step t depends only on knowledge of the nodes u(0), . . . , u(t) visited
so far, and of the knowledge of the coordinates of shortcuts generated at these nodes.
Clearly, the greedy algorithm used in the previous theorem is decentralised in this sense.

We now show that for α < 2, no decentralised algorithm can perform e�ciently:

Theorem 6.3.2. Assume α ∈ [0, 2). Then for any decentralised algorithm alg, the
average number of steps E[Talg(u, v)] it takes to reach a destination v from a source u
veri�es, for �most� pairs (u, v),

E[Talg(u, v)] = Ω
(
m

2−α
3

)
· (6.10)
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Proof. Consider the neighborhood V = {w : |v−w| ≤ C}, for some C to be speci�ed, and
let t = εC , for some �xed ε ∈ (0, 1). Assume that |u − v| > C. Then, if the algorithm
is to reach v from u in t steps, necessarily the last shortcut used by the algorithm must
end in neighborhood V. Indeed, otherwise after the last shortcut is taken, the current
node is outside V; however there remain at most t < C steps to take, and using only grid
edges this will not reach v from outside V, by de�nition of V.

Thus the algorithm will fail to route to destination in t steps if it does not discover a
shortcut leading into V in the �rst t visited locations. From any node w, the probability
that a shortcut generated at that node reaches V reads∑

v′:|v′−v|≤C |v′ − w|−α∑
v′ 6=w |v′ − w|−α

·

The upper term is bounded from above, uniformly in w, by |V|, which is no larger than
1+4C(C+1)/2 itself not larger than 3C2 for C ≥ 1. The denominator is lower-bounded
by:

m/2∑
i=1

i× i−α ≥
∫ m/2

1
x1−αdx =

m2−α − 1
2− α

≥ 1
2
m2−α

for m large enough. Thus the probability of a shortcut reaching V is at most 6C2mα−2.
Finally, since at each step at most q new shortcuts are discovered, by the above argument
the probability of failing to route to destination in t steps is at least:

1− qt sup
w

P(shortcut generated from w fails to reach V) ≥ 1− qε(6C3mα−2).

Setting C = m
α−2

3 , and ε = 1/(12q), the right-hand side simpli�es to 1/2. Finally, we

obtain that, for u, v such that |u− v| > C = m
2−α

3 ,

E[Talg(u, v)] ≥
1
2
εm

2−α
3 =

1
24q

m
2−α

3 .

Since the fraction of pairs of nodes (u, v) such that |u − v| > m
2−α

3 approaches 1 as
m→∞, the claim follows.

6.3.4 Impossibility of e�cient routing, α > 2

Theorem 6.3.3. Assume that α > 2. There is an increasing function f : R+ → R
+

such that, for any distributed algorithm alg, and any two source and destination nodes
u, v, the corresponding expected number of steps veri�es

E[Talg(u, v)] ≥ f (|u− v|/m)mγ , (6.11)

where γ := (α− 2)/(α− 1). Thus, for more than one half (say) of pairs of nodes u, v,
decentralised routing takes of the order of mγ steps on average.
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Proof. For some d to be speci�ed, note that the probability that a shortcut generated at
a node w reaches a target w′ such |w − w′| exceeds d is at most∑∞

i=d+1 4i× i−α∑
w′ 6=w |w − w′|−α

≤ 4
∫ ∞

d
x1−αdx =

4
2− α

dα−2.

Given a target number of steps t, and two source nodes u, v, such that td < |u − v|,
routing will fail to reach destination v in t steps if all shortcuts found in these t steps all
have length not larger than d. This entails that:

E[Talg(u, v)] ≥ t

[
1− qt

4
α− 2

dα−2

]
. (6.12)

Now choose t, d to ensure:

td =
|u− v|

2
,

and

qt
4

α− 2
d2−α = 1/2,

the latter ensuring that the right-hand side in (6.12) equals 1/2. These two equations
solve to give

d = |u− v|1/(α−1)

[
4q

α− 2

]1/(α−1)

, t = |u− v|(α−2)/(α−1) 1
2

[
4q

α− 2

]−1/(α−1)

.

The evaluation (6.11) now follows from (6.12) by setting

f(x) = xγ 1
4

[
4q

α− 2

]−1/(α−1)

.
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Chapter 7

Power laws via preferential

attachment

So far we have considered E-R random graphs, de Bruijn graphs, and small world graphs
à la Srogatz and Watts or à la Kleinberg. In all these examples, the degree distribution
of nodes is sharply concentrated around its mean. For E-R graphs, using the Cherno�
bound 3.2.2, denoting by δ the average degree δ = (N − 1)p, it holds that:

P(∃i ∈ {1, . . . , N} : |di − δ| ≥ εδ) ≤ N (exp(−δh(ε)) + exp(−δh(−ε))) .

Thus, assuming δ >> log(N), if we take ε = 2
√

log(N)/δ, since h(x) = x2/2(1 + o(x)),
we �nd that the exponents in the right-hand side above are equivalent to 2 log(N), hence
the right-hand side is of order 1/N : with high probability, no node degree deviates from
its mean δ by a factor larger than 2

√
log(N)/δ << 1.

The degrees in all the other graphs we have studied so far are, with high probability,
bounded by a constant multiple of the logarithm log(N) of the number of nodes N .
In contrast, many examples of graphs display very di�erent degree distributions. In
particular, it is common to have graphs where the number of nodes of degree larger than
i is roughly proportional to i−β , for some exponent β, and over a signi�cant range of
values i. We do not try to provide a rigorous de�nition, and to make precise what is
meant by �roughly proportional�, and �signi�cant range of values�. Examples where this
behaviour appears are: the graph of the Internet topology, when viewed at the router
level and also at the autonomous system level; the web graph, in which nodes are web
pages and links are hyperlinks; the Hollywood graph where nodes are actors and links
indicate that two actors played in the same movie; etc... For a survey with many more
examples, see Newman [14].

This feature of graphs has implications on the behaviour of processes such as epi-
demics that may evolve on them. This chapter is concerned with generative models that
produce graphs with such properties. One mechanism that has been proposed for explain-
ing the presence of power laws is that of preferential attachment. We shall �rst illustrate
this on a simple graph formation process, which has been popularised by Barabási and
Albert [3]. We will then present a precursor of this model, namely the model of Yule [16]

55
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for explaining power law distributions for the number of species within genera of plants
(among other broad families of living things).

7.1 Barabási-Albert random graphs

The model we consider is as follows. A graph is grown over time, starting with an initial
graph G(0), and adding one vertex u(t) at each time step t = 1, 2, . . .. The resulting
graph by the end of step t is denoted G(t), has

N(t) = N(0) + t

vertices. The new vertex u(t) is attached to the previous graph G(t−1) by a single edge.
Thus the total number of edges in G(t), that we denote E(t), veri�es

E(t) = E(0) + t.

The node to which u(t + 1) attaches in G(t) is chosen as follows. For some parameter
α ∈ (0, 1), the anchor node is chosen uniformly at random from the N(t) nodes of G(t).
With probability 1 − α, a node v is selected with probability dt(v)/2E(t), where dt(v)
denotes the degree of node u in graph G(t). Note that this de�nes a proper probability
distribution since the sum of node degrees in G(t) is indeed twice the number of edges
E(t).

A descriptor of the graph G(t) suitable for the identi�cation of power laws is the
following. Denote by Xi(t) the number of nodes with degree i in G(t). Denote by
Ft the sigma-�eld containing all the information about the graphs G(0), . . . , G(t). The
above preferential attachment rule entails the following properties for the vector X(t) =
{Xi(t)}i≥1:

P(X1 (t+ 1) = X1(t)|Ft) = αX1(t)
N(t) + (1− α)X1(t)

2E(t) ,

P(X1(t+ 1) = X1(t) + 1|Ft) = 1− αX1(t)
N(t) − (1− α)X1(t)

2E(t) .
(7.1)

Similarly, for all i > 1, one has:

P(Xi(t+ 1) = Xi(t) + 1|Ft) = αXi−1(t)
N(t) + (1− α) (i−1)Xi−1(t)

2E(t) ,

P(Xi(t+ 1) = Xi(t)− 1|Ft) = αXi(t)
N(t) + (1− α) (i Xi(t)

2E(t) ,

P(Xi(t+ 1) = Xi(t)|Ft) = 1− αXi(t)+Xi−1(t)
N(t) − (1− α) i Xi(t)+(i−1)Xi−1(t))

2E(t) .

(7.2)

The main result of this section is the following

Theorem 7.1.1. Let

c1 =
2

3 + α
,

ci
ci−1

=
α+ 1−α

2 (i− 1)
1 + α+ 1−α

2 i
, i > 1. (7.3)

Then for all i ≥ 1, it holds that

Xi(t)
t

→ ci almost surely as t→∞. (7.4)
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A consequence of the theorem is that the graph Gt is approximately a power-law
random graph. Indeed, for large i > 1, one has:

ci
ci−1

= 1− 3− α

2 + 2α+ (1− α)i
= 1− 1

i

3− α

1− α
+O(i−2).

Consequently,

ci = c1

i∏
j=2

(
1− 1

i

3− α

1− α
+O(i−2)

)
∼ Ai−

3−α
1−α as i→∞,

for some constant A > 0.
[Here give more details about graph being power-law]
The proof proceeds by �rst controlling the average values X̄i(t) := E(Xi(t)), which

is done in the following:

Theorem 7.1.2. For all ε > 0, and all i ≥ 1, it holds that

X̄i(t) = cit+ o(tε). (7.5)

Proof. Let ε > 0 be �xed. Introduce the notation

∆i(t) = X̄i(t)− ci(t), i ≥ 1, t ≥ 1.

By Equation (7.1), it holds that:

∆1(t+ 1) = ∆1(t)− c1 + 1− α X̄1
N(t) − (1− α) X̄1(t)

2E(t)

= ∆1(t)
[
1− α

N(t) −
1−α
2E(t)

]
− c1 + 1− c1t

(
α

N(t) + 1−α
2E(t)

)
.

Note that the term [α/N(t) + (1− α)/2E(t)] is in the interval [0, 1], and furthermore it
equals t−1[α+ (1− α)/2] +O(t−2). This yields

∆1(t+ 1) = ∆1(t)
[
1− α

N(t) −
1−α
2E(t)

]
− c1 + 1− c1(α+ (1− α)/2) +O(t−1)

= ∆1(t)
[
1− α

N(t) −
1−α
2E(t)

]
+O(t−1),

by our choice of c1. It thus follows that

|∆1(t+ 1))| ≤ |∆1(t)|+O(t−1) ≤ O(log(t)),

the latter evaluation being obtained by induction on t. Thus certainly, ∆1(t) = X̄1(t)−
c1t = o(tε).

Let us now consider i > 1, and assume that a similar condition (7.5) holds for all
j < i. Using (7.2), write

∆i(t+ 1) = ∆i(t)− ci + X̄i−1(t)
[

α
N(t) + (1−α)(i−1)

2E(t)

]
− X̄i(t)

[
α

N(t) + (1−α)i
2E(t)

]
= −ci + ∆i(t)

[
1− α

N(t) + (1−α)i
2E(t)

]
+ ∆i−1(t)

[
α

N(t) + (1−α)(i−1)
2E(t)

]
+ci−1t

[
1− α

N(t) + (1−α)i
2E(t)

]
− cit

[
α

N(t) + (1−α)i
2E(t)

]
= ∆i(t)

[
1− α

N(t) + (1−α)i
2E(t)

]
+O(∆i−1(t)/t) +O(t−1).
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By the induction hypothesis, ∆i−1(t)/t = o(tε−1). We thus arrive at

|∆i(t)| = o

(
t∑

s=1

sε−1

)
= o(tε),

which is the claimed property.

We next need the following lemma:

Lemma 7.1.1: For all i, t ≥ 1, and all M > 0, it holds that

P
(
|Xi(t)− X̄i(t)| ≥M

)
≤ 2 exp

(
−M

2

8t

)
. (7.6)

Before giving the proof of this Lemma, we show how, together with Theorem 7.1.2,
it implies the result of Theorem 7.1.1. Take M = 4

√
t log(t) in (7.6). This yields

P
(
|Xi(t)− X̄i(t)| ≥ 4

√
t log(t)

)
≤ 2t−2.

The sum over t ≥ 0 of the right-hand side 2t−2 is �nite. Thus, by Borel-Cantelli's lemma,
the event

|Xi(t)− X̄i(t)| ≥ 4
√
t log(t)

occurs for only �nitely many t's. Thus combined with Theorem 7.1.2, this entails that
for all ε > 0, and all large enough t, it holds that

|Xi(t)− cit| ≤ tε + 4
√
t log(t),

and the result of Theorem 7.1.1 follows. Let us now give the proof of Lemma 7.1.1.

Proof. Let t, i ≥ 1 be �xed. Denote by v(s) the node in G(s− 1) to which the node u(s)
attaches to. We make the dependency of Xi(t) on the consecutive choices v(1), . . . , v(t)
explicit by writing

Xi(t) = f(v(1), . . . , v(t)).

We further de�ne the martingale {M(s)}0≤s≤t by letting

M(s) = E[Xi(t)|v(1), . . . , v(s)], s = 0, . . . , t.

Let us show that this martingale satis�es the following property:

|M(s)−M(s− 1)| ≤ 2 almost surely, s = 1, . . . , t. (7.7)

To this end, let s ∈ {1, . . . , t} be �xed. Let the sequence v(1), . . . , v(s) be given, and let
another random node V ′(s) of G(s− 1) be given, that is distributed as the anchor node
in G(s), given that the previous anchor nodes are v(1), . . . , v(s− 1). We now construct
jointly random node sequences V (s + 1), . . . , V (t), and V ′(s + 1), . . . , V ′(t) with the
following two properties:
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• The distribution of V (s + 1), . . . , V (t) (respectively, V ′(s + 1), . . . , V ′(t)) is that
of the s + 1-th to t-th anchor nodes in the graph growth model under consider-
ation, conditionally on the �rst s anchor nodes being v(1), . . . , v(s) (respectively,
v(1), . . . , v(s− 1), V ′(s));

• Denoting by G(s), . . . G(t) (respectively, G′(s), . . . , G′(t)) the corresponding se-
quence of growing graphs, for all u = s, . . . , t, and any node w in the node set
of G(u) and G′(u), then the degree du(w) of w within graph G(u) coincides with
the degree d′u(w) within graph G′(u), unless w equals either v(s) or V ′(s).

Let us prove by induction on u = s, . . . , t that this can indeed be achieved. Note �rst
that the graphs G(s) and G′(s) only di�er by the attaching point v(s) or v′(s) of newly
added node u(s). Thus the degrees of all other nodes agree. Assuming that this property
holds for G(u) and G′(u), sample the new anchor nodes V (u+1) and V ′(u+1) as follows.

With probability α, pick the same anchor node V (u + 1) = V ′(u + 1), uniformly at
random from the node set of G(u) and G′(u).

With probability 1 − α, sample the anchor nodes V (u + 1), V ′(u + 1) as follows.
Let V (u + 1) = V ′(u + 1) = w with probability du(w)/2E(u) if w 6= v(s), V ′(s). With
probability (du(v(s)) + du(V ′(s))/2E(u) = (d′u(v(s)) + d′u(V ′(s)))/2E(s), take V (s +
1), V ′(s+1) ∈ {v(s), v′(s)}, ensuring that they take the proper values v(s) or V ′(s) with
the relative probabilities consistent with the preferential attachment model.

Note that this joint, or coupled construction, is feasible since at each step both graphs
G(u) and G′(u) have the same number of edges, given that the degrees of all nodes but
v(s), v′(s) agree in both graphs, then the sums of degrees du(v(s)) + du(V ′(s)) and
d′u(v(s)) + d′u(V ′(s)) coincide. Now, equation (7.7) follows by writing

|M(s)−M(s− 1)| ≤
∣∣∣∑vt

s+1,v′s
t P(V t

s+1 = vt
s+1, V

′
s
t = v′s

t)
[
f(vt

1)− f(vs−1
1 v′s

t)
]∣∣∣

≤
∑

vt
s+1,v′s

t P(V t
s+1 = vt

s+1, V
′
s
t = v′s

t)
∣∣f(vt

1)− f(vs−1
1 v′s

t)
∣∣ .

However, the coupling construction ensures that in the graphs G(t) and G′(t), the
degrees of all but at most two nodes disagree. Recall that f counts the number of degree
i nodes. Then clearly, the absolute value in the right-hand side of the above does not
exceed 2. Since the sum of probabilities equals 1, Equation (7.7) follows.

7.2 Yule process

A precursor of the previous model is the so-called Yule process, introduced in [16] as a
plausible model of the evolution of the number of species within genera, that are families
of species. The model is as follows. Species are organised in families. Each species
gives birth, at some �xed rate, to a new species, thanks to mutations. Species don't
go extinct in the basic version of the model. The new species is, with probability α, so
di�erent from any other species that it creates a new family of species of its own. With
the complementary probability (1− α), it is a member of the same family as the species
from which it originates.
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Let us denote by Xi(t) the number of families comprising exactly i species, after the
t-th new species has appeared. The initial condition is speci�ed by the vector {Xi(0)}i≥1.
Denoting by Ft the sigma-�eld σ(X(0), . . . , X(t), the dynamics are then such that:

P(X1(t+ 1) = X1(t) + 1|Ft) = α,

P(X1(t+ 1) = X1(t)− 1|Ft) = (1− α)X1(t)
N(t) ,

P(X1(t+ 1) = X1(t)|Ft) = 1− α− (1− α)X1(t)
N(t) ,

(7.8)

where N(t) denote the total number of species. Note that

N(t) = N(0) + t.

Similarly, we have for all i > 1 and t ≥ 0:

P(Xi(t+ 1) = Xi(t) + 1|Ft) = (1− α) (i−1)Xi−1(t)
N(t) ,

P(Xi(t+ 1) = Xi(t)− 1|Ft) = (1− α) iXi(t)
N(t) ,

P(Xi(t+ 1) = Xi(t)|Ft) = α+ (1− α)
[
1− iXi(t)+(i−1)Xi−1(t)

N(t)

]
.

(7.9)

We now establish the following

Theorem 7.2.1. Let

c1 =
α

2− α
,

ci
ci−1

= 1− 2− α

1 + i(1− α)
, i > 1. (7.10)

Then for all i ≥ 1, it holds that

Xi(t)
t

→ ci almost surely as t→∞. (7.11)

The proof proceeds along the same lines as that of Theorem 7.1.1. We �rst analyse
the asymptotic behaviour of the expected values X̄i(t) := E(Xi(t)):

Theorem 7.2.2. For all ε > 0, and all i ≥ 1, it holds that

X̄i(t) = cit+ o(tε). (7.12)

Proof. De�ne as previously ∆i(t) = X̄i(t)− cit, for all i, t ≥ 1. For i = 1, we have that

∆1(t+ 1) = ∆1(t)− c1 + α− (1− α) X̄1(t)
N(t)

= ∆1(t)
(
1− 1−α

N(t)

)
− c1 + α− (1− α) c1t

N(t)

= ∆1(t)
(
1− 1−α

N(t)

)
+O(t−1),

which again ensures that ∆1(t) = O(log(t)).
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Let us assume that for all j < i, and all ε > 0, ∆j(t) = o(tε). Write then

∆i(t+ 1) = ∆i(t)− ci + 1−α
N(t)

[
(i− 1)X̄i−1(t)− iX̄i(t)

]
= ∆i(t)

[
1− (1−α)i

N(t)

]
+ (1−α)(i−1)

N(t) ∆i−1(t)

−ci
(
1 + (1−α)it

N(t)

)
+ ci−1

(1−α)(i−1)t
N(t)

= ∆i(t)
[
1− (1−α)i

N(t)

]
+O(tε−1),

where we have used the induction assumption ∆i−1(t) = o(tε), and cancellation of terms
based on the expression of ci/ci−1 in (7.10). The result (7.12) easily follows.

In order to conclude the proof of Theorem 7.2.1, let us establish that the statement
of Lemma 7.1.1 is true with the state variables Xi(t) for the Yule process rather than
for the preferential attachment graph. Let then i, t be �xed. Denote by v(s) the label of
the species that gave birth to a new species at the s-th such birth, and let ξs ∈ {0, 1}
equal 1 if this new species starts a new family, and 0 otherwise. Denote by x(s) the pair
(v(s), ξs). Note that the variables {x(s)}s=1,...,t are independent, v(s) being uniform on
the label set of species at time s − 1 (for de�niteness, take it to be {1, . . . , N(s − 1)}),
and independent of ξs, which is a Bernoulli random variable, equal to 1 with probability
α. Writing

Xi(t) = f(x(1), . . . , x(t))

we now show that we can use the second form of Azuma-Hoe�ding's inequality, Corol-
lary 6.2.1, to control the deviations of this random variable from its mean. Indeed,
consider a sequence xt

1 = (x1, . . . , xt), and another sequence xs−1
1 ysx

t
s+1, di�ering from

the �rst only in its s-th coordinate. Taking the graphical representation, in which a new
species is identi�ed to a graph node, and is connected to its generating species by an
edge if it belongs to the same family, and to no other family otherwise (as in Figure 7.1),
by changing the coordinate xs to ys in the sequence xt

1 we simply modify the end point
of the edge connecting the s-th node (we may either remove this edge, or create it if it
was absent). Now, the number of families consisting of i species is exactly the set of
connected components with i nodes inthe graphical representation.

By removing one edge of a graph, we may split a connected component into two. This
can remove at most one connected component of size i, and at most create two connected
components of size i. Thus addition/removal of one edge modi�es the number of size i
components by at most 2.

Similarly, by changing the end-point of one edge, we can remove at most two size i
components. By symmetry, we can add at most two such components. This shows that,
for the function f above, it holds that:

|f(xt
1)− f(xs−1

1 ysx
t
s+1)| ≤ 2,

for all possible choices of xt
1, s = 1, . . . , t, and ys. Thus Corollary 6.2.1 applies, and the

proof of Theorem 7.2.1 then parallels that of Theorem 7.1.1.
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Figure 7.1: Graphical representation of Yule
process. Squares are species starting new
family; circles are species connected to its
originating species, hence part of the same
family.

7.3 Notes

For further reading: Mitzenmacher [13] discusses other models for generating power laws,
as well as lognormal distributions. He also reviews a justi�cation completely di�erent
from the preferential attachment model, due to Mandelbrot [12] for the fact that the
distribution of word occurences in a text follows a power law. According to Mandelbrot,
such power laws yield the maximal information rate per length of text, counted in letters
rather than words.

A richer model than that of Barabási-Albert, featuring multiple edge additions per
node arrival, and oriented edges, is presented in [5], together with an analysis of resulting
power laws for both in-degrees and out-degrees.



Chapter 8

Epidemics on general graphs

8.1 Model and motivation

In the present chapter we investigate the behaviour of Susceptible-Infective-Susceptible
epidemics on general �nite graphs. The model we consider is also known as the contact
process. It is described as follows. A graph G is given, with a �nite node set {1, . . . , N}.
Variable Xi(t) tracks the health status of node i: it is infected if Xi(t) = 1, and healthy
if Xi(t) = 0. Infected nodes return to susceptible state at unit rate, while susceptible
nodes become infected at a rate that is the product of the base infection rate, β > 0, and
the number of graph neighbours that are infected.

Such dynamics could be plausible models of the following situations:

• Epidemics of mutating viruses, where a new mutant can re-infect an individual
previously infected by another version of the virus (think of in�uenza);

• A crude information storage system. Here, nodes correspond to storage locations;
they remove stored information at unit rate, while nodes holding some information
replicate it at neighbour nodes at some rate β.

In these two scenarios, a quantity of interest is the time to recovery from the epidemics
(in the second situation, this would correspond to information loss by the system). Note
that, when the graph is �nite, extinction is bound to happen. This is in contrast with
the case of in�nite graphs, where infection can survive forever. For a survey of results
for the contact process on in�nite graphs, such as regular grids and trees, see [8].

A more formal description of the contact process is as follows. It is a Markov jump
process on {0, 1}N , with non-zero transition rates q(x, y) between states x, y ∈ {0, 1}N

given by

q(x, x+ ei) = β(1− xi)
∑

j∼i xj , x ∈ {0, 1}N , i ∈ {1, . . . , N},
q(x, x− ei) = xi, x ∈ {0, 1}N , i ∈ {1, . . . , N}. (8.1)

In the above, i ∼ j refers to i and j being graph neighbours, and ei denotes the vector
with its i-th coordinate equal to 1, and all other coordinates equal to 0.

63
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The chapter is organised as follows. We �rst give a su�cient condition for fast
extinction (absorption at 0) of the process. We next give a su�cient condition for long
survival of the process. We then apply these two results to several graph models of
interest.

8.2 Fast extinction and spectral radius for the SIS epidemics

Recall that the adjacency matrix A of a graph G is determined by Aij = 1 if i ∼ j,
and 0 otherwise. Also recall that the spectral radius of a matrix is the maximum of the
absolute value of its eigenvalues. We shall establish the following

Theorem 8.2.1. Let A denote the adjacency matrix of graph G, and ρ denote the
spectral of this matrix. Then for any initial condition X(0) = {Xi(0)}1=1,...,N , and all
t ≥ 0, one has the following:

P(X(t) 6= 0) ≤

√√√√N
N∑

i=1

Xi(0) exp ((βρ− 1)t) , (8.2)

where X(t) := {Xi(t)}1=1,...,N denotes the state of the contact process with parameter
β, on graph G, at time t.

In order to establish this result, we shall rely on a general coupling technique, which
allows to relate the trajectories of di�erent Markov processes. This will be phrased in
the context of skip-free Markov jump processes, which we now de�ne.

De�nition 8.2.1. Let K > 0 be some �xed integer. A skip-free Markov jump process on
the state NK , is by de�nition a Markov jump process on this state space, whose transition
rates q(x, y), for x 6= y ∈ NK , are all zero except when y = x+ ei or y = x− ei for some
i ∈ {1, . . . ,K}. The transition rate q(x, x + ei) is also referred to as the birth rate at
site i when in state x. Similarly, the transition rate q(x, x− ei) is the death rate at site
i when in state x.

The basic coupling result we shall use is the following

Theorem 8.2.2. Consider two skip-free Markov jump processes X, X ′ de�ned on the
state space NK , with respective birth rates βi(x), β′i(x), and death rates δi(x), δ′i(x), for
x ∈ NK , and i ∈ {1, . . . ,K}.
Assume that for all x, y ∈ NK such that x ≤ y (i.e., xi ≤ yi for all i = {1, . . . ,K}), the
following holds:

xi = yi ⇒ βi(x) ≤ β′i(y) and δi(x) ≥ δ′i(y). (8.3)

Then, for initial conditions X(0) and X ′(0) verifying X(0) ≤ X ′(0), one can construct
the two processes X, X ′ jointly so that for all t ≥ 0, the ordering is preserved, that is
X(t) ≤ X ′(t).
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Proof. Consider the Markov process on the state space {(x, x′) ∈ NK ×NK : x ≤ x′},
with only non-zero transition rates given as follows. For any state (x, x′), and i ∈
{1, . . . ,K}, if xi < x′i the non-zero transition rates are

q((x, x′), (x+ ei, x
′) = βi(x),

q((x, x′), (x, x′ + ei)) = β′i(x
′),

q((x, x′), (x− ei, x
′)) = δi(x),

q((x, x′), (x, x′ − ei)) = δ′i(x
′).

(8.4)

When xi = x′i, the non-zero transition rates are given by

q((x, x′), (x+ ei, x
′ + ei)) = βi(x),

q((x, x′), (x, x′ + ei)) = β′i(x
′)− βi(x),

q((x, x′), (x− ei, x
′ − ei)) = δ′i(x

′),
q((x, x′), (x− ei, x

′)) = δi(x)− δ′i(x
′).

(8.5)

Note that these terms are non-negative when Condition (8.3) holds. The proof of The-
orem 8.2.2 will be concluded by establishing that the Markov process (X(t), X ′(t))t>0

started from initial condition (X(0), X ′(0)) and whose dynamics are speci�ed by these
transition rates is such that the component processes (X(t))t>0 and (X ′(t))t>0 are skip-
free Markov jump processes with the desired birth an death rates given by the functions
(β, δ) and (β′, δ′) respectively. Since by construction, X(t) ≤ X ′(t) for all t > 0, the
result will follow.

To establish that the component processes indeed have the desired dynamics, we use
the following result.

Lemma 8.2.1: Let a Markov jump process {Y (t)}t≥0 on a countable state space E,
with transition rates q(x, y), x, y ∈ E, and a function f : E → F be given. Assume that
there exists a function q̃(u, v) de�ned on F × F such that, for all i ∈ E and all v ∈ F ,
one has ∑

j:f(j)=v

q(i, j) = q̃(f(i), v). (8.6)

Then the image process Z(t) := f(Y (t)) is a Markov jump process on F , with transition
rates q̃(u, v).

Proof will be included in the appendix. Let us now use this result to show that the
componeThnt processes of the above-de�ned coupled process have the desired dynamics.
Let f : NK ×NK → N

K be de�ned by f(x, x′) = x.
For any x, and any x′ ≥ x, and any y ∈ NK , we need to check the following identity:

∑
z∈NK

q((x, x′), (y, z)) =


βi(x) if y = x+ ei,
δi(x) if y = x− ei,
0 otherwise.

This is easily veri�ed from the rate speci�cations (8.4) and (8.5). The same needs to be
done for the second component; again this is straightforward.
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We now return to the proof of Theorem 8.2.1. De�ne the so-called branching random
walk process on NN as the skip-free Markov jump process with birth and death rates:

βbrw
i (x) = β

∑
j∼i

xj , δbrw
i (x) = xi, i ∈ {1, . . . , N}.

Also, view the contact process as a skip-free Markov jump process on NN , by extending
the de�nition of its birth and death rates βc, δc to NN as follows:

βc
i (x) = 1xi=0β

∑
j∼i

xj , δc
i (x) = xi, i ∈ {1, . . . , N}.

Next, we verify that the branching random walk and the contact process thus de�ned
verify the assumptions of Theorem 8.2.2. To this end, let x ≤ x′, and let i be such that
xi = x′i. For all such parameter choices, we need to verify:

δc
i (x) ≥ δbrw

i (x′).

This trivially holds, as the two terms equal xi. It only remains to check that:

βc
i (x) ≤ βbrw

i (x′).

The left-hand side is less than β
∑

j∼i xj , which is clearly less than β
∑

j∼i x
′
j = βbrw

i (x′)
when x ≤ x′. Theorem 8.2.2 thus applies.

Using the coupled construction of the two processes (Xc(t), Xbrw(t))t≥0, started from
the same initial condition X(0) ∈ {0, 1}N , provided by this theorem, write:

P(Xc(t) 6= 0) ≤ P(Xbrw(t) 6= 0)
≤ E(Xbrw(t)).

The linear structure of the transition rates of the branching random walk entail that:

d

dt
E(Xbrw(t)) = βAE(Xbrw(t))−E(Xbrw(t)),

which solves to give

E(Xbrw(t)) = exp (t(βA− I))X(0),

where I denotes the identity matrix, A is the adjacency matrix of G, and exp(t(βA− I))
is the matrix exponential of the matrix t(βA− I). We thus have:

P(Xc(t) 6= 0) ≤ e′ exp (t(βA− I))X(0),

where e = (1, . . . , 1)T . By Cauchy-Schwarz inequality, the right-hand side of the above
is not larger than

||e|| × ||exp (t(βA− I))X(0)|| .
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However, since the matrix involved in the second term is symmetric, this term is not larger
than ||X(0)|| times the spectral radius of this matrix. The latter equals exp((βρ− 1)t),
which thus yields

P(Xc(t) 6= 0) ≤ ||e|| exp((βρ− 1)t)||X(0)||
=
√
N
∑N

i=1X
2
i (0) exp((βρ− 1)t)

=
√
N
∑N

i=1Xi(0) exp((βρ− 1)t),

that is the announced result. The last equality holds because X2
i (0) = Xi(0), since

Xi(0) ∈ {0, 1}. Th The main application of Theorem 8.2.1 is the following

Corollary 8.2.1. Consider the branching process on a �nite graph G on N nodes, with
base infection rate β and arbitrary initial condition X(0) ∈ {0, 1}N . Let τ denote the
time to absorption at 0 by the process. Then, under the condition

βρ < 1, (8.7)

where ρ is the spectral radius of the adjacency matrix of G, it holds that:

E(τ) ≤ log(N) + 1
1− βρ

· (8.8)

Proof. Write
E(τ) =

∫∞
0 P(τ > 0)dt

=
∫∞
0 P(X(t) 6= 0)dt

≤
∫∞
0 min (1, N exp(−(1− βρ)t)) dt

= t∗ +
∫∞
t∗ N exp(−(1− βρ)t)dt,

where t∗ = log(N)/(1− βρ). We thus obtain:

E(τ) ≤ t∗ +
N

1− βρ
exp(−(1− βρ)t∗) =

log(N) + 1
1− βρ

·

8.3 Small outbreaks and spectral radius for the SIR epi-

demics

We consider a closed population of n individuals, connected by a neighbourhood structure
which is represented by an undirected, labelled graph G = (V,E) with node set V and
edge set E. Each node can be in one of three possibly states, susceptible (S), infective (I)
or removed (R). The initial set of infectives at time 0 is assumed to be non-empty, and
all other nodes are assumed to be susceptible at time 0. The evolution of the epidemic is
described by the following discrete-time model. Let Xv(t) denote the indicator that node
v is infected at the beginning of time slot t and Yv(t) the indicator that it is removed.
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Each node that is infected at the beginnning of a time slot attempts to infect each of its
neighbours; each infection attempt is successful with probability β independent of other
infection attempts. Each infected node is removed at the end of the time slot. Thus, the
probability that a susceptible node u becomes infected at the end of time slot t is given
by 1−

∏
v∼u(1− βXv(t)), where we write v ∼ u to mean that (u, v) ∈ E. Note that the

evolution stops when there are no more infectives in the population. At this time, we
want to know how many nodes are removed.

The above model is known as the Reed-Frost model. It corresponds to a deterministic
infectious period which is the same at every node. It is one of the earliest stochastic SIR
models to be studied in depth, because of its analytical tractability. Note that the
evolution can be described by a Markov chain in this case. Another commonly used
model assumes that infectious periods are iid and exponentially distributed, so that the
system evolves as a continuous time Markov process. General infectious periods give rise
to non-Markovian systems. These are outside the scope of this work.

The object of interest is the number of nodes that eventually become infected (and
removed) compared to the number initially infected. As noted earlier, in mean �eld
models of SIR epidemics, the number of nodes removed exhibits a sharp threshold; as
β is increased, it suddenly jumps from a constant (which doesn't depend on n) to a
non-zero fraction of n, the number of nodes in the system. We wish to ask if a similar
threshold is exhibited on general graphs and, if so, how the critical value of β is related
to properties of the graph.

We now state general conditions for the number of nodes removed to be small. Let
A denote the adjacency matrix of the undirected graph G, i.e., aij = 1 if (i, j) ∈ E
and aij = 0 otherwise. Since A is a symmetric, non-negative matrix, all its eigenvalues
are real, the eigenvalue with the largest absolute value is positive and its associated
eigenvector has non-negative entries (by the Perron-Frobenius theorem). If the graph
is connected, as we shall assume, then this eigenvalue has multiplicity one, and the
corresponding eigenvector is the only one with all entries being non-negative.

Theorem 8.3.1. Suppose βλ1 < 1. Then, the total number of nodes removed, |Y (∞)|,
satis�es

E[|Y (∞)|] ≤ 1
1− βλ1

√
n|X(0)|,

where |X(0)| is the number of initial infectives. Morevoer, if the graph G is regular (i.e.,
each node has the same number of neighbours), then

E[|Y (∞)|] ≤ 1
1− βλ1

|X(0)|.

Proof. In order for an arbitrary node v to be infected at the start of time slot t, there
must be a chain of distinct nodes u0, u1, . . . , ut = v along which the infection passes from
some initial infective u0 to v. Thus, by the union bound,

P(Xv(t) = 1) ≤
∑

u0,...,ut−1

βtXu0(0),
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where the sum is taken over nodes u0, . . . , ut−1 such that (ui−1, ui) ∈ E for all i = 1, . . . , t,
where we take ut = v. Note that we have not imposed the requirement that the ui be
distinct as we are only seeking an upper bound. Consequently, the probability that node
v ever gets infected (and hence that Yv(∞) = 1) is bounded above by

P(Yv(∞) = 1) ≤
∞∑

t=0

∑
u∈V

(βA)t
uvXu(0),

since the uvth entry of the matrix At is simply the number of paths of length t between
nodes u and v. It is immediate from the above that

E[|Y (∞)|] =
∑
v∈V

P(Yv(∞) = 1) ≤
∞∑

t=0

1T (βA)tX(0),

where 1 denotes the vector of ones. Now, if βλ1 < 1, then we can rewrite the above as

E[|Y (∞)|] ≤ 1T (I − βA)−1X(0)
≤ ‖1‖ ‖(I − βA)−1‖ ‖X(0)‖, (8.9)

where ‖·‖ denotes the Euclidean norm in the case of a vector, and the matrix or operator
norm in the case of a matrix. Now the operator norm of a symmetric matrix is its spectral
radius, the largest of its eigenvalues in absolute value. Hence ‖(I−βA)−1‖ = (1−βλ1)−1.
Moreover, ‖X(0)‖ =

√∑
v∈V X

2
v (0) =

√
|X(0)|. Likewise, ‖1‖ =

√
n. Substituting

these in (8.9) yields

E[|Y (∞)|] ≤ 1
1− βλ1

√
n|X(0)|,

which is the �rst claim of the theorem.
Next, note that by using the spectral decomposition

(I − βA)−1 =
n∑

i=1

1
1− βλi

xix
T
i ,

where xi denotes the eigenvector corresponding to the eigenvalue λi of A, and xT
i its

transpose, we can rewrite (8.9) as

E[|Y (∞)|] ≤
n∑

i=1

1
1− βλi

1Txix
T
i X(0). (8.10)

Now, if G is a regular graph and each node has degree d (i.e., has exactly d neighbours),
then each row sum of its adjacency matrix A is equal to d. Hence, it is clear that
the positive vector 1√

n
1 is an eigenvector of A corresponding to the eigenvalue d. By

the Perron-Frobenius theorem, this is therefore the largest eigenvalue. Hence, λ1 = d,
x1 = 1√

n
1, and all other eigenvectors x2, . . . , xn are orthogonal to 1. Hence, by (8.10),

E[|Y (∞)|] ≤ 1
1− βλ1

1Tx1x
T
1X(0)

=
1

n(1− βλ1)
1T11TX(0) =

1
1− βλ1

|X(0)|.
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This is the second claim of the theorem.

Actually, there is an easier proof. Let ν(i) = P(node i is ever infected). Then, ν(i) =
1 if i ∈ I, where I denotes the set of initial infectives, and otherwise ν(i) ≤

∑
j∼i βν(j),

where we write j ∼ i to mean that (i, j) is an edge. Thus,

(I − βA)ν ≤ 1I , (8.11)

where 1I denotes the vector with components 1 for i ∈ I and 0 for i /∈ I, and the
inequality holds in the usual partial order, namely componentwise. Now, if βλ1(A) < 1,
then we have the power series expansion

(I − βA)−1 =
∞∑

k=0

βkAk,

from which it is immediate that (I − βA)−1 is a non-negative matrix. Therefore, we can
multiply both sides of the inequality in (8.11) by (I − βA)−1 to obtain

ν = E[Y (∞)] ≤ (I − βA)−1X(0),

and so
E[|Y (∞)|] ≤ 1(I − βA)−1X(0).

This is the same as (8.9), and the proof carries on the same way from there.
The theorem says that, if βλ1 < 1, then starting from a `small' population of initial

infectives, the �nal size of the epidemic is small. For example, if |X(0)| = 1, then the
�nal size of the epidemic is bounded by a constant in the case of regular graphs, and by
a multiple of

√
n in general. Thus, the fraction of nodes infected goes to zero as n tends

to in�nity.
Note that the proof of the theorem above doesn't require us to assume that the epi-

demic be of Reed-Frost type. It works for general infectious periods J since we are only
using expectations throughout, which don't require independence assumptions. There-
fore, following the steps of the above proof and replacing β by the probability that a
node gets infected bu an infected neighbour.

In turn, if node u is infected, it will infect j, if they are connected and if the time it
takes to contact this node given by an exponential random variable with parameter λ is
less than J .

Theorem 8.3.2. Suppose that J is such that E[e−λJ ] <∞ and let

pJ = 1− E[e−λJ ] .

If pJλ1 < 1 then the total number of nodes removed, |Y (∞)|, satis�es

E[|Y (∞)|] ≤ 1
1− pJλ1

√
n|X(0)|,

where |X(0)| is the number of initial infectives. Morevover, if the graph G is regular (i.e.,
each node has the same number of neighbours), then

E[|Y (∞)|] ≤ 1
1− pJλ1

|X(0)|.
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8.4 Long survival and isoperimetric constants

We now provide a su�cient condition for long survival of the epidemics. This is phrased
in terms of isoperimetric constants of the supporting graph, which we now de�ne:

De�nition 8.4.1. For a graph G on the node set {1, . . . , N}, and any integer m < N ,
the isoperimetric constant η(m) of graph G is de�ned by

η(m) = min
S⊂{1,...,N},|S|≤m

E(S, S̄)
|S|

, (8.12)

where S̄ denote the complementary set {1, . . . , N} \ S, and E(S, T ) denotes the number
of edges with one end point in set S and the other in set T .

The main result of this section is the following

Theorem 8.4.1. Let a �nite graph G on N nodes be given, and assume that for some
m < N , and some r ∈ (0, 1), it holds that

βη(m) ≥ 1
r
, (8.13)

where η(m) denote the isoperimetric constant of G. Then, denoting by τ the time to
absorption of the contact process on G, for any initial condition X(0) 6= 0, it holds that:

P(τ ≥ s

2m
) ≥ 1− r

1− rm

(
1− rm−1

1− rm

)s (
1− o(s−1)

)
, s ∈ N, (8.14)

where the term o(s−1) is independent of the model parameters.

Proof. Consider the Markov jump process {Z(t)}t≥0 de�ned on the state space {0, . . . ,m},
with non-zero transition rates

q(z, z + 1) = z
r1z<m, z ∈ {0, . . . ,m},

q(z, z − 1) = z, z ∈ {0, . . . ,m}.

We now show that for any initial condition X(0) 6= 0, the contact process on G can be
coupled with the process {Z(t)}t≥0 with initial condition Z(0) = 1, in such a way that∑N

i=1Xi(t) ≥ Z(t) for all t ≥ 0. To this end, we de�ne the joint process (X,Z) on the

state space {(x, z) ∈ {0, 1}N × {0, . . . ,m}, z ≤
∑N

i=1 xi} as follows. For any state (x, z),
any i ∈ {1, . . . , N}, if

∑N
i=1 xi > z, we have the non-zero transition rates

q((x, z), (x+ ei, z) = β(1− xi)
∑

j∼i xj ,

q((x, z), (x− ei, z) = xi,
q((x, z), (x, z + 1)) = r−1z1z<m,
q((x, z), (x, z − 1)) = z.
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If
∑N

i=1 xi = z, the non-zero transition rates are:

q((x, z), (x+ ei, z + 1) = ci(x),
q((x, z), (x+ ei, z) = β(1− xi)

∑
j∼i xj − ci(x),

q((x, z), (x− ei, z − 1)) = xi,

where the rates ci(x) are chosen to satisfy the following conditions:

0 ≤ ci(x) ≤ β(1− xi)
∑
j∼i

xj , i ∈ {1, . . . , N},

which ensures that the transition rates are non-negative, and

N∑
i=1

ci(x) = r−1z1z<m.

Let us show that such rates ci(x) exist. This will be the case if we have

N∑
i=1

β(1− xi)
∑
j∼i

xj ≥ r−1z1z<m.

Note now that the left-hand side of this equation also reads βE(S, S̄), where S denotes
the set of sites j ∈ {1, . . . , N} such that xj = 1. Note also that |S| =

∑
j xj = z ≤ m;

hence, by the de�nition of the isoperimetric constant η(m), the left-hand side is larger
than or equal to βηz. In view of Condition (8.13), this is indeed larger than z/r.

One can then easily verify that the component processes have the desired dynamics
by checking that Lemma 8.2.1 applies. This coupling entails that

P(τ > s) ≥ P(Z(s) = 0).

To evaluate the right-hand side of the above, consider the discrete time embedded Markov
chain {Y (n)}n≥0 keeping track of the states visited by process {Zt}t≥0. Its non-zero
transition probabilities are given by:

P(Y (n+ 1) = y + 1|Y (n) = y) = y/r
y/r+y = 1

1+r , y ∈ {1, . . . ,m− 1},
P(Y (n+ 1) = y − 1|Y (n) = y) = y

y/r+y = r
r+1 , y ∈ {1, . . . ,m− 1},

P(Y (n+ 1) = m− 1|Y (n) = m) = 1,
P(Y (n+ 1) = 0|Y (n) = 0) = 1.

The probability πk that, starting from state k ∈ {0, . . . ,m}, the chain {Y (n)}n≥0 hits m
before it is absorbed at 0 is given by:

πk =
1− rk

1− rm
·
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This is a classical result, which is the solution of the so-called gambler's ruin problem.
To establish this, note that necessarily,

π0 = 0, πm = 1, (1 + r)πk = rπk+1 + πk−1, k ∈ {1, . . . ,m− 1},

and verify that the only solution to these relations is the one given above.
Thus, the probability that process {Zt}t≥0 pays at least s visits to state m before

being absorbed at 0 is the probability that the chain {Y (n)}n≥0 pays at least s visits to
state m. By the above formula, this reads

P({Y (n)}n≥0 visits state m at least s times) =
1− r

1− rm

(
1− rm−1

1− rm

)s

.

After each entrance into state m, process {Zt}t≥0 remains there for an exponentially
distributed sojourn time, with mean 1/m. Thus, the probability that process {Zt}t≥0 is
not absorbed by time s/2m veri�es

P(Zs/(2m) > 0) ≥ P(
s∑

i=1

Ei ≥ s/2)
1− r

1− rm

(
1− rm−1

1− rm

)s

,

where the random variables Ei are i.i.d., exponentially distributed with mean 1. Cher-
no�'s Lemma 2.4.2 entails that the �rst term in the right-hand side veri�es

P(
s∑

i=1

Ei ≥ s/2) ≥ 1− exp(−shexp(1/2)),

where
hexp(x) = supθ∈R (θx− log E(exp(θE1)))

= supθ∈R (θx− log(1/(1− θ)))
= x− 1− log(x).

The term exp(−shexp(1/2)) is clearly o(s−1), and the result (8.14) follows.

The main application of this result is the following

Corollary 8.4.1. Assume that for an in�nite sequence of integers N , one is given a
�nite graph GN on N nodes, a base infection rate βN , and an integer mN ≥ Na, where
a is a �xed positive constant, such that

βNη(mN , GN ) ≥ 1
r
,

where r ∈ (0, 1) is �xed. Then, denoting by τN the time to extinction of the contact
process on GN , with parameter βN , it holds that

E(τN ) ≥ exp(bNa), (8.15)

for some positive constant b > 0.
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Proof. Let N > 0 be �xed. By (8.14), it holds that for all s ∈ N,

E(τN ) ≥ s

2m
1− r

1− rm

(
1− rm−1

1− rm

)s (
1− o(s−1)

)
.

where m = mN . Take now s = br−m+1c in the above expression to obtain

E(τN ) ≥ br−m+1c
2m

1−r
1−rm

(
1−rm−1

1−rm

)s (
1− o(s−1)

)
≥ (1− r)(1−O(rm)) br

−m+1c
2m exp(−(1− r)/(1− rm))

≥ 1−r
2e (1−O(rm)) exp(log(1/r)(m− 1)− log(2m)).

For m ≥ Na, the exponent log(1/r)(m−1)− log(2m) is clearly larger than bNa for some
suitable constant b > 0 (taking e.g. b = log(1/r)/2), and the result follows.

8.5 Epidemics on speci�c graphs

8.5.1 Application to hypercubes

8.5.2 Application to E-R graphs

8.5.3 Application to star networks
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