Ph.D. course on Network Dynamics

Homework 1

To be discussed on Tuesday, November 15, 2011

Exercise 1. Prove the hand-shacking lemma: in every undirected graph G =

V., &),
2|1&] = E dy ,
veV

where d, denotes the degree of a node v € V.

Exercise 2. Prove that every tree G = (V,&) (i.e., a connected undirected
graph containing no cycles) satisfies

V| =|E|+1.
Hint: use induction on the number of nodes V.

Exercise 3 (Properties of the Chernoff exponent). The moment generating
function of a real-valued random variable X is defined as

Mx(0) :=E[exp(0X)] € [0, +00], 0eR.
Observe that trivially Mx(0) = 1.

(a) Prove that, if Mx(0*) < +oo for some 8 > 0, then Mx () < +oo for

all 0 € [0,0]. Using the dominated convergence theorem, and the series
expansion exp(0X) = 37, (0X)*/k!, argue that

M) = S LB e ),

k>0



where 0* := sup{f : Mx(0) < +oo}. Conclude that, if 0* > 0, then

dk
k' — lim — >
E[X"] lglﬁ}dngX(e)’ Vk>1,
which explains why Mx (0) is called the moment generating function.

Now define the Chernoff exponent

hx(a) :=sup {fa —log Mx(0): 0 > 0} , Va e R,
and prove that:
(b) hx(a) >0 for all a € R; (this is easy!)

(c) hx(a) =0 for all a < E[X]; (hint: apply Jensen’s inequality E[f(X)] >
f(E[X]) to the convex function f(x):= exp(x), or to f(z) = —logx)

(d) if Mx(6*) < 400 for some 6* > 0, then hx(a) > 0 for all a > E[X];
(hint: compute the right derivative in 8 = 0 of f(0) = 0a — log Mx (0)
using point (a))

(e) hx(a) is non-decreasing in a; (easy, since it’s defined as the sup of non-
decreasing functions of a)

(f) hx(a) is conver in a; (also easy, since it’s defined as the sup of linear
functions of a)

Exercise 4 (Chernoff exponent in special cases). Show that

(a) if X ~Bernoulli(p), then hx(a) = alog(a/p)+(1—a)log((1—a)/(1—p));
(b) if Y ~Poisson()), then hy(a) = alog(a/\) —a+ A.

Prove the following useful estimates of the Chernoff exponent of a Bernoulli(p):
(c) hx(a) > (a—p)?/(2a).

(hint: use first order Taylor approrimation with Lagrange residuals:
hx(a) = hx(p) + I (p)(p — a) + I (y)(p — @)*/2, for some y € [p,a])



Exercise 5. Consider the Erdds-Rényi Ramdon graph G(n,p).

(a) Prove that, for alle > 0,
P(d, > (n—1)p(1+e)) < exp(—(n—1)p*/(2(1+¢))) Vo e {1,...,n};
(hint: use Chernoff and Exercise[j(c))

(b) let dpax := max{d,: 1 < v <n} be the maximum of the node degrees,
and prove that, if np > Alogn where A > 1, then

P(dmax > 4pn) fmazeyy
(hint: use point (a) and the union bound)

(c) prove that, for alle > 0,
P(d, < (n—1)p(1 —¢)) < exp(—(n — 1)pe?/2) Yoe{l,...,n};

(hint: use Chernoff for n —1 —d, which is Binomial(in —1,(1 —p)) and
argue as in Exercise[f)(c) to get alog(a/p)+(1—a)log((1—a)/(1—p)) >
(p—a)?/(2p))

(d) let dpin == min{d, : 1 <v <n} be the maximum of the node degrees,
and prove that, if np > Xlogn where A > 2, then there ezists a(\ > 0)
such that

P(dmin < (N)pn) "25°0
(hint: use point (c), and the union bound, and see that the argument
works for every o € (0,1 —/2/X))

Remark 1. Durrett’s Lemma 6.5.2 claims that our point (d) is true provided

that only X > 1 (instead of X > 2, as we have assumed: his proof seems wrong
to me, what are your thoughts?)

Exercise 6. Consider the Erdds-Rényi Ramdon graph G(n,p). For v €
{1,...,n}, and k > 3, let Nx(v) be the number of cycles of length k passing
through node v in G(n,p).
(a) Prove that
1
E[Ng(v)] = §(n —D(n—=2)...(n—k+1)p*;

(Hint: show that the possible cycles containing v are (n — 1)(n —
2)...(n—k+1)/2, since one has to choose k — 1 out of n — 1 other
nodes (beyond v) ...)



(b) Using Markov’s inequality, prove that

N 2

1
P(Jeycle of length < k containing v) < { 2, FA—1
ES 7 =

Conclude that:
(c) if A <1, then

3,1
)\ n n——+00

P(Jcycle containing v) < 0= — 0;

(d) if A > 1, then
)\nalog)\—l
20— 1)

n—+400

P(Jeycle of length < alogn containing v) < — 0,

for all a < 1/log A

Exercise 7 (Supercritical branching process). Consider a branching process
Zy with offspring distribution py, := P(X = k), let pn := E[X]| =, kpy be the
expected number of offsprings and ®(y) := Ely*] = Y., pry" the generating
function of X. Assume that u > 1, and py < 1, so that that the extinction
probability peys is the unique solution in (0,1) of y = ®(y). Prove that

(a) the process conditioned on extinction, Z,, is a branching process with
offspring distribution having generating function

5 (I) exr
(b(y) _ (p ty) :
pe:ct

(hint: if Xll is the number of first generation offsprings with a finite
line of descent, then P(X1 = k, ext) = prp*,,, fork >0 )

(b) conditioned on survival, if one looks only at individuals that have an
infinite line of descent, then one obtains a new branching process Z;
with offspring distribution having generating function

= (I) 1_ ex ext) = Mex

(hint: if Xll is the number of first generation offsprings with an infinite
line of descent, then P(X| = k) =", p;(7)(1 —pest) i F fork >1)
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Exercise 8 (Subcritical branching process and Erdés-Rényi random graph).
Consider a branching process Zy =1, Zyq = leztl X! with offspring distri-
bution X! ~Binomial(n,p). Assume that A = E[X!] = np < 1.

(a) Prove that the total size T := ), Z; satisfies
P(T"> k) <exp(—k(A—1—1log))) ;

(hint: use Chernoff bound, the explicit computation of Exercise [{)(a),
and the inequality log(1 + z) < z)

(b) conclude that, for all a > 0

P(T > alogn) < n-eA-171ed)

Now, let us consider the subcritical Erdds-Rényi random graph G(n,p)
with A = pn < 1. Recall the epidemics interpretation for finding the size of
the connected component of some node v € V :={1,...,n}:

S():V\{U}, IQZ{’U}, R()IZQ,

Sir1 =S \Lit1, L1 ={j €S : xij =1 for some j €L}, Ripr:=RUL.

Assume that (this was mentioned in the last class and will be proven in the
next class), for every v € V one can construct a branching process Z; with
offspring distribution Binomial(n,p) such that

T < Z,., Wt>0.
Using point (b) and a union bound,
(c) prove that, for every a > (A —1 —log )"

P <max IC(v)| > alogn) maz |

i.e., the size of the largest component in subcritical G(n, A/n) is bounded
from above by (A —1 —log\) ™' logn.



