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This class

◮ 15 two-hours meetings (including today)

◮ ∼ 1 lecture + 1 exercise session per week

◮ 9 ECTS

◮ homework’s + small final presentation

◮ reference books:

1. Newman, ‘Networks’, Oxford U.P., 2010 (general intro)
2. Vega-Redondo, ‘Complex social networks’, Cambridge U.P.,

2007 (general intro)
3. Durrett, ‘Random graph dynamics’, Cambridge U.P., 2007

(mathematics, advanced)
4. draft of a new book (mathematics, undergrad)

http://www.win.tue.nl/∼rhofstad/NotesRGCN.html
5. ...

◮ today: course overview



Similar courses around the world

◮ MIT grad (by J.Tsistsiklis $ P.Jaillet):
http://stellar.mit.edu/S/course/6/sp11/6.986/

◮ MIT undergrad (by D.Acemoglu & A.Ozdaglar):
http://stellar.mit.edu/S/course/6/fa09/6.207J/

◮ Cornell undergrad (by D.Easley, J.Kleinberg, & E.Tardos)::
http://www.infosci.cornell.edu/courses/info2040/2011fa/

◮ Berkeley grad (by E.Mossel):
http://www.stat.berkeley.edu/ mos-
sel/teach/SocialChoiceNetworks10/index.html

◮ North-Easter U. (by A.Barabasi):
http://barabasilab.neu.edu/courses/phys5116/

◮ Michigan U. (by L.Adamic):
http://open.umich.edu/education/si/si508/fall2008/materials



(Complex) networks

(Large-scale) systems of (simple) interacting units

◮ infrastructure networks: transportation, power, Internet

◮ informational networks: WWW, citation networks

◮ social networks: friendships, family ties, Facebook etc.

◮ economic and financial networks: supply chains,
borrowing-lending nets

◮ biological networks: neural networks, gene/protein interactions

◮ ecological networks: food webs, flocks, ...



Studying (complex) networks

network structure + interaction mechanism

⇓

emerging behavior

◮ spread of epidemics and information

◮ design of (distributed) algorithms

◮ opinion formation, social influence and learning

◮ network robustness,

◮ cascaded failures, systemic risk

◮ ...



Mathematical representation of network structure

(un)directed (weighted) graph G = (V, E)

V = set of vertices (or nodes) n = |V| < +∞

E ⊆ V × V = set of edges (or links)



Examples 1

◮ Internet: nodes=routers, edges=direct physical links (und.)

◮ traffic networks: nodes=junctions, links=roads (directed)

◮ actors collaboration: nodes=actors, link⇔ same movie (und.)

◮ scientific collab.: nodes=researchers, link=coauthors (und.)



Example 2: political blogs before 2004 US elections

from Adamic and Glance, ‘The Political Blogosphere and the 2004
U.S. Election: Divided They Blog’, 2005



Example 3: Family ties in 15th century Florence

from Padgett and Ansell, ‘Robust action and the rise of the
Medici, 1400-1434’, 1993



Example 4: High school friendships

from Moody, ‘Race, school integration, and friendship segregation
in America’, 2002



Example 5: Sexual contacts

from Newman, ‘The structure and function of complex systems’,
2003



Example 6: protein network in yeast nucleus

from Maslov and Sneppen ‘Specicity and stability in topology of
protein networks’, 2002



Example 7: Freshwater food web

from Martinez, ‘Artifacts or attributes? Effects of resolution on the
Little Rock Lake food web’, 1991



Random networks

network structure + interaction mechanism

⇓

emerging behavior

structure of large-scale networks is difficult to describe exactly:
huge or non directly accessible data



Random networks

network structure + interaction mechanism

⇓

emerging behavior

structure of large-scale networks is difficult to describe exactly:
huge or non directly accessible data

aggregate properties:

◮ connectivity, diameter / average distance

◮ frequency of subgraphs

◮ degree distribution

statistical approach:

◮ ensemble of graphs

◮ typical properties as n = |V| → +∞



Complex networks

Properties widely observed in empirical studies

1. small world ↔ diameter ≈ log n

2. high clustering ↔ many triangles

3. scale free ↔ power law degree distribution



Small world

◮ Milgram’s experiment (’67): randomly selected group of few
hundreds of people from Omaha (NE). A letter given to each
of them to be delivered to a stock broker living in Boston
(MA). Letter can only be handed to a person know directly.
=⇒ 35% letters reach destination, median # of steps: 5.5
=⇒ “6 degrees of separation”

◮ Albert, Jeong, and Barabasi (’99): WWW network, n ∼ 800M
average distance of webpages ∼ 0.35 + 2.06 log n = 18.59



Power laws
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pk ∼ Ck−γ

show up in quite different contexts:
◮ percentage of words in a book
◮ percentage of cities of a given size
◮ percentage of people having a certain income

Power law =⇒ heavy tails: lots of large cities, lots of rich people

Typically explained by rich-gets-richer mechanisms



Power law networks

dv := #{neighbors of v} pd :=
1

n
#{v : dv = d}

pd ∼ Cd−γ

Empirical studies:

◮ Barabasi and Albert (’99): WWW has γin ∼ 2.1, γout ∼ 2.7

◮ Faloutos (’99): Internet γ ∼ 2.16

◮ actor collaborations: γ ∼ 2.3

◮ Redner (’98): citation network: γin ∼ 2.6, pout
d

∼ C exp(−Kd)

◮ Liljeros (’01): # sexual partners per year (in Sweden)
γmale ∼ 3.3, γfemale ∼ 3.5

2 < γ ≤ 3 =⇒ 〈d〉 < +∞ 〈d2〉 = +∞

γ ≥ 3 =⇒ 〈d〉 < +∞ 〈d2〉 < +∞

power law ↔ scale free



Random graphs 1: Erdös-Rényi

G(n, p) = (V, E) |V| = n

P ({v ,w} ∈ E) = p mutually independent



Random graphs 1: Erdös-Rényi

G(n, p) = (V, E) |V| = n

P ({v ,w} ∈ E) = p mutually independent

n = 100
p = 0.15



Random graphs 1: Erdös-Rényi

G(n, p) = (V, E) |V| = n

P ({v ,w} ∈ E) = p mutually independent

n = 100
p = 0.2



Random graphs 1: Erdös-Rényi

G(n, p) = (V, E) |V| = n

P ({v ,w} ∈ E) = p mutually independent

If p = λ/n, with high probability as n → ∞,

phase
transition











λ < 1 =⇒ size(largest component) ≍ log n

λ > 1 =⇒
size(largest component) ≍ n

diam(giant component) ≍ log n

}

small
world

◮ Poisson degree distribution: pd ∼
λd

eλd !
⇒ NO power law

◮ limited #(triangles) ⇒ NO clustering



Random graphs 2: preferential attachment

Barabasi-Albert (’99)

1. start from a small given graph n0

2. add a vertex and connect it with d older vertices randomly
chosen with conditional probability ∝ their current degree

3. repeat step 2 n − n0 times

http://ccl.northwestern.edu/netlogo/models/run.cgi?PreferentialAttachment.836



Random graphs 2: preferential attachment

Barabasi-Albert (’99)

1. start from a small given graph n0

2. add a vertex and connect it with d older vertices randomly
chosen with conditional probability ∝ their current degree

3. repeat step 2 n − n0 times

=⇒











pd ∼ Cd−3 ⇒ power law

diam ≍ log n ⇒ small world

(suitably modified) ⇒ high clustering



Dynamics over networks

network structure + interaction mechanism

⇓

emerging behavior

◮ random walks

◮ contact processes / epidemics

◮ linear interactions: distributed averaging / voter model

◮ non-linear interactions: bounded confidence, majority model,
evolutionary games



Random walk

A particle moving from node to node, jumping at Poisson times to
a randomly chosen neighbor of the current position

◮ V (t) ∈ V position of the particle at time t

◮ network connected =⇒ unique stationary distribution
πv = dv/

∑

w
dw

◮ how fast does ||P(V (t) = · )− π|| go to 0 as a function of the
network structure?

◮ when will V (t) hit some other w ∈ V?

◮ when will two independent copies of V (t) started in different
nodes meet for the first time?



Epidemics

SIR model (susceptible-infected-resistant)

◮ every node v has a state xv (t) ∈ {S , I ,R}

◮ if a susceptible vertex has an infected neighbor, it becomes
infected at rate p

◮ an infected vertex can spontaneously remove the infection and
become resistant at rate q.

Starting from few infected nodes, what is the probability that
infection will extend to a large part of the network?
How will this depend on p, q, and the network structure?



Epidemics

◮ in power law network with γ > 3 for small enough p/q an
infection SIR will NOT spread, with high probability, to a
large part of the network;

◮ in power law network with 2 < γ ≤ 3, an infection SIR will
spread independently from the values of p and q!
The reason is the existence of high degree vertices.
How many vertices do you need to immunize to stop the
epidemics spreading?



Distributed averaging

Gossip model:
◮ every node v has a state xv (t) ∈ R

◮ nodes get activated at independent Poisson times
◮ when a node v is activated, it choses a neighbor w at random

and updates its value to xv (t) = (1− ω)xv (t
−) + ωxw (t

−)
◮ network connected =⇒ convergence to consensus



Distributed averaging
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How is the limit consensus value related to the initial states of the
nodes?
How does the network structure affect the speed of convergence?
What is the effect of heterogeneity of the agents behavior?



Bounded confidence
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◮ every node v has a state xv (t) ∈ R

◮ like distribute averaging but updates only if
|xx(t)− xw (t)| < θ

◮ consensus vs fragmentation depending on confidence
threshold θ



Next meeting

◮ basics of graph theory

◮ Wed 9-11-2011 15:00-17:00


