
Lecture 3

• Examples: bicycle, pendulum, four tank process

• Complex analysis

• Bode’s relations

• Bode’s integral

• Sensitivity bounds

• Examples revisited

Examples

Why are some bicycles impossible to ride?

How short inverted pendulums can be balanced by hand?

What is the mechanism behind the unstable zero in the four
tank process?

Unstable poles

An unstable pole means that the response without input
grows exponentially as ept. It is intuitively clear that in order to
stabilize the system, the feedback loop must be faster than the
time constant 1/p. This gives the cutoff frequency constraint

ω c >∼ p

A formal argument will be given later

Unstable system with time-delay

A time-delay T means that control action at time t does not
have any effect until time t+ T . Hence, it is intuitively clear that
an unstable pole can not be stabilized unless

T <
∼
1

p

A formal argument will be given later
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Unstable zeros

An unstable zero z sometimes results in a step response that
initially goes in the wrong direction. The time constant of such
dynamics is 1/z and limits the speed of control:

ω c <∼ z

A formal argument will be given later

Mini-problem

Does any of the criteria above apply to the bicycle or to the
pendulum?

Some Facts from Complex Analysis

1) D’Alembert-Euler-Cauchy-Riemann condition.

Let z = x+ jy and f (z) = u(x, y)+ jv(x, y). Then f is analytical
at z iff

�u

�x
=
�v

�y
,
�u

�y
= −

�v

�x
.

By this condition

• one can determine v by u and vice versa

v(x, y) =

∫ z

z0

(
−
�u

�y
dx +

�u

�x
dy

)
+ C.

• assumption f (z0) ∈ R gives C = 0.

• u and v are harmonic functions, i.e. ∆u = ∆v = 0.

2) The Poisson integral.

For “any” harmonic in RHP function u and for all x + jy in RHP

u(x + jy) =
1

π

∫ +∞

−∞

u( jω )
x dω

x2 + (y−ω )2
.

Proof: csd.newcastle.edu.au/appendices/appendixC_8_1.html
Corollary (Schwarz integral): For “any” f analytical in RHP

f (z) =
1

π

∫ +∞

−∞

Re{ f ( jω )}
dω

z− jω
+ jC for Re z> 0

Furthermore, if f is analytical and has no zeros in RHP then
ln f is also analytical and for some pc0p = 1

f (z) = c0 exp

{
1

π

∫ +∞

−∞

ln p f ( jω )p
dω

z− jω

}
.

Small warning sign: Convergence issues might arise in the formulas on this page. If u, f , ln p f p are bounded on

large semicircles in the RHPL, you should be fine.
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A frequency domain specification
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The shaded areas are “forbidden areas”. For how small interval
[ω 0,ω 1] can the specification be satisfied?

Bode’s Gain and Phase Relation

These constraints arise from the internal stability requirement.
For simplicity we shall assume that both P and K are scalar.

Let L be analytical and minimum phase function in RHP and
L(0) > 0. Then

arg L( jω 0) =
1

π

∫ +∞

−∞

d ln pL( jω 0e
ν)p

dν
ln coth

pν p

2
dν .

ln coth pν p/2
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•
d ln pLp
dν

is the slope of Bode plot (generally negative).

• If L attenuates slowly (rapidly) near ω 0 then arg L( jω 0) is
large (small). For example, if d ln pLp/dν = −c then

arg L(lω 0) = −
c

π

∫ +∞

−∞

ln coth
pν p

2
dν = −

cπ

2
.

• If pL( jω c)p = 1 then π + arg L( jω c) is the phase margin
and

p1+ L( jω c)p = p1+ L( jω c)
−1p = 2

∣∣∣∣sin
π + arg L( jω c)

2

∣∣∣∣ .

must not be small. So it is important to keep the slope of
L near ω c not much smaller than −1.

• There is a generalization of Bode’s gain and phase
relation to the case of nonminimum phase function L (see
[Zhou,p. 96]).

Theorem: Bode’s Sensitivity Integral

Let {pk}Kk=1 denote the set of unstable poles of L. Assume that
the relative degree of L is at least 2. Then

∫ +∞

0

ln pS( jω )p dω = π

K∑

k=1

Re pk.

Proof for stable S:
By Poisson integral formula with y = 0 we have

∫ +∞

0

ln pS( jω )p dω

=

∫ +∞

0

ln pS( jω )p lim
x→∞

x2 dω

x2 +ω 2
= lim
x→∞

∫ +∞

0

ln pS( jω )p
x2 dω

x2 +ω 2

= lim
x→∞

π

2
x ln pS(x)p = − lim

x→∞

π

2
x ln p1+ L(x)p = − lim

x→∞

π

2
xL(x) = 0
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Bode’s integral formula

• Can the sensitivity be small for all frequencies?

– No, we have S(∞) = 1!

• The "water-bed effect". Push the curve down at one
frequency and it pops up at another!
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Another fact from complex analysis

3) The Maximum Modulus Theorem.
Suppose that the function f is analytic in a set containing the
unit disc. Then

max
pzp≤1

p f (z)p = max
pzp=1

p f (z)p

Corollary.
Suppose that all poles of the rational function G(s) have
negative real part. Then

max
Re s≥0

pG(s)p = max
ω∈R

pG(iω )p

Sensitivity bounds from unstable zeros and poles

The sensitivity must be one at an unstable zero:

P(z) = 0 [ S(z) := [1− C(z)P(z)]−1 = 1

The complimentary sensitivity must be one at an unstable pole:

P(p) = ∞ [ T(p) := C(p)P(p)[1 − C(p)P(p)]−1 = 1

Performance limitations from unstable zeros

Note that (for stable Ws and S)

sup
ω
qWs(iω )S(iω )q = sup

Re s≥0
qWs(s)S(s)q

so the specification

qWs(iω )S(iω )q ≤ 1 for all ω

can not be met unless qWs(zi)q ≤ 1 for unstable zeros zi of P.

In particular, if

Let Ws(s) =
s+ a

2s

then zi must be ≥ a

log pWsp

a logω
0
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Performance limitations from unstable poles

Note that (for stable Wt and S)

sup
ω
qWt(iω )T(iω )q = sup

Re s≥0
qWt(s)T(s)q

so the specification

qWt(iω )T(iω )q ≤ 1 for all ω

can not be met unless qWp(pi)q ≤ 1 for unstable zeros pi of P.

In particular, if

Let Wt(s) =
s+ a

2a

then pi must be ≤ a

log pWtp

a logω
0

Unstable zero and unstable pole

Let P = (s− z)(s− p)−1 P̂, with P̂ proper and P̂(p) ,= 0.

Then, for stable closed loop systems the sensitivity function
satisfies

sup
ω
pS(iω )p = sup

ω

∣∣∣∣
1

1+ CP

∣∣∣∣ = sup
ω

∣∣∣∣∣
1

1+ C(iω − z)(iω − p)−1 P̂

∣∣∣∣∣

= sup
ω

∣∣∣∣∣
iω − p

iω − p+ C(iω − z)P̂

∣∣∣∣∣ = supω

∣∣∣∣∣
iω + p

iω − p+ C(iω − z)P̂

∣∣∣∣∣

= sup
Re s≥0

∣∣∣∣∣
s+ p

s− p+ C(s− z)P̂

∣∣∣∣∣ ≥
∣∣∣∣
z+ p

z− p

∣∣∣∣

so the sensitivity function must have a high peak for every
controller if p ( z.

Bicycle Tilt Dynamics

J
d2θ

dt2
= m�{θ +

mV0{

b

(
V0β + a

dβ

dt

)

The Rear Wheel Steered Bike

Mass: m = 70 kg

Distance rear-to-center: a = 0.3m

Height over ground: { = 1.2 m

Distance center-to-front: b = 0.7 m

Moment of inertia: J = 120 kgm2

Speed: V0 = 5 ms
−1

Acceleration of gravity: � = ms−2

The transfer function from β to θ is P(s) = mV0{
b

as+V0
Js2−m�{

The system has unstable pole p and a zero z

p−1 =

√
J

m�{
( 0.4 s z−1 = −

a

V0
( 0.06s
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What have we learned today?

Complex analysis provides very a powerful tool to understand
how the open loop plant dynamics limit the achievable closed
loop performance

• Bode’s relations

• Bode’s integral

• Sensitivity bounds
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