H_{∞} Optimization of Coprime Factors. H_{∞} Loop Shaping. v-Gap Metric

Reading Assignment

Read [Zhou] Ch. 16, 17.2-3. Optional reading:

• McFarlane D. and K. Glover, "Robust Controller Design Using Normalized Coprime Factor Plant Descriptions", Lecture Notes in Control, 138, Springer-Verlag, 1990.

Exercises

- E7.1 [Zhou] 16.3
- **E7.2** [Zhou] 16.5 (+16.6)
- E7.3 [Zhou] 16.8
- E7.4 Consider a simplified model of a satellite with two highly flexible solar arrays (Salehi, 10th IFAC Symposium, 1985)

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\omega^2 & -2\zeta\omega \end{pmatrix} x + \begin{pmatrix} 0 \\ 1.7319e - 05 \\ 0 \\ 3.7859e - 04 \end{pmatrix} u + \begin{pmatrix} 0 \\ 1.7319e - 05 \\ 0 \\ 3.7859e - 04 \end{pmatrix} v,$$
$$y = (1 & 0 & 1 & 0)x.$$

where $\omega = 1.539 rad/sec$ is the frequency of the flexure mode and $\zeta = 0.003$ is the flexural damping ratio. Here u is the control torque (Nm), v is a constant disturbance torque (Nm) and y is the roll angle measurement (rad).

Required performance specification: y must stay within $0.04^{\circ} \approx 0.0007 rad$ pointing accuracy due to 0.3Nm step torque disturbances.

1. Using [Zhou,16.12] prove the following bound

$$|(I - PK)^{-1}P| \leq \frac{\gamma}{|W|}$$

where $W = W_1 W_2$ is a single shaping function (for SISO plants).

- **2.** Show that the performance specification is met for the constant shape function W = 2000.
- **3.** Find the controller by H_{∞} loop shaping procedure. Draw the Bode plots of the nominal *P*, shaped P_s and achieved WPK_{∞} open loops. Compare.

- 2
- 4. Due to small steady-state error ($\approx 0.018^{\circ}$) introduce another shaping function

$$W = \frac{10000(s+0.4)}{s}.$$

Show that the performance specification is met and the full steady-state disturbance rejection is guaranteed.

- **5.** Repeat Item (c) for the new W.
- **E7.5** Calculate $\delta_{\nu}(P_0, P_z)$ and $\delta_{\nu}(P_0, P_\eta)$ for plants

$$P_0=rac{10(s^2+1)}{s^2(s^2+2)}, \quad P_z=rac{10(s^2+1.1)}{s^2(s^2+2)}, \quad P_\eta=rac{10(s^2+1)}{s^2(s^2+1.8)}$$

and conclude about a sensitivity of δ_{ν} to the variation in the imaginary axis zeros and poles. Explain the result from the Riemann sphere interpretation of δ_{ν} .

Hand-In problems:

- **H7.1** [Zhou] 16.9. Plot the Bode diagram of the specified P_s and the achieved $WK_{\infty}P$ loop shape.
- **H7.2** Let a nominal plant be given by $P = \frac{s-1}{s(s+2)}$ and we select W = k, a constant, as the shaping function. Thus $P_s = \frac{k(s-1)}{s(s+2)}$.
 - **1.** Calculate $b_{opt}(P_s)$ and $\delta_v(P, P_s)$ for 4 different choices of W = k

 $k = [.1 \ 1 \ 5 \ 10].$

What *k*'s give better loop shape for controller design?

- 2. For all 4 choices of W: Find the optimal controller K_{∞} . Plot the Bode diagram of the specified loop shape P_s and the achieved loop shape $WK_{\infty}P$.
- 3. Explain the result from performance limitation point of view.