
Ph.D. course on Network Dynamics, Fall 2013

Lectures 1 and 2:

Random walks and Markov chains

1 Introduction

Let G = (V, E) be an undirected graph of finite size n := |V|. Throughout, we
shall assume that G is connected, i..e, every pair of nodes in V can be joined
by a path. Let A ∈ {0, 1}V×V be its adjacency matrix, defined by Auv = 1
if {u, v} ∈ E and Auv = 0 if {u, v} /∈ E . A random walk on G is a discrete-
time Markov chain V (t) with state space V and transition probability matrix
P = D−1A, where D := diag (d) and d = A1 is the degree vector of G. In
simple words, at each time t = 0, 1, . . ., the random walk V (t) jumps from a
node v ∈ V to one of its neighbors in G with uniform probability.

In fact, one can consider more general Markov chains than random walks.
Let P be a stochastic matrix on V, i.e., Puv ≥ 0 for all u, v ∈ V, and P1 = 1.
Then, a discrete-time Markov chain with transition probability matrix P is
a stochastic process V (t) on V such that

P(V (t+ 1) = v|V (0), V (1), . . . , V (t) = u) = Puv , ∀u, v ∈ V , t ≥ 0 .

Observe that, if µ(t) is the probability distribution of V (t), whose entries
are given by µv(t) := P(V (t) = v), and P (t) stands for the t-step transition
probability matrix, whose entries are given by Pij(t) = P(V (t) = j|V (0) = i),
then one has

µ(t+ 1) = P ′µ(t) , P (t+ 1) = PP (t) . (1)

In particular, (1) implies that µ(t) = (P ′)tµ(0) and P (t) = P t, for t ≥ 0.
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A probability distribution π (i.e., a nonnegative vector such that 1′π = 1)
is called stationary (or invariant) for a stochastic matrix P if

P ′π = π .

The probabilistic interpretation is that, if V (0) has distribution π, then so
does V (1), and in fact V (t) for every time t ≥ 0. Existence of a stationary
distribution π for every stochastic matrix P is a standard fact.1 For example,
a one line computation (check it!) shows that for the random walk on an
undirected graph G, π = d/1′d is a stationary distribution (in fact the unique
one, since we assumed G to be connected, see below). For general stochastic
matrices P there is not such an easy explicit formula for π. Note that a
stochastic matrix P has uniform stationary distribution π = n−11 if and
only if P ′1 = 1, i.e., if not only it sums up to 1 on each row, but it does so
also on each column. In this case the matrix P is called doubly stochastic.
This is a very special case! In particular, the stochastic matrix associated to
the random walk on a graph G is doubly stochastic if and only if the graph
is regular, i.e., every node has the same degree.

On the other hand, if a stochastic matrix P is irreducible (i.e., if the
directed graph obtained by putting a link from u to v whenever Puv > 0
is strongly connected), then the stationary distribution π is unique (in fact,
it also has all strictly positive entries –prove it as an exercise!). To prove
uniqueness of the stationary distribution, observe that it is equivalent to
P − I having rank n− 1, which in turns is equivalent to

(I − P )x = 0 (2)

having only constant solutions. But this easily follows from considering the
maximum entry of x, say xu, and observing that xu =

∑

v Puvxv implies that
xv are also maximal, and the argument can be iterated until covering the
whole node set V (that one does not get stack earlier follows exactly from
irreducibility). In fact, the matrix I−P is often called the Laplacian matrix,
and solutions of equation (2) are called harmonic vectors.

In fact, if P is a stochastic irreducible matrix, then not only is its station-
ary distribution π unique, but one also has that (P ′)tµ → π for all probability
distributions µ. I.e., irrespective of the distribution of its initial state V (0),

1E.g., since P
′ maps the simplex of probability distributions (i.e., the convex compact

set of those nonnegative vectors x such that 1′
x = 1) in itself it should have a fixed point.

(Brouwer’s fixed-point theorem) Alternatively, one can use the Perron-Frobenius theory.
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the Markov chain V (t) will be distributed according to π in the limit of large
t. We will not prove this for general irreducible stochastic matrices now
(one can find such a proof in standard textbooks) but rather concentrate on
a special class of stochastic matrices, namely time-reversible matrices, for
which we will get explicit bounds on the speed of convergence in terms of
eigenvalues of P .

A stochastic matrix P is called time-reversible (or simply reversible) if
there exists a probability distribution π such that

πuPuv = πvPvu , u, v ∈ V . (3)

Observe that the condition above implies in particular that π is invari-
ant. The probabilistic interpretation, which also explains the terminology, is
that, if V (0) has distribution π satisfying (3), then the Markov chain V (t)
with transition probability matrix P is such that, for all t ≥ 0, the vector
(V (0), V (1), . . . , V (t − 1), V (t)) has the same joint probability distribution
of the time-reversed vector (V (t), V (t− 1), . . . , V (1), V (0)). (You can verify
this coincides with (3) for t = 1, and then generalize it by induction on t).

In particular, one can easily check that the stochastic matrix P = D−1A
associated to the random walk on an undirected graph G is reversible, using
its stationary distribution π = d/(1′d). More in general, one can consider
a connected weighted graph G = (V, E ,W ), where W is a weight matrix
such that Wuv = Wvu > 0 for all {u, v} ∈ E and Wuv = 0 if {u, v} /∈
E , put d = W1, and D := diag (d). Then, P = D−1W is a reversible
stochastic matrix with stationary distribution π = d/(1′d). However, (3)
is not satisfied by every stochastic matrix P with stationary distribution π:
to get a counterexample, simply try with the stochastic matrix associated
to the random walk on a directed graph. In fact, in a sense, the subclass of
reversible stochastic matrices is as rich as the subclass of undirected weighted
graphs. To every (connected) and possibly directed weighted graph one can
associate in a natural way an (irreducible) stochastic matrix, which turns out
to be reversible if and only if the weighted graph was undirected.

Random walks and Markov chains can also be considered in continu-
ous time. A continuous-time random walk V (t) on an undirected graph
G = (V, E) is a Markov random process on V spends a mean-1 exponen-
tially distributed random time on a node v, then jumping to a neighbor
node uniformly chosen among the neighbors of v. More in general, to ev-
ery transition-rate matrix Q ∈ R

V×V with nonnegative off-diagonal entries
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and such that Q1 = 0, we can associate a continuous-time Markov chain
on V such that, conditioned V (t) = u, the chain will wait a mean-|Quu| ex-
ponentially distributed random time and then jump to another node v ∈ V
randomly chosen with probability Quv. The probability distribution µ(t) and
the time-t transition probability matrix K(t) of the Markov chain V (t) will
then satisfy the differential equations

d

dt
µ(t) = Q′µ(t) ,

d

dt
K(t) = QK(t) . (4)

The above are the continuous-time analogous of (1) and are sometimes re-
ferred to as Komogorov’s forward and, respectively, backward, equations. In
particular, they imply that µ(t) = exp(Q′(t))µ(0) and K(t) = exp(tQ) for
t ≥ 0. A probability distribution π is stationary of Q′π = 0, and the chain is
reversible if πuQuv = πvQuv for all u 6= v ∈ V.

2 Spectral gap of reversible Markov chains

For an irreducible reversible stochastic matrix P with stationary probability
distribution π, define the matrix

M := Π1/2PΠ−1/2 , Π := diag (π) .

It is immediate to check that M is symmetric. Then, M (and hence P since
they are similar matrices) has real eigenvalues 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1.
The following result provides an estimate of the rate of convergence to π for
the probability distribution of a Markov chain started from arbitrary initial
state.

Theorem 1. Let P be a reversible stochastic matrix with stationary distri-
bution π. Then,

|Pij(t)− πj | ≤ λt

√

πj

πi

, i, j ∈ V , t ≥ 0 ,

where λ := max{λ2, |λn|} is the largest-in-module eigenvalue of P .

Proof. For 1 ≤ k ≤ n, let a(k) be the eigenvector of M corresponding to
eigenvalue λk. Since M is symmetric, such eigenvectors can be chosen to
form an orthonormal basis of RV , so that M admits the representation

M =
∑

1≤k≤n

λka(k)a
′
(k) .

4



It follows that, for all t ≥ 0,

Π1/2PΠ−1/2 = M t =
∑

1≤k≤n

λt
ka(k)a

′
(k) . (5)

Now, recall that λ1 = 1 and check that a(1) can be chosen to have components√
πv, for all v ∈ V. For 1 ≤ i ≤ n, let e(i) be the vector whose i-th entry

equals 1 and all whose other entries equal 0. By equating the (i, j)-th entry
of the leftmost and rightmost side of (5), one gets

√
πiPij(t)

1
√
πj

−√
πiπj =

∣

∣

∣

∣

n
∑

k=2

λt
ke

′
(i)a(k)a

′
(k)e(j)

∣

∣

∣

∣

≤ λt

(

n
∑

k=2

(e′(i)a(k))
2

)1/2 ( n
∑

k=2

(a′(k)e(j))
2

)1/2

≤ λt ,

(6)

where the first inequality follows from Cauchy-Schwartz, and the second one
from the fact that

∑n
k=1(e

′
(i)a(k))

2 = ||e(i)||22 = 1, since {a(k) : 1 ≤ k ≤ n}
is an orthonormal basis of RV . The claim now follows by multiplying both
sides of (6) by

√

πj/πi.

Observe that Theorem 1 guarantees that the probability distribution of a
reversible Markov chain converges to π exponentially fast in time, provided
that λ2 < 1 and λn > −1. Now, λ2 < 1 is equivalent to irreducibility
of P , i.e., connectedness of the graph, which is our standing assumption.
On the other hand, one could find irreducible reversible stochastic matrices
P with λn = 1. This occurs if and only if the graph associated to P is
bipartite, i.e., its node set V can be partitioned in two subsets such that
links exist only between pairs of nodes belonging to different subset, but
there are no links joining nodes from the same subset. Notice that, in this
case, it is not Theorem 1 to be weak, but what really matters is that the
probability distribution of the Markov chain does not converge to π. Indeed,
at even time instants t = 0, 2, 4, . . ., the chain V (t) will always be in the
node subset to which its initial state V (0) belongs, while, at odd times t =
1, 3, 5, . . ., it will be in the complementary node subset, and this prevents its
distribution to converge. However, in practice one can often ‘forget’ about λn

with the following trick. Define the lazy version of a stochastic matrix P as
P(lazy) =

1
2
(P+I). This is the transition probability matrix of a Markov chain

which, conditioned on V (t) = u, waits a mean-2 geometrically distributed
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random time and then moves to another state v with probability Puv. In
practice, laziness has the effect of slowing down the original chain by a factor
2. Observe that the stationary distribution of P(lazy) coincides with one of P ,

while their eigenvalues satisfy λ
(lazy)
k = (1+λk)/2, hence they all belong to the

interval [0, 1]. Hence, Theorem 1 convergence of the probability distribution
of the lazy version of the Markov chain with transition probability matrix P
to the invariant distribution π at rate ((λ2 + 1)/2)t.

The quantity 1− λ2 is called the spectral gap of P , while its inverse

τrel :=
1

1− λ2

is called the relaxation time of P . The spectral gap of a reversible stochas-
tic matrix admits the following useful variational characterization. For two
vectors f, g ∈ R

V , we define the Dirichlet form

E(f, g) := 1

2

∑

u,v∈V

πuPuv(fu − fv)(gu − gv) .

Then, the following result holds true

Theorem 2 (Variational characterization of the spectral gap). Let P be a
stochastic matrix reversible with respect to the distribution π, and let λ2 be
its second largest eigenvalue. Then,the spectral gap satisfies

1− λ2 = min

{ E(f, f)
∑

v πvf 2
v

: f 6= 0, π′f = 0

}

.

Proof.

One of the great advantages of the variational characterization above is
that it allows for estimating the spectral gap in terms of the geometry of the
graph associated to the Markov chain. In particular, define the conductance

of a reversible matrix P as

Φ := min
U⊆V :

0<π(U)≤1/2

∑

u∈U

∑

v∈V\U πuPuv

π(U) . (7)

In the above, the denominator π(U) := ∑

u∈U πu is the size of the set U , as
measured by π, while the numerator

∑

u∈U

∑

v∈V\U πuPuv can be thought of as
measuring the strength of the interconnection between U and its complement
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set V \ U . In fact, the quantity Φ is often referred to as the bottleneck ratio,
the isoperimetric constant, or the Cheeger constant. When P is the stochastic
matrix associated to the random walk on G = (V, E), one has that

Φ = min
0< vol(U)1′d ≤ 1

2

|∂(U)|
vol(U) ,

where vol(U) :=
∑

u∈U du stands for the volume of a set U , while ∂(U) denotes
its boundary, i.e., the set of links connecting U to its complementary set V\V.
Theorem 3 (Cheeger’s inequality). The spectral gap of a stochastic matrix
P reversible with respect to a stationary distribution π satisfies

1

2
Φ2 ≤ 1− λ2 ≤ 2Φ ,

In continuous time, the situation is somehow simpler since, in case of re-
versibility, convergence is dictated by the spectral gap of Q, without any need
of introducing laziness. In particular, the following result is the continuous-
time analogous of Theorem 1.

Theorem 4. The time-t transition probability matrix K(t) of a continuous-
time Markov chain with reversible transition rate matrix Q satisfies

|Kij(t)− πj | ≤
√

πj

πi
exp(−βt) , ∀i, j ∈ V, t ≥ 0 ,

where β is the second smallest eigenvalue of −Q.

Proof.

3 Total variation distance and mixing time

In this section, we shall analyze the speed of convergence to equilibrium for
not necessarily reversible stochastic matrices. Call a stochastic matrix P
aperiodic if the maximum common divisor of the length of all the cycles in
the directed graph associated to P equals 1. In particular, this is true if
Pvv > 0 for at least one v (hence, e.g., for lazy chains). For simple random
walks on an undirected graph this amounts to say that the graph is not
bipartite. Throughout, we shall deal with irreducible aperiodic stochastic
matrices P and denote by π their stationary distribution.
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We start by introducing a metric for probability distributions. Let the
total variation distance between two probability distributions µ and ν be
defined as

||ν − µ||TV =
1

2

∑

v

|νv − µv| .

Sometimes the definition is without the factor 1/2, however the convention
we are choosing here will prove convenient later. In particular, it makes
||µ − ν||TV ≤ 1. A simple but very useful property of the total variation
distance is that (see [?, Proposition 4.2])

||ν − µ||TV = max
U⊆V

{µ(U)− ν(U)} ,

so that the total variation distance can be thought of as the maximum
difference between the probability put on subset by the two distributions.
Now, a key observation is that every stochastic matrix (not necessarily re-
versible or even irreducible) is non-expansive in total variation distance, i.e.,
||P ′µ−P ′ν||TV ≤ ||µ− ν||TV for all probability distributions µ and ν. When
proving it, it becomes clear that, if for every u, v there exists some w such
that PuwPuv > 0 (hence, in particular, if all the entries of P are strictly
positive), then P is contractive in total variation, i.e., there exists α ∈ (0, 1)
such that ||P ′µ − P ′ν||TV ≤ α||µ − ν||TV for all probability distributions µ
and ν. We define the mixing time of P as

τmix := inf
{

t ≥ 1 : ||(P t)′µ− (P t)′ν||TV ≤ e−1 , ∀µ, ν
}

. (8)

Here, the choice of the constant e−1 is rather arbitrary but convenient, re-
placing e−1 with any α ∈ (0, 1/2) would have worked as well. Observe that,
because of convexity of the total variation distance separately in both argu-
ments, one has that

∆(t) := sup
µ,ν

||(P t)′µ− (P t)′ν||TV = max
i,j∈V

||(P t)i,· − (P t)j,·||TV .

Another important property is submultiplicativity of ∆(t), i.e., the fact that
∆(s + t) ≤ ∆(s)∆(t), for all s, t ≥ 0. (see [?, Lemma 4.12]) In particular,
this implies that

||(P t)′µ− π||TV ≤ ||(P t)′µ− (P t)′π||TV ≤ exp(−⌊t/τmix⌋) ,
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so that τmix is the time of exponential decay to 0 of the distance between
the probability distribution of an arbitrarily started chain and the stationary
distribution.

For reversible matrices, Theorem 1 yields the following:

Corollary 1. Let P be a reversible stochastic matrix with stationary distri-
bution π. Then,

τmix ≤
⌈

log(2e/π∗)

log(λ−1)

⌉

,

where π∗ := minv πv, and λ := max{λ2,−λn}. Hence, the mixing time of
P(lazy) = (P + I)/2 satisfies

τ
(lazy)
mix ≤ ⌈2τrellog(2e/π∗)⌉ ,

where τrel := 1/(1− λ2) stands for the relaxation time of P .

Proof. Exercise
Hence, for reversible Markov chains one can use Cheeger’s inequality (i.e.,

Theorem 3) to get an upper bound on the mixing time in terms of the con-
ductance

τ
(lazy)
mix ≤

⌈

2 log(e2/π∗)

Φ2

⌉

. (9)

In fact, the mixing time is finite for every, not necessarily reversible, aperiodic
and irreducible stochastic matrix P (see, e.g., [?, Theorem 4.9]). In Section
5, we will learn another technique to derive upper bounds on the mixing
time which works irrespective of any reversibility assumption. Before doing
that, we propose the following lower bound on the mixing time in terms of
conductance, which is valid without any reversibility assumption.

Theorem 5. Let P be an irreducible stochastic matrix with stationary dis-
tribution π. Then,

τmix ≥ C
1

Φ
(10)

where C := (e− 2)/(2e).

Proof.

Note that, besides constants, the righthand side of (9) differs from the one
of (10) by the exponent 2 on the conductance Φ, as well as the multiplica-
tive factor log(1/π∗). The former shows up because of the use of Cheeger’s
inequality for estimating the spectral gap, while the latter is due to the use
of Theorem 1.
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4 Hitting times

Let V (t) be a Markov chain with transition probability matrix P . The hitting
time and return time on a nonenmpty subset A ⊆ V are the random variables

TA := inf {t ≥ 0 : V (t) ∈ A} , T+
A := inf {t ≥ 1 : V (t) ∈ A} ,

respectively. Let also

γva := P(V (TA) = a|V (0) = v) , v ∈ V, a ∈ A ,

be the probability of hitting a specific node a before any other node in A.
There are useful identities which allow one to compute hitting probabili-

ties and expected hitting times. On the one hand, one has that

γva =
∑

w

Pvwγwa , ∀v ∈ V \ A , γaa = 1, γba = 0 , ∀b ∈ A \ A .

The above can be rewritten more compactly as

ΥV\A(I − P )γ = 0 , ΥAγ = I , (11)

where γ ∈ R
V×A is the matrix with entries γav, and ΥV\A and ΥA are the

projection matrices on A and V \ A, respectively. The reader is encourages
to compare equation (11) with (2).

On the other hand, if τAv := E[TA|V (0) = v] stands for the expected
hitting time on A when starting from node v ∈ V, then

τAv = 1 +
∑

w

Pvwτ
A
w , ∀v ∈ V \ A , τAa = 0 , ∀a ∈ A ,

which can be written more compactly as

ΥV\A(I − P )τA = 1 , ΥAτ
A = 0 .

Example 1. For the simple random walk on the line with node set {0, 1, . . . , n},
and A := {0, n}, one has γk,n = k/n = 1 − γ0,n, and τA = k(n − k) for all
k = 0, . . . , n.

10



5 Coupling

An approach to get upper bounds on the mixing time τmix alternative to the
one in Section 3 is based on coupling techniques. The key idea of coupling
is the following: Consider two Markov chains, V1(t) and V2(t), started in
possibly different initial states V1(0), V2(0) ∈ V, and moving simultaneously
with the same, not necessarily reversible, transition probability matrix P .
This means that the joint transition probabilities

Q(i,u)(j,v) := P(V1(t+ 1) = j, V2(t+ 1) = v|V1(t) = i, V2(t) = u)

satisfy

∑

v

Q(i,u)(j,v) = Pij ,
∑

j

Q(i,u)(j,v) = Puv , ∀i, j, u, v ∈ V . (12)

A Markov coupling for a stochastic matrix P is any stochastic matrix Q on
the product space V2 satisfying (12). One Markov coupling is obviously the
trivial one Q(i,u)(j,v) = PijPuv, which corresponds to V1(t) and V2(t) moving
independently on V with transition probability matrix P . However, one can
often find less trivial, and more useful, couplings.

The following is a basic result connecting coupling with mixing. Define
the coupling time

Tcouple := min {t ≥ 0 , V1(t) = V2(t)} ,

i.e., Tcouple denotes the random time that V1(t) and V2(t) happen to be in the
same node. Then, one has the following

Proposition 1. Let P be a stochastic matrix on V. For every coupling Q of

two Markov chains V1(t) and V2(t) with transition probability matrix P ,

∆(t) ≤ max
i,u

{P(Tcouple > t|V1(0) = i, V2(0) = u)} , ∀t ≥ 0 .

Proof.
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