Lecture 6 • The H_{∞} Optimization Problem • Linear Quadratic Games • Algebraic Riccati Equations • State Space Solution to H_{∞} Optimization	The H_{∞} Optimization Problem $\stackrel{\scriptstyle \psi}{\underset{\scriptstyle u}{\overset{\scriptstyle \psi}{\underset{\scriptstyle u}{\underset{\scriptstyle u}{\atop\scriptstyle u}{\underset{\scriptstyle u}{\atop\scriptstyle u}{\underset{\scriptstyle u}{\underset{\scriptstyle u}{\underset{\scriptstyle u}{\atop\scriptstyle u}{\underset{\scriptstyle u}{\atop\scriptstyle u}{\atop\scriptstyle u}{\underset{\scriptstyle u}{\atop\scriptstyle u}{\scriptstyle u}{\atop\scriptstyle u}{\atop\scriptstyle u}{\atop\scriptstyle u}{\atop\scriptstyle u}{\atop\scriptstyle u}{\scriptstyle u}{\scriptstyle u}{\atop\scriptstyle u}{\atop\scriptstyle u}{\scriptstyle u}{\scriptstyle u}{\scriptstyle u}{\scriptstyle u}{\scriptstyle u}{\scriptstyle u}{\scriptstyle u}{$
H_{∞} Optimization in Frequency Domain A good exposition can be found in the book [Francis, 1987]. The Youla parameterization of all internally stabilizing con- trollers gives an affine dependence of T_{zw} on the Youla param- eter $Q \in RH_{\infty}$ $T_{zw} = T_1 - T_2QT_3, \ T_k \in RH_{\infty}$ Thus the H_{∞} optimization problem becomes $\min_{Q \in RH_{\infty}} T_1 - T_2QT_3 _{\infty}$	H_{∞} Optimization in Frequency Domain In a special case, the H_{∞} optimization problem is equivalent to $\min_{F \in RH_{\infty}} R - F _{\infty} = \operatorname{dist}(R, RH_{\infty})$ where R is unstable. This problem of approximating an L_{∞} function by an H_{∞} function is a classical problem from the beginning of the 20th century (Markov, Caratheodory, Fejer, Nevanlinna, Pick, Sarason and many others). Nehari solved it in 1957.
The optimization in Q is convex, but infinite-dimensional	

Recall Linear Quadratic ControlState Space SolutionState Space Solution
$$A^TP + PA + Q - PBB^TP = 0$$
then every solution to $\dot{x} = Ax + Bu$ with $x(T) = 0$ satisfies $\int_0^T [u + B^TPx]^2 dt - 2 \int_0^T (Ax + Bu)^TPx dt]$ $= \int_0^T [u + B^TPx]^2 dt - 2 \int_0^T (Ax + Bu)^TPx dt]$ $= \int_0^T [u + B^TPx]^2 dt - 2 \int_0^T (Ax + Bu)^TPx dt]$ $= \int_0^T [u + B^TPx]^2 dt - 2 \int_0^T (Ax + Bu)^TPx dt]$ $= \int_0^T [u + B^TPx]^2 dt - 2 \int_0^T (Ax + Bu)^TPx dt]$ $= \int_0^T [u + B^TPx]^2 dt - 2 \int_0^T (Ax + Bu)^TPx dt]$ $= \int_0^T [u + B^TPx]^2 dt - 2 \int_0^T (Ax + Bu)^TPx dt]$ $= \int_0^T [u + B^TPx]^2 dt - 2 \int_0^T (Ax + Bu)^TPx dt]$ $= x(0)^TPx(0) + \int_0^T [u + B^TPx]^2 dt]$ with the minimizing control law $u = -B^TPx$.Algebraic Riccati Equations $A^*X + XA + Q - X(B_xB^T - BwB^T/T^2)X = 0$ then $\dot{x} = Ax + Bu + B_w w$ with $x(0) = x(T) = 0$ gives $\int_0^T [x^TQx + u^Tu - \gamma^2w^Tw] dt = \int_0^T [u + B_x^TXx]^2 dt - \gamma^2 \int_0^T [w - B_x^TXx]^2 dt]$ The Ax Bu w with $x(0) = x(T) = 0$ gives $\int_0^T [x^TQx + u^Tu - \gamma^2w^Tw] dt = \int_0^T [u + B_x^TXx]^2 dt - \gamma^2 \int_0^T [w - B_x^TXx]^2 dt]$ The ax bu viewed as a dynamic game between the player u ,
who tries to minimize and w who tries to maximize.
The minimizen control law $u = -B_u^TXx$ gives
in LQ Control).The minimize quotical law $u = -B_u^TXx$ gives
in LQ Control).

How do we solve it?

$$\int_0^T [x^T Q x + u^T u] dt \le \gamma^2 \int_0^T w^T w dt$$

so the gain from w to $z = (Q^{1/2}x, u)$ is at most γ .

Hamiltonian Matrix

Consider the $2n \times 2n$ matrix

$$H=\left(egin{array}{cc} A & R \ -Q & -A^{*} \end{array}
ight)$$

Lemma: Eigenvalues of H are symmetric with respect to the imaginary axis.

Proof: Introduce $J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$. Then $J^{-1}HJ = -H^*$, so λ is an eigenvalue of H if and only if $-\overline{\lambda}$ is.

In particular, if there are no purely imaginary eigenvalues then there are precisely n stable and n unstable eigenvalues of H.

1) $HT = T\Lambda \Rightarrow T^*JHT = T^*JT\Lambda$. The matrix JH is

no common eigenvalues. Hence $T^*JT = 0$ that is

 $T^* JT \Lambda = \Lambda^* T^* JT \quad \Leftrightarrow \quad T^* JT \Lambda - \Lambda^* T^* JT = 0.$

So T^*JT satisfies the Lyapunov equation and Λ and $-\Lambda^*$ have

 $X_{2}^{*}X_{1} - X_{1}^{*}X_{2} = 0 \quad \Leftrightarrow \quad X^{*} - X = 0.$

 $AX_1+RX_2=X_1\Lambda, \qquad \Leftrightarrow \qquad A+RX=X_1\Lambda X_1^{-1} \ -QX_1-A^*X_2=X_2\Lambda. \qquad \Leftrightarrow \qquad -Q-A^*X=X_2\Lambda X_1^{-1}.$

 $XA + XRX = X_2\Lambda X_1 = -Q - A^*X$

Stable Invariant Subspace

Under assumption of no purely imaginary eigenvalues, let

$$T=\left(egin{array}{c} X_1\ X_2\end{array}
ight)\in R^{2n imes n}$$

be a basis of the stable *n*-dimensional invariant subspace. Equivalently $HT = T\Lambda$ for some stable matrix $\Lambda \in R^{n \times n}$.

Lemma: If $det(X_1) \neq 0$ then $X = X_2X_1^{-1}$ is a stabilizing solution to the ARE $A^*X + XA + XRX + Q = 0$

Proof: We are to prove

1) $X = X^*$.

2) X satisfies the ARE.

3) A + RX is stable.

How to solve the ARE

Under conditions

(H1) There are no pure imaginary eigenvalues of H.

(H2) det $(X_1) \neq 0$ for some basis of stable invariant subspace.

we can find a stabilizing solution to ARE as follows:

1. Find a basis T for the stable invariant subspace, for example by Jordan decomposition. If (H1) holds, then it has the dimension n.

2. Partition T as

$$T=\left(egin{array}{c} X_1\ X_2\end{array}
ight)\,.$$

(H2) holds for some basis iff it holds for all basis.

3. Build $X = X_2 X_1^{-1}$.

which implies the ARE.

2) & 3) Simple calculation gives

Thus A + RX is stable and

symmetric then

Notation	ARE for H_∞ norm conditions
$H \in \operatorname{dom}(\operatorname{Ric})$ if (H1) and (H2) hold for H .	Let
$X = \operatorname{Ric}(H)$ is the stabilizing solution to ARE.	$G(s) = C(sI - A)^{-1}B$
	Hamiltonian matrix
	$H_0=\left(egin{array}{cc} A & BB^*\ -C^*C & -A^* \end{array} ight).$
	Theorem: Let $G \in RH_\infty$. The following conditions are equivalent:
	1. $\ G\ _{\infty} < 1$,
	2. (H1) holds for H_0 ,
	3. $H_0 \in \operatorname{dom}(\operatorname{Ric})$.
	<i>Proof</i> : For (2) ⇔ (3), see [Zhou, p. 237]
(1) \Leftrightarrow (2) The following conditions are equivalent:	Assumptions
(1) \Leftrightarrow (2) The following conditions are equivalent: 1) $ G _{\infty} < 1$ 2) $\frac{ G(j\omega)x ^2}{ x ^2} < 1 \forall x \neq 0, \ \omega$ 3) $x^*[I - G(j\omega)^*G(j\omega)]x > 0, \forall x \neq 0, \ \omega$	Assumptions w P z P $= \begin{bmatrix} A & B_w & B_u \\ C_z & 0 & D_{zu} \\ C_y & D_{yw} & 0 \end{bmatrix}$
(1) \Leftrightarrow (2) The following conditions are equivalent: 1) $ G _{\infty} < 1$ 2) $\frac{ G(j\omega)x ^2}{ x ^2} < 1 \forall x \neq 0, \ \omega$ 3) $x^*[I - G(j\omega)^*G(j\omega)]x > 0, \forall x \neq 0, \ \omega$ 4) $I - G(j\omega)^*G(j\omega) > 0, \forall \omega$ 5) $\det(I - G(j\omega)^*G(j\omega)) \neq 0, \forall \omega$	Assumptions $w \rightarrow P \rightarrow z \rightarrow P$ $u \rightarrow y \qquad P = \begin{bmatrix} A & B_w & B_u \\ \hline C_z & 0 & D_{zu} \\ \hline C_y & D_{yw} & 0 \end{bmatrix}$
(1) \Leftrightarrow (2) The following conditions are equivalent: 1) $ G _{\infty} < 1$ 2) $\frac{ G(j\omega)x ^2}{ x ^2} < 1 \forall x \neq 0, \ \omega$ 3) $x^*[I - G(j\omega)^*G(j\omega)]x > 0, \forall x \neq 0, \ \omega$ 4) $I - G(j\omega)^*G(j\omega) > 0, \forall \omega$ 5) $\det(I - G(j\omega)^*G(j\omega)) \neq 0, \forall \omega$ 6) $\det(j\omega I - H_0) = \det \begin{pmatrix} j\omega I - A & -BB^* \\ C^*C & j\omega I + A^* \end{pmatrix} =$	Assumptions $ \begin{array}{c} $
(1) \Leftrightarrow (2) The following conditions are equivalent: 1) $ G _{\infty} < 1$ 2) $\frac{ G(j\omega)x ^2}{ x ^2} < 1 \forall x \neq 0, \ \omega$ 3) $x^*[I - G(j\omega)^*G(j\omega)]x > 0, \forall x \neq 0, \ \omega$ 4) $I - G(j\omega)^*G(j\omega) > 0, \forall \omega$ 5) $\det(I - G(j\omega)^*G(j\omega)) \neq 0, \forall \omega$ 6) $\det(j\omega I - H_0) = \det\left(\begin{array}{c} j\omega I - A & -BB^*\\ C^*C & j\omega I + A^*\end{array}\right) = = \det(j\omega I - A) \det(j\omega I + A^*) \det(I - G^*G) \neq 0$ $\forall \omega.$	Assumptions $ \begin{array}{c} \begin{matrix} w \\ $
(1) \Leftrightarrow (2) The following conditions are equivalent: 1) $ G _{\infty} < 1$ 2) $\frac{ G(j\omega)x ^2}{ x ^2} < 1 \forall x \neq 0, \omega$ 3) $x^*[I - G(j\omega)^*G(j\omega)]x > 0, \forall x \neq 0, \omega$ 4) $I - G(j\omega)^*G(j\omega) > 0, \forall \omega$ 5) $\det(I - G(j\omega)^*G(j\omega)) \neq 0, \forall \omega$ 6) $\det(j\omega I - H_0) = \det \begin{pmatrix} j\omega I - A & -BB^* \\ C^*C & j\omega I + A^* \end{pmatrix} = = \det(j\omega I - A) \det(j\omega I + A^*) \det(I - G^*G) \neq 0$ $\forall \omega$. Thus we can describe the condition $ G _{\infty} < 1$ by existence of	Assumptions $ \begin{array}{c} \begin{matrix} W \\ $

State Space H_∞ optimization	Moreover, one such controller is
The solution involves two AREs with Hamiltonian matrices $H_{\infty} = \begin{pmatrix} A & \gamma^{-2}B_{w}B_{w}^{*} - B_{u}B_{u}^{*} \\ -C_{z}^{*}C_{z} & -A^{*} \end{pmatrix}$ $J_{\infty} = \begin{pmatrix} A^{*} & \gamma^{-2}C_{z}^{*}C_{z} - C_{y}^{*}C_{y} \\ -B_{w}B_{w}^{*} & -A \end{pmatrix}$ Theorem: There exists a stabilizing controller <i>K</i> such that $\ T_{zw}\ _{\infty} < \gamma \text{ if and only if the following three conditions hold:}$ 1. $H_{\infty} \in \text{dom}(\text{Ric}) \text{ and } X_{\infty} = \text{Ric}(H_{\infty}) \ge 0,$ 2. $J_{\infty} \in \text{dom}(\text{Ric}) \text{ and } Y_{\infty} = \text{Ric}(J_{\infty}) \ge 0,$ 3. $\rho(X_{\infty}Y_{\infty}) < \gamma^{2}.$	$K_{sub}(s) = \left[\begin{array}{c c} \hat{A}_{\infty} & -Z_{\infty}L_{\infty} \\ \hline F_{\infty} & 0 \end{array} \right]$ where $\hat{A}_{\infty} = A + \gamma^{-2}B_{w}B_{w}^{*}X_{\infty} + B_{u}F_{\infty} + Z_{\infty}L_{\infty}C_{y},$ $F_{\infty} = -B_{u}^{*}X_{\infty}, \ L_{\infty} = -Y_{\infty}C_{y}^{*},$ $Z_{\infty} = (I - \gamma^{-2}Y_{\infty}X_{\infty})^{-1}.$ Furthermore, the set of all stabilizing controllers such that $ T_{wz} _{\infty} < \gamma$ can be explicitly obtained as lower LFT (see [Zhou,p. 271]). [Doyle J., Glover K., Khargonekar P., Francis B., <i>State Space</i> <i>Solution to Standard H</i> ² <i>and H</i> ^{\infty} <i>Control Problems</i> , IEEE Trans. on AC 34 (1989) 831–847.]
Idea of Proof	What have we learned today?
The dynamic game viewpoint gives a solution in the case of full information, where both state and disturbance are measurable. This gives the first ARE.	 <i>H</i>_∞ optimization is fundamental problem for robust synthesis. A dynamic game between controller and disturbance.
This can be combined with a "worst case observer", finding the smallest disturbance compatible with available measurements. This gives the second ARE.	 The state space approach gives easily implementable conditions and formulas. Algebraic Riccati Equation is the main computational tool.
Combining the full information solution with the worst case	

observer, solves the dynamc game problem with limited measurement information, provided that the spectral radius

condition holds.

 $\mathbf{5}$