
Lecture 5

• LFT and Internal Stability.

• Structured Uncertainties.

• Structured Singular Value µ .

• Some bounds on µ .

• Structured Robust Stability.

• Structured Robust Performance.

• µ Synthesis via D − K iterations.

LFT and General Framework
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z= Fu(F l(P, K ), ∆)w = Fu(M , ∆)w.

What is internal stability of (P, K )?

Is Fu(M , ∆) well-posed?

Robustly stable?

LFT and Internal Stability

Consider the lower LFT interconnection of P and K where
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The closed loop system is
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Definition: The closed loop system (P, K ) is called internally
stable if the transfer function from (w, e1, e2) to (z,u, y) belongs
to RH∞.

Theorem: K stabilizes P iff K stabilizes P22.

Proof: See [Francis,p. 33]. The proof of a particular case can
be also found in [Zhou,p. 223].

Remark :

• For upper LFT P22 should be replaced by P11.

• The theorem reduces the internal stability of 4-block
system to that of 1-block one.

• Small Gain Theorem becomes obvious.

Theorem: Let M ∈ RH∞. Then the closed-loop system
(M , ∆) is well-posed and internally stable for all ∆ ∈ RH∞ with
i∆i∞ ≤ 1 if and only if iM11i∞ < 1.

Proof: By above, ∆ stabilizes M iff ∆ stabilizes M11. By the
standard Small Gain Theorem, this happens iff iM11i∞ < 1.
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Pulling out Uncertainties
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Structured Uncertainty

The new pulled out uncertainty has a diagonal structure
composed of primitive uncertain blocks. Every primitive block
can be

• complex unstructured matrix uncertainty to represent
neglected dynamics.

• real parameter scalar uncertainty to represent uncertainty
in system coefficients.

Usually real uncertainty is much harder to deal with. One (con-
servative) way to treat it is to cover it with complex uncertainty.

Thus we shall assume that

∆(s) = diag {δ1(s)Ir1, . . . ,δ K (s)IrK , ∆1(s), . . . , ∆L(s)}

where δ k, ∆ l ∈ RH∞ and iδ ki∞ ≤ 1, i∆ li∞ ≤ 1.

Structured Singular Value

Recall the Small Gain Theorem which says that (I − M∆)−1 ∈
RH∞, ∀∆ ∈ BRH∞ iff iMi∞ < 1.

Thus if there exist a frequency ω and a complex matrix ∆ such
that

det(I − M( jω )∆) = 0

then i∆i is an upper bound on the stability margin iMi−1
∞ .

Given a matrix M ∈ Cp�q introduce

αmin = inf{i∆i : det(I − M∆) = 0, ∆ ∈ Cq�p}.

We have the relation

iMi = σmax(M) =
1

αmin
.

Now consider the structured uncertainty set

D = {diag [δ1 Ir1 , . . . ,δ K IrK , ∆1 , . . . , ∆L ] : δ k ∈ C, ∆l ∈ Cml�ml}

Definition: Given a matrix M ∈ Cn�n the structured singular
value µD(M) is defined as

µD(M) =:
1

min{i∆i : det(I − M∆) = 0, ∆ ∈ D}
.

If det(I − M∆) �= 0 for all ∆ ∈ D then µD(M) := 0.

Elementary property:

• D = {δ I : δ ∈ C} ; µD(M) = ρ(M).

• D = Cn�n ; µD(M) = iMi.

• In general, C ⋅ I ⊂ D ⊂ Cn�n so ρ(M) ≤ µD(M) ≤ iMi.

2



How good are the bounds?

Let
∆ =







δ1 0

0 δ2





 .

(1) For M =









0 β
0 0








with β > 0 we have

ρ(M) = 0, iMi = β , µD(M) = 0.

(2) For M =









−1/2 1/2

−1/2 1/2








we have

ρ(M) = 0, iMi = 1.

Since det(I −M∆) = 1+ (δ1 − δ2)/2 we get µD(M) = 1.

Thus both bounds are bad unless ρ � σ̄ .

Invariant transformation

Let us try to find a transformation which does not affect µD(M)
but changes ρ and σ̄ .

Define two sets

U = {U ∈ D : UU ∗ = I},
D = {diag[D1 , . . . , DK , d1 Im1 , . . . , dL−1 ImL−1

, ImL ] :
Dk ∈ Crk�rk , Dk = D∗

k > 0, dl ∈ R, dl > 0}.

Note that for any ∆ ∈ D, U ∈ U and D ∈ D it holds

• U ∗ ∈ U, U∆ ∈ D, ∆U ∈ D (property of the set D).

• iU∆i = i∆Ui = i∆i (since UU ∗ = I).

• D∆ = ∆D (property of the set D ).

Theorem

For all U ∈ U and D ∈ D

1) µD(M) = µD(UM) = µD(MU ).

2) µD(M) = µD(DMD−1).

Proof: 1) Since for each U ∈ U

det(I −M∆) = 0 < det(I −MUU ∗∆) = 0

∆ ∈ D < U ∗∆ ∈ D

we get µD(M) = µD(MU ).

2) For all D ∈ D

det(I −M∆) = det(I −MD−1∆D) = det(I − DMD−1∆)

since ∆ and D commute. Therefore µD(M) = µD(DMD−1).

Improving the bounds

Using Theorem we can tighten the bounds as

sup
U∈U

ρ(UM) ≤ µD(M) ≤ inf
D∈D

iDMD−1i.

Theorem:
sup
U∈U

ρ(UM) = µD(M).

Theorem: If 2K + L ≤ 3 then

µD(M) = inf
D∈D

iDMD−1i.
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Remarks :

• In general the quantity ρ(UM) has many local maxima
and the local search cannot guarantee to obtain µ(M).

• Computationally there is a slightly different formulation of
the lower bound by Packard and Doyle which gives rise to
a power algorithm. It usually works well but has no prove
of convergence.

• The upper bound can be computed by convex optimiza-
tion, but it is not always equal to µ(M) if 2K + L > 3.

• It is the upper bound that is the cornerstone of µ synthe-
sis, since it gives a sufficient condition for robust perfor-
mance.

Structured Robust Stability
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Introduce the set

T (D) = {∆ ∈ RH∞ : ∆(s) ∈ D in RHP}.

We have the following structured Small Gain Theorem.

Theorem: Let M ∈ RH∞ . The closed-loop system (M , ∆) is
well-posed and internally stable for all ∆ ∈ T (D) with i∆i∞ < 1
if and only if

sup
ω∈R

µD(M( jω )) ≤ 1.

Proof : The robust stability condition is

(I −M∆)−1 ∈ RH∞ , ∀∆ ∈ T (D), i∆i∞ < 1.

“:” It is sufficient to show that

sup
Res≥0

µD(M(s)) = sup
ω∈R

µD(M( jω )).

Obviously ≥. The opposite inequality follows from the fact that
zeros of det(I − M∆) move continuously with respect to ∆
and det(I − Mα ∆) has no zeros in RHP if iM∆i∞ < 1/α
(homotopy argument).

“;” If supω∈R µD(M( jω )) > 1 then by definition of µ there
exist ω 0 ∈ R ∪ {+∞} and ∆0 with i∆0i < 1 such that the
matrix I −M( jω 0)∆0 is singular. Next, one can apply the same
interpolation argument as in the Small Gain Theorem.

Remark : Unlikely the unstructured Small Gain Theorem the
robust stability for all ∆ ∈ T (D) with i∆i∞ ≤ 1 does not imply
that

sup
ω∈R

µD(M( jω )) < 1.

It might be = 1.

See example in [Zhou,p. 201].
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Performance for Constant LFT

Let M =









M11 M12

M21 M22








be a complex matrix and suppose that

D1 and D2 are two defined structures which are compatible in
size with M11 and M22 correspondingly.

Introduce a third structure as

D =







D1 0

0 D2





 .

Theorem:

1) µD(M ) < 1 <



µD1(M11) < 1, sup
∆1∈D1
i∆1i≤1

µD2(Fu(M , ∆1)) < 1





2) µD(M ) ≤ 1 <



µD1(M11) ≤ 1, sup
∆1∈D1
i∆1i<1

µD2(Fu(M , ∆1)) ≤ 1
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Proof: Prove only 1).

“:” Let i∆ ii ≤ 1. By Schur complement

det(I −M∆) = det









I −M11∆1 −M12∆2
−M21∆1 I − M22∆2








=

= det(I −M11∆1) det(I − Fu(M , ∆1)∆2) �= 0.

“;” Basically the same identity plus (from definition of µ)

µD(M) ≥ max{µD1(M11), µD2(M22)}

Structured Robust Performance
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Let [p2, q2] = size(M22). Define an augmented block structure

DP =







D 0

0 Cq2�p2





 .

Theorem: For all ∆ ∈ T (D) with i∆i∞ < 1/β the closed loop
is well posed, internally stable and iFu(M , ∆)i∞ ≤ β if and
only if

sup
ω∈R

µDP(M( jω )) ≤ β .

µ Synthesis via D − K Iterations
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The problem is to solve

min
K−stab

iF l(P, K )iµ .

Approximation: D − K iterations for the upper bound

min
K−stab

inf
D, D−1∈H∞

iDF l(P, K )D−1i∞

under the condition D(s)∆(s) = ∆(s)D(s).
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Remarks :

• Step 1 is the standard H∞ optimization.

• Step 2 can be reduced to a convex optimization.

• No global convergence is guaranteed.

• Works sometimes in practice.

What have we learned today?

• LFT gives us a general framework.

• Internal stability of LFT

• Pulling out uncertainties gives a diagonal structure

• Structured singular value µ is very natural for robust
stability but very hard to calculate exactly.

• Conservative bounds of µ are available.

• Invariant transformations as a way to reduce conservatism.

• Small µ-Gain Theorem is very similar to the standard one.

• Structured robust performance equivalent to pure robust
stability with augmented uncertainty.

• Heuristic D − K iterations as approach to µ synthesis.

Next lecture

• Algebraic Riccati Equations.

• Standard H∞ Control Problem.

• State Space Solution.
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