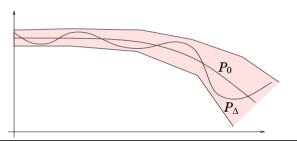
Lecture 4

- Unstructured Uncertainty Models
- Small Gain Theorem and Robust Stability
- Robust Performance
- Linear Fractional Transformations

Introduction

Recall that the purpose of robust control is that the closed loop performance should remain acceptable in spite of variations in the plant.

Methods to verify that a performance specification holds for all plants in a given set will be devoloped in this lecture and the next one.



Four kinds of specifications

Nominal stability The closed loop is stable for the nominal plant P_0

Nominal performance

The closed loop specifications hold for the nominal plant P_0

Robust stability The closed loop is stable for all plants in the given set P_{Λ}

Robust performance

The closed loop specifications hold for all plants in P_{Δ}

Basic Uncertainty Models

Let \mathcal{D} be a set of all allowable Δ 's.

Additive uncertainty model: $P_{\Delta} = P_0 + \Delta$, $\Delta \in \mathcal{D}$.

Multiplicative uncertainty model: $P_{\Delta} = (I + \Delta)P_0$, $\Delta \in \mathcal{D}$.

Feedback uncertainty model: $P_{\Delta} = P_0(I + \Delta P_0)^{-1}, \quad \Delta \in \mathcal{D}.$

Coprime factor uncertainty model:

Let $P_0 = NM^{-1}$, M, $N \in RH_{\infty}$ and

$$P_{\Delta} = (N+\Delta_N)(M+\Delta_M)^{-1}, \quad \left(egin{array}{c} \Delta_N \ \Delta_M \end{array}
ight) \in \mathcal{D}.$$

Miniproblem Draw block diagrams for each of the previous uncertainty models!	 Very often
Example	The Small Gain Theorem
Let $P(s) = \frac{1}{s^2} e^{-\tau s}$	Suppose $M \in RH_\infty.$ Then the closed loop system (M, Δ) is internally stable for all
where $ au$ is known only to the extent that $ au \in [0, 0.1]$.	$\Delta\in \mathscr{B}RH_{\infty}:=\{\Delta\in RH_{\infty}\mid \ \Delta\ _{\infty}\leq 1\}$
Let the nominal plant be $P_0(s) = rac{1}{s^2}$ and	if and only if $\ M\ _{\infty} < 1.$
$P\in \mathscr{P}_{\Delta}=\{(1+W\Delta)P_0\mid \ \Delta\ _{\infty}\leq 1\}.$	Proof : The internal stability of (M, Δ) is
The weight should be chosen so that $ R(i\alpha) = R(i\alpha) $	$\left(egin{array}{cc} I & -\Delta \ -M & I \end{array} ight)^{-1}\in RH_\infty.$
$\left rac{P(j\omega)}{P_0(j\omega)} - 1 ight \leq W(j\omega) , orall \omega \in R, au \in [0,0.1].$	Since $M, \Delta \in RH_\infty$ it is equivalent to $(I - M\Delta)^{-1} \in RH_\infty$ ([Zhou,Corollary 5.4]).
So choose $ W(j\omega) \ge e^{-j\tau\omega} - 1 $ as tight as possible to reduce conservatism.	Thus we have to prove that $\ M\ _{\infty} < 1$ if and only if
A suitable first order weight is $W(s) = 0.21s/(0.1s + 1)$	$(I-M\Delta)^{-1}\in RH_{\infty}, \ \ orall\Delta\in \mathcal{B}RH_{\infty}$

Sufficiency: Let $||M||_{\infty} < 1$ and $\Delta \in \mathcal{B}RH_{\infty}$. Consider the Neumann series decomposition $(I - M\Delta)^{-1} = \sum_{n=0}^{+\infty} (M\Delta)^n$.

Then $(I-M\Delta)^{-1}\in RH_\infty$ since $M\Delta\in RH_\infty$ and

$$\|(I - M\Delta)^{-1}\|_{\infty} \le \sum_{n=0}^{+\infty} \|M\Delta\|_{\infty}^n \le \sum_{n=0}^{+\infty} \|M\|_{\infty}^n = (1 - \|M\|_{\infty})^{-1} < +\infty.$$

Necessity: Fix $\omega \in [0, +\infty]$. A constant $\Delta = \frac{\lambda M(j\omega)^*}{\|M(j\omega)\|}$ satisfies $\|\Delta\|_{\infty} \leq 1, \forall \lambda \in [0, 1]$, so we have

$$(I-M\Delta)^{-1}\in RH_{\infty} \; \Rightarrow \; \det\left(rac{\|M\|}{\lambda}I-MM^{*}
ight)
eq 0$$

for all $\lambda \in [0,1]$. It gives $\|M\|^2 < \|M\|$, hence, $\|M\| < 1$. The frequency is arbitrary, so we have $\|M\|_{\infty} < 1$.

Note that $\Phi \in RH_{\infty}$, so $\Phi^{-1} \in RH_{\infty}$ iff det Φ has a stable inverse. The determinant identity in [Zhou,p. 14] yields

$$\det \Phi = \det \left(I - \left(egin{array}{cc} W_2 & 0 \end{array}
ight) \, T_0^{-1} \left(egin{array}{cc} 0 \ W_1 \end{array}
ight) \, \Delta
ight)$$

Hence robust stability is equivalent to the condition that

$$\left(I-\left(egin{array}{cc} W_2 & 0 \end{array}
ight) T_0^{-1} \left(egin{array}{cc} 0 \\ W_1 \end{array}
ight)\Delta
ight)^{-1}\in RH_\infty$$

which in turn by small gain theorem is equivalent to

$$\left\| \left(egin{array}{cc} W_2 & 0 \end{array}
ight) \, T_0^{-1} \, \left(egin{array}{c} 0 \ W_1 \end{array}
ight)
ight\|_\infty < 1$$

The desired condition follows as

$$T_0^{-1} = egin{pmatrix} S_i & KS_o \ PS_i & S_o \end{bmatrix} egin{pmatrix} W_2 & 0 \end{bmatrix} T_0^{-1} egin{pmatrix} 0 \ W_1 \end{bmatrix} = W_2 K S_o W_1$$

Robust Stability under Unstructured Uncertainty

Theorem: Let $W_i \in RH_{\infty}$, $P_{\Delta} = P_0 + W_1 \Delta W_2$ for $\Delta \in RH_{\infty}$ and *K* be a stabilizing controller for P_0 . Then *K* is robustly stabilizing for all $\Delta \in \mathcal{B}RH_{\infty}$ is and only if

$$\|W_2 K S_o W_1\|_{\infty} < 1.$$

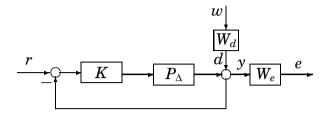
Proof: Introduce

$$egin{array}{rcl} T_{\Delta}&=&\left(egin{array}{cc} I&-K\ -P_{\Delta}&I\end{array}
ight)&=&T_{0}-\left(egin{array}{cc} 0\ W_{1}\end{array}
ight)\Delta\left(egin{array}{cc} W_{2}&0\end{array}
ight)\ &=&T_{0}\left(I-T_{0}^{-1}\left(egin{array}{cc} 0\ W_{1}\end{array}
ight)\Delta\left(egin{array}{cc} W_{2}&0\end{array}
ight)
ight)&=&T_{0}\Phi \end{array}$$

Assuming nominal stability, i.e. $T_0^{-1} \in RH_\infty$, robust stability holds if and only if $\Phi^{-1} \in RH_\infty$ for all $\Delta \in \mathcal{B}RH_\infty$

r	1
Uncertainty Model ($\ \Delta\ \leq 1$)	Robust stability test
$(I+W_1 \Delta W_2)P$	$\ W_2T_oW_1\ _\infty < 1$
$P(I+W_1\Delta W_2)$	$\ W_2T_iW_1\ _\infty < 1$
$(I+W_1\Delta W_2)^{-1}P$	$\ W_2 S_o W_1\ _\infty < 1$
$P(I+W_1\Delta W_2)^{-1}$	$\ W_2S_iW_1\ _\infty < 1$
$P+W_1\Delta W_2$	$\ W_2KS_oW_1\ _\infty < 1$
$P(I+W_1\Delta W_2P)^{-1}$	$\ W_2S_oPW_1\ _\infty < 1$
$(ilde{M}+ ilde{\Delta}_M)^{-1}(ilde{N}+ ilde{\Delta}_N)$	$\left\ \left(egin{array}{c} K \ I \end{array} ight) S_{o} ilde{M}^{-1} ight\ _{\infty} < 1$
$\Delta = [\tilde{\Delta}_N \ \tilde{\Delta}_M]$	$\left\ \left(I\right)^{\mathcal{B}_{0}\mathcal{M}}\right\ _{\infty} \leq 1$
$(N+\Delta_N)(M+\Delta_M)^{-1}$	$\left\ M^{-1}S_i \left(egin{array}{cc} K & I \end{array} ight) ight\ _{U} < 1$
$\Delta = [\Delta_N \ \Delta_M]$	$\left\ \begin{array}{ccc} \mathbf{M} & \mathbf{D}_{l} \\ \mathbf{M} & \mathbf{D}_{l} \\ \mathbf{M} & \mathbf{I} \end{array} \right\ _{\infty} \leq \mathbf{I}$

Robust Performance for Unstructured Uncertainty



Let T_{ew} be the closed loop transfer function from w to e. Then

$$T_{ew} = W_e (I + P_\Delta K)^{-1} W_d$$

Given robust stability, a robust performance specification is

 $\|T_{ew}\|_{\infty} < 1, \quad orall \Delta \in \mathscr{B}RH_{\infty}$

This can be written as

$$\|W_e S_o (I+W_1 \Delta W_2 T_o)^{-1} W_d\|_\infty < 1$$
 for $\Delta \in \mathscr{B}RH_\infty$

"⇐"

At any point $j\omega$ it holds

$$1 = |1 + \Delta W_T T - \Delta W_T T| \leq |1 + \Delta W_T T| + |W_T T|$$

hence $1 - |W_T T| \le |1 + \Delta W_T T|$. This implies that

$$\left\| rac{W_S S}{1+\Delta W_T T}
ight\|_\infty \leq \left\| rac{W_S S}{1-|W_T T|}
ight\|_\infty < 1.$$

"⇒"

Assume robust performance. Pick a frequency ω where $\frac{|W_SS|}{1-|W_TT|}$ is maximal. Now pick Δ so that $1 - |W_TT| = |1 + \Delta W_TT|$ at this point ω . We have

$$\left\|rac{W_SS}{1-|W_TT|}
ight\|_{\infty}=rac{|W_SS|}{1-|W_TT|}=rac{|W_SS|}{|1+\Delta W_TT|}\leq\leq \left\|rac{W_SS}{1+\Delta W_TT}
ight\|_{\infty}\leq 1.$$

Consider for simplicity a case when K and P_0 are scalar. Then we can join W_e and W_d as well as W_1 and W_2 to get RP condition

$$\|W_T T\|_\infty < 1, \quad \left\|rac{W_S S}{1+\Delta W_T T}
ight\|_\infty < 1$$

for all $\Delta \in \mathcal{B}RH_{\infty}$.

Theorem: A necessary and sufficient condition for RP is

$$\left\| \left| W_S S \right| + \left| W_T T \right| \right\|_{\infty} < 1.$$

Proof: The condition $\||W_SS| + |W_TT|\|_{\infty} < 1$ is equivalent to

$$\|W_TT\|_\infty < 1, \quad \left\|rac{W_SS}{1-|W_TT|}
ight\|_\infty < 1.$$

Remarks:

• Note that the condition for nominal performance is $\|W_S S\|_{\infty} < 1$, while the condition for robust stability is $\|W_T T\|_{\infty} < 1$. Together the two conditions say something about robust performance:

- For MIMO systems the corresponding condition for robust performance becomes only sufficient (see [Zhou,p. 149]).
- It is possible to obtain robust performance conditions for other uncertainty models as well. Some of them are simple others are very messy.

Linear Fraction Transformation

In complex analysis a linear fractional transformation (LFT) is a function in the form $F(s) = \frac{a+bs}{c+ds}$. If $c \neq 0$ then equivalently $F(s) = \alpha + \beta s (1 - \gamma s)^{-1}$.

Definition: For a complex matrix $M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$ and other complex matrices Δ_l , Δ_u of appropriate size define a *lower* LFT with respect to Δ_l as

 $\mathcal{F}_l(M,\Delta_l) = M_{11} + M_{12}\Delta_l(I-M_{22}\Delta_l)^{-1}M_{21}$

and an *upper* LFT with respect to Δ_u as

$$\mathcal{F}_u(M,\Delta_u) = M_{22} + M_{21}\Delta_u(I - M_{11}\Delta_u)^{-1}M_{12}$$

provided the inverse matrices exist.

Usage of LFT

- LFT is a useful way to standardize block diagram, that is to bring it to some canonical form.
- Systems with parametric uncertainties, i.e. with unknown coefficients in state space models can be represented as an LFT with respect to uncertain parameters (see examples in [Zhou]).
- Basic principle: use LFT to "pull out all uncertainties" which can appear in different points of a block diagram and to combine them in one uncertainty.

Motivation

Consider closed loop systems

$$\begin{array}{l} z_1 \\ y_1 \end{array} \right) \quad = \quad \left(\begin{array}{cc} M_{11} & M_{12} \\ M_{21} & M_{22} \end{array} \right) \\ \left(\begin{array}{c} w_1 \\ u_1 \end{array} \right) \qquad u_1 = \Delta_l y_1 \end{array}$$

and

 $\left(egin{array}{c} y_2 \ z_2 \end{array}
ight) = \left(egin{array}{c} M_{11} & M_{12} \ M_{21} & M_{22} \end{array}
ight) \left(egin{array}{c} u_2 \ w_2 \end{array}
ight) \qquad u_2 = \Delta_u y_2$

Then

$$T_{z_1w_1}=\mathcal{F}_l(M,\Delta_l), \ \ T_{z_2w_2}=\mathcal{F}_u(M,\Delta_u).$$

Remark: In what follows we shall often use just LFT without distinguishing it to be lower or upper. It will be clear from context. Moreover $\mathcal{F}_u(N, \Delta) = \mathcal{F}_l(M, \Delta)$ where

$$N = \left(egin{array}{cc} M_{22} & M_{21} \ M_{12} & M_{11} \end{array}
ight)\,.$$

What have we learned today?

- Basic uncertainty models: additive, multiplicative, coprime factor etc.
- Robust stability stability for all systems in a family closed by a single controller.
- Small Gain Theorem as a main tool for robust stability under unstructured uncertainty. Robust stability is equivalent to some H_{∞} nominal performance.
- Conditions for robust performance are usually much harder to obtain explicitly.
- Linear Fractional Transformation as a standard way to represent an uncertain system combining all uncertainties in one.