
Lecture 6

• The H∞ Optimization Problem

• Linear Quadratic Games

• Algebraic Riccati Equations

• State Space Solution to H∞ Optimization

The H∞ Optimization Problem
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Tzw = F l(P, K )

Optimal control:
min
K−stab

iTzwi∞

Suboptimal control: Given γ find an internally stabilizing
controller K such that

iTzwi∞ < γ .

The optimal control problem is solved by iterating γ in the
suboptimal problem.

H∞ Optimization in Frequency Domain

A good exposition can be found in the book [Francis, 1987].

The Youla parameterization of all internally stabilizing con-
trollers gives an affine dependence of Tzw on the Youla param-
eter Q ∈ RH∞

Tzw = T1 − T2QT3, Tk ∈ RH∞

Thus the H∞ optimization problem becomes

min
Q∈RH∞

iT1 − T2QT3i∞

The optimization in Q is convex, but infinite-dimensional

H∞ Optimization in Frequency Domain

In a special case, the H∞ optimization problem is equivalent to

min
F∈RH∞

iR − Fi∞ = dist(R,RH∞)

where R is unstable.

This problem of approximating an L∞ function by an H∞

function is a classical problem from the beginning of the
20th century (Markov, Caratheodory, Fejer, Nevanlinna, Pick,
Sarason and many others). Nehari solved it in 1957.
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State Space Solution

Recall Linear Quadratic Control

If P satisfies the Riccati equation

ATP + PA+ Q − PBBTP = 0

then every solution to ẋ = Ax + Bu with x(T) = 0 satisfies
∫ T

0

[xTQx + uTu]dt =

∫ T

0

hu+ BTPxh2dt− 2

∫ T

0

(Ax + Bu)TPxdt

=

∫ T

0

hu+ BTPxh2dt− 2

∫ T

0

ẋTPxdt

=

∫ T

0

hu+ BTPxh2dt−

∫ T

0

d

dt
[xTPx]dt

= x(0)TPx(0) +

∫ T

0

hu+ BTPxh2dt

with the minimizing control law u = −BTPx.

A Linear Quadratic Game

If X satisfies the Algebraic Riccati Equation

AT X + X A+ Q− X (BuB
T
u − BwB

T
w/γ 2)X = 0

then ẋ = Ax + Buu+ Bww with x(0) = x(T) = 0 gives
∫ T

0

[xTQx + uTu− γ 2wTw]dt =

∫ T

0

hu+ BTu X xh
2dt− γ 2

∫ T

0

hw− BTw X xh
2dt

This can be viewed as a dynamic game between the player u,
who tries to minimize and w who tries to maximize.

The minimizing control law u = −BTu X x gives
∫ T

0

[xTQx + uTu]dt ≤ γ 2
∫ T

0

wTwdt

so the gain from w to z = (Q1/2x,u) is at most γ .

Algebraic Riccati Equations

A∗X + X A+ X RX + Q = 0

where R = R∗, Q = Q∗.

• The ARE is as important for control design as the
Lyapunov equation is for system analysis.

• There are many solutions X = X ∗ to ARE, the stabilizing
one (which makes A+ RX stable) is unique!

• The ARE is a state space tool, which corresponds to fac-
torization in frequency domain (recall spectral factorization
in LQ Control).

How do we solve it?
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Hamiltonian Matrix

Consider the 2n� 2n matrix

H =







A R

−Q −A∗





 .

Lemma: Eigenvalues of H are symmetric with respect to the
imaginary axis.

Proof: Introduce J =









0 −I

I 0








. Then J−1HJ = −H∗, so λ is

an eigenvalue of H if and only if −λ̄ is.

In particular, if there are no purely imaginary eigenvalues then
there are precisely n stable and n unstable eigenvalues of H.

Stable Invariant Subspace

Under assumption of no purely imaginary eigenvalues, let

T =







X1

X2





 ∈ R2n�n

be a basis of the stable n-dimensional invariant subspace.
Equivalently HT = TΛ for some stable matrix Λ ∈ Rn�n.

Lemma: If det(X1) �= 0 then X = X2X
−1
1

is a stabilizing
solution to the ARE A∗X + X A+ X RX + Q = 0

Proof: We are to prove

1) X = X ∗.

2) X satisfies the ARE.

3) A+ RX is stable.

1) HT = TΛ ; T∗JHT = T∗JTΛ. The matrix JH is
symmetric then

T∗JTΛ = Λ∗T∗JT < T∗JTΛ − Λ∗T∗JT = 0.

So T∗JT satisfies the Lyapunov equation and Λ and −Λ∗ have
no common eigenvalues. Hence T∗JT = 0 that is

X ∗
2 X1 − X ∗

1 X2 = 0 < X ∗ − X = 0.

2) & 3) Simple calculation gives

AX1 + RX2 = X1Λ,
−QX1 − A∗X2 = X2Λ.

<
A+ RX = X1ΛX −1

1

−Q − A∗X = X2ΛX −1
1

.

Thus A+ RX is stable and

X A+ X RX = X2ΛX1 = −Q − A∗X

which implies the ARE.

How to solve the ARE

Under conditions

(H1) There are no pure imaginary eigenvalues of H.

(H2) det(X1) �= 0 for some basis of stable invariant subspace.

we can find a stabilizing solution to ARE as follows:

1. Find a basis T for the stable invariant subspace, for
example by Jordan decomposition. If (H1) holds, then it
has the dimension n.

2. Partition T as
T =







X1

X2





 .

(H2) holds for some basis iff it holds for all basis.

3. Build X = X2X
−1
1

.
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Notation

H ∈ dom(Ric) if (H1) and (H2) hold for H.

X = Ric(H) is the stabilizing solution to ARE.

ARE for H∞ norm conditions

Let
G(s) = C(sI − A)−1B

where (A, B,C) is stabilizable and detectable. Introduce the
Hamiltonian matrix

H0 =







A BB∗

−C∗C −A∗





 .

Theorem: Let G ∈ RH∞ . The following conditions are
equivalent:

1. iGi∞ < 1,

2. (H1) holds for H0,

3. H0 ∈ dom(Ric).

Proof: For (2) < (3), see [Zhou, p. 237]

(1) < (2) The following conditions are equivalent:

1) iGi∞ < 1

2)
iG( jω)xi2

ixi2
< 1 ∀x �= 0, ω

3) x∗[I − G( jω)∗G( jω)]x > 0, ∀x �= 0, ω
4) I − G( jω)∗G( jω) > 0, ∀ω
5) det(I − G( jω)∗G( jω)) �= 0, ∀ω

6) det( jω I − H0) = det









jω I−A −BB∗

C∗C jω I+A∗








=

= det( jω I−A) det( jω I+A∗) det(I − G∗G) �= 0

∀ω .

Thus we can describe the condition iGi∞ < 1 by existence of
the stabilizing solution to an ARE.

Assumptions

P

K

� �

�

�

w z

u y P =





A Bw Bu

Cz 0 Dzu

Cy Dyw 0





(A1) (A, Bw,Cz) is stabilizable and detectable,

(A2) (A, Bu,Cy) is stabilizable and detectable,

(A3) D∗
zu



 Cz Dzu



 =


 0 I



,

(A4)









Bw

Dyw








D∗
yw =









0

I








.
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State Space H∞ optimization

The solution involves two AREs with Hamiltonian matrices

H∞ =









A γ −2BwB∗
w − BuB∗

u

−C∗
z Cz −A∗









J∞ =









A∗ γ −2C∗
z Cz − C∗

yCy

−BwB∗
w −A









Theorem: There exists a stabilizing controller K such that
iTzwi∞ < γ if and only if the following three conditions hold:

1. H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0,

2. J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0,

3. ρ(X∞Y∞) < γ 2.

Moreover, one such controller is

Ksub(s) =

[

Â∞ −Z∞L∞

F∞ 0

]

where

Â∞ = A+ γ −2BwB
∗
wX∞ + BuF∞ + Z∞L∞Cy,

F∞ = −B∗
uX∞, L∞ = −Y∞C

∗
y ,

Z∞ = (I − γ −2Y∞X∞)−1.
Furthermore, the set of all stabilizing controllers such that
iTwzi∞ < γ can be explicitly obtained as lower LFT (see
[Zhou,p. 271]).

[Doyle J., Glover K., Khargonekar P., Francis B., State Space
Solution to Standard H2 and H∞ Control Problems, IEEE
Trans. on AC 34 (1989) 831–847.]

Idea of Proof

The dynamic game viewpoint gives a solution in the case
of full information, where both state and disturbance are
measurable. This gives the first ARE.

This can be combined with a “worst case observer”, finding the
smallest disturbance compatible with available measurements.
This gives the second ARE.

Combining the full information solution with the worst case
observer, solves the dynamc game problem with limited
measurement information, provided that the spectral radius
condition holds.

What have we learned today?

• H∞ optimization is fundamental problem for robust synthe-
sis.

• A dynamic game between controller and disturbance

• The state space approach gives easily implementable
conditions and formulas.

• Algebraic Riccati Equation is the main computational tool.
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