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1 Introduction

We denote by GER(n, p) the Erdos-Renyi random graph having set of vertices
Vn = {1, . . . , n} and set of edges EER(n, p) probabilistically constructed as fol-
lows. We have a family of independent random variables, indicized by all distinct
(unordered) pairs of vertices {i, j} ⊆ V , X{i,j} all having identical distribution
Ber(p) (Bernoullian of parameter p) and we put

EER(n, p) = {{i, j} |X{i,j} = 1}

2 The branching process approximation

Let C1 be the set of vertices in the connected component of GER(n, p) containing
the vertex 1. We can imagine to construct C1 through a sort of cluster growth
or epidemic spreading: we start from the node 1 and, at time 1 we consider its
sons (infected nodes) as the nodes which are neighbors of 1, after we consider
the nodes which are neighbors of the neighbors of 1 and so on. Formally, we
consider the splitting Vn = St ∪ It ∪ Rt to be interpreted, respectively, as the
set of susceptible nodes, infected nodes, removed nodes, at time t and which are
determined through an iterative process. Initially we set I0 = {1}, S0 = Vn \ I0,
and R0 = ∅. Given the splitting at time t, we put

It+1 = {i ∈ St |X{j,i} = 1 for some j ∈ It} , St+1 = St \ It+1 , Rt+1 = Rt ∪ It

Clearly, C1 = ∪t≥0It and, since the It are pairwise disjoint,

|C1| =
+∞∑
t=0

|It| = lim
t→+∞

|Rt|

The branching process approximation works as follows. We define a family of
independent auxiliary Ber(p) random variables Y t

{i,j} where i, j ∈ N, t ≥ 0
independent also from the X{i,j} and we define the process Zt iteratively as
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follows

Zt+1 =


0 if Zt = 0∑
i∈It,j∈St

X{i,j} +
∑

i∈It,j∈Sc
t

Y t
{i,j}

n+Zt−|It|∑
i=n+1

∑
j∈Vn

Y t
{i,j} if Zt > 0

Z0 = 1

(1)
Notice first of all that Zt is indeed a branching process with binomial B(n, p)
offspring distribution. What does it have to do with our connected component?
Let us try to explain the meaning of the three summation terms in (1). The first
summation takes into account the nodes which become infected at time t + 1,
namely those which are connected by a path of length t+ 1 to the root node 1;
however, by the way this terms is defined it counts more than one time those
nodes which are neighbors of more than one node in It. Therefore we have an
inequality |It+1| ≤

∑
i∈It,j∈St

X{i,j} and therefore we also have Zt ≥ |It|. As a

simple consequence we have that if Zt dies, It becomes 0 at a certain point and
the connected component is thus finite. Using the theory of branching process,
we thus have the following result

Proposition 1. Suppose that p = λ/n with λ < 1. Then C1 is bounded in n
with probability 1.

For a better understanding of the quality of this approximation and also to
get results for λ > 1, we have to study more carefully the branching process (1).
First define Ct+1 =

∑
i∈It,j∈St

X{i,j} − |It+1| the collisions at time t (multiplicity

due to vertices reached more than one time). The second summation is denoted
by Bt+1, and represents the extra birth due to ’fake’ vertices in Sc

t (already
visited in the cluster growth): this term is needed in order to maintain the
same offspring distribution at all times. The third term represents instead
the offspring from vertices which are not in It, vertices which have made their
appearance in the past due to the two phenomena of collisions and extra birth. It
is convenient to introduce the bi-indicized sequence Ast defined by Ass = Cs+Bs

(new immigrants at time s) while for s < t, Ast is the number of sons at time t
due to immigrants born in the past at time s. Therefore, we have that

Zt = It +
t∑

s=1

Ast (2)

Hence, if we can estimate this terms Ast we will also be able to study how much
Zt and |It| differ from each other.

The following lemma establishes a number of useful results:

Lemma 2. Suppose that p = λ/n. The following facts are true

(a) E(Ast) = λt−sE[Bs + Cs]

(b) E[Bt+1] ≤ λ
nE[Zt

∑t
s=0 Zs]
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(c) E[Ct+1] ≤ λ2

n E[Z2
t ]

Proof (Only a sketch to be completed by the reader).
(a) is a trivial consequence of the properties of branching processes.
(b) Consider Ft the σ-algebra generated by all the events in the cluster

growth up to time t. It holds (explain why)

E[Bt+1|Ft] =
λ

n
|It|(|It|+ |Rt|)

Prove now the thesis using the inequalities |It| ≤ Zt.
(c) It holds (explain why)

Ct+1 ≤ |{(x, x′, y) ∈ I2t × St |x < x′, X{x,y} = X{x′,y} = 1}|

Now estimate as in (b), first considering E[Ct+1|Ft] and then using the inequal-
ities |It| ≤ Zt and |St| ≤ n.

The above lemma reduce the problem to the computation of second order
moments of the process Zt. We have the following results which are left without
proof inviting the reader to try to prove it himself or rather looking for proofs
in the literature on branching processes.

Lemma 3. Suppose that s > r. Then,

E[ZsZr] = λs−rE[Z2
r ]

Lemma 4. It holds
E[Z2

s+1] = λ2E[Z2
s ] + σ2E[Zs]

where σ2 = λ(1− λ/n).

Corollary 5. Suppose that λ < 1. There exists a positive constant C such that,
for every n it holds

+∞∑
t=1

E(Zt − |It|) ≤
C

n

Proof (Sketch) Using (2), Lemmas 2, 3 prove first that

+∞∑
t=1

E(Zt − |It|) ≤
λ

n

+∞∑
s=0

s−1∑
r=0

λs−rE[Z2
r ] +

λ+ λ2

n

+∞∑
s=0

E[Z2
s ]

Using now Lemma 4 with the fact that σ2 ≤ λ < 1, show that

E[Z2
s ] ≤

λs

1− λ

Finally combine with the derivation above to get the result.
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Corollary 6. Suppose that λ > 1. There exists a positive constant C such that,
for every n it holds

E(Zt − |It|) ≤
C

n
λ2t (3)

Proof Exercise using arguments similar to the proof of Corollary 6.

Consider (2) for t = a lnn/ lnλ: we obtain

E(Zt − |It|) ≤ cn2a−1

Therefore, if a < 1/2, we have that E(Zt − |It|) → 0 for n → +∞. Instead, if
a ∈ [1/2, 1[, since n2a−1 << λt = E[Zt], we still have that E(Zt−|It|) << E[Zt].

3 The connectivity threshold

Theorem 7. Let pn be a sequence in [0, 1].

(a) If pn = lnn+ωn

n with ωn → +∞ then, for n → +∞,

P(GER(n, pn) is connected) → 1

(b) If pn = lnn−ωn

n with ωn → +∞ then, for n → +∞,

P(GER(n, pn) is connected) → 0

Proof Let Nk be the number of connected components of cardinality exactly
k inside GER(n, pn) and notice that

{GER(n, pn) is disconnected} ⊆ {
⌊n/2⌋∑
k=1

Nk ≥ 1} (4)

{GER(n, pn) is connected} ⊆ {N1 = 0} (5)

Condition (c2) and Markov inequality will lead to prove (a). Instead (c1) and
a second order argument (Chebyschev) will lead to prove (b).

We start with (a). For every subset H ⊆ Vn let EH be the Bernoulli vari-
able which is 1 iff H is isolated from the rest in GER(n, pn)} Clearly, Nk ≤∑

H:|H|=k EH (why is not an equality?). Therefore

E[Nk] =
∑

H:|H|=k

E[EH ] =

(
n

k

)
(1− pn)

k(n−k)

It follows that

P

⌊n/2⌋∑
k=1

Nk ≥ 1

 ≤
⌊n/2⌋∑
k=1

E[Nk] ≤
⌊n/2⌋∑
k=1

(
n

k

)
(1− pn)

k(n−k)
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To estimate the last summation above we proceed as follows. We first consider
an integer sequence αn ≤ n/2 to be determined later and we split

⌊n/2⌋∑
k=1

(
n

k

)
(1− pn)

k(n−k) =

αn∑
k=1

(
n

k

)
(1− pn)

k(n−k) +

⌊n/2⌋∑
k=αn+1

(
n

k

)
(1− pn)

k(n−k)

Using the classical inequalities(
n

k

)
≤

(en
k

)k

, ln(1 + x) ≤ x

we obtain (check this)

αn∑
k=1

(
n

k

)
(1− pn)

k(n−k) ≤
αn∑
k=1

[
k−keke2k

2 lnn
n

] [
e−kωn(1− k

n )
]

To prove convergence to 0 we now show that there exists a summable sequence
ak such that

k−keke2k
2 lnn

n ≤ ak ∀k, n

and moreover we show that if αn ∼ n3/4 for n → +∞,

sup
k≤αn

[
e−kωn(1− k

n )
]
→ 0

for n → +∞. This proves that
αn∑
k=1

(
n
k

)
(1− pn)

k(n−k) is indeed infinitesimal for

n → +∞ (the reader should check all these facts). Regarding the second term,
check the following steps

⌊n/2⌋∑
k=αn+1

(
n

k

)
(1− pn)

k(n−k) ≤
⌊n/2⌋∑

k=αn+1

(
en1/2

αn

)k

≤ n

2

(
en1/2

αn

)αn

Conclude that this term is also infinitesimal if αn ∼ n3/4 for n → +∞. This
proves (a).

For (b) we use a second order method.

P(N1 = 0) ≤ P(|N1 − E[N1]|2 ≥ E[N1])
2) ≤ Var(N1 =

E[N1])2

Now we can compute as follows (check this)

E[N1]) = n(1−pn)
n−1 , Var(N1) = n(n−1)(1−pn)

2n−3−n2(1−pn)
2n−2+n(1−pn)

n−1

Finally, insert these expressions in the estimation above and prove convergence
to 0.
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